- to acknowledge the unused DCACHE added to DRAM for ESP32-S3
- For ESP32-S3, when the DCACHE size is set to 16 kB, the unused 48 kB is added to
the heap in 2 blocks of 32 kB (from 0x3FCF0000) and 16 kB (from 0x3C000000).
- But, if we try allocating memory from the 16 kB block and run an `esp_ptr_internal`
check on that memory pointer, it fails as the address block from 0x3C000000
corresponds to the external memory symbols SOC_DROM_LOW and SOC_EXTRAM_DATA_LOW.
(E.g. freertos - If the IDLE task stack buffer gets allocated from this region,
the firmware will abort due to this failure).
- Thus, the checks `esp_ptr_internal`, `esp_ptr_in_drom` and `esp_ptr_byte_accessible`
have been updated to acknowledge this memory as a part of the DRAM.
Co-authored-by: Mahavir Jain <mahavir@espressif.com>
bugfix: esp32c6 deep sleep minor fixes
Closes WIFI-5559, WIFI-5425, WIFI-3494, WIFI-3495, WIFI-4163, and WIFI-4164
See merge request espressif/esp-idf!22697
Memprot functions are no longer placed by default in IRAM,
selecting ESP_PANIC_HANDLER_IRAM will still force panic related memprot
functions to be placed in IRAM.
Update wifi lib with below -
1. Create NAN Discovery SM for beaconing & cluster formation
2. Create NAN interface for Tx/Rx of beacons & action frames
3. Add commands & events for NAN Services Publish/Subscribe/Followup
4. Add NAN Datapath definitions, Events, Peer structures
5. Support for forming and parsing of Datapath related attributes
6. Modules for NDP Req, Resp, Confirm, Term, Peer management
7. NAN Interface related additions in Datapath, Data Tx Q's
In addition include below changes -
1. Add netif and driver support for NAN Interface
2. Add simple examples for Publisher-Subscriber usecases
3. Add an advanced console example that supports commands
for NAN Discovery, Services & Datapath
4. Add wifi_apps for providing better NAN API's and Peer management
Co-authored-by: Shyamal Khachane <shyamal.khachane@espressif.com>
modem retention: Support esp32c6 wifi MAC and baseband sleep retention
sleep_modem: wifi MAC modem wakeup protect in modem state before PMU trigger sleep enable request
sleep modem: provide a interface to get whether the Modem power domain is allowed to power off during sleep
add i2c_ana master header file to project
auto beacon: release PMU's lock on root clock source (it is locked in the PLL)
wifi receiving beacon frame in PMU modem state strongly depends on the BBPLL
clock, PMU will forcibly lock the root clock source as PLL, when the root
clock source of the software system is selected as PLL, we need to release
the root clock source locking.
When it is judged that the PLL is locked by PMU after wakeing up from the PMU
modem state, switch the root clock source to the PLL in the sleep process (a
critical section).
auto beacon: fix the failure to receive broadcast/multicast frames in modem state
When the multicast field in the beacon frame received in the PMU modem state is
True, the PMU switches to the PMU active state (the PMU waits for the HP LDO to
stabilize and then restores the MAC context) and starts to receive
broadcast/multicast frames (Broadcast/Multicast frames will be sent after a
minimum delay of 48 us after the beacon frame), because the PMU waits for the HP
LDO to stabilize too long (~154 us), which will cause broadcast/multicast frame
reception to be missed.
auto beacon: select the PLL clock source as the REGDMA backup clock source when the PMU switches to ACTIVE from MODEM state
update Digital Peripheral (M2A switch) REGDMA restore time parameter
auto beacon: fix the issue that only channel 1 can connect to AP in modem state
1. Remove RTC_CLOCK_BBPLL_POWER_ON_WITH_USB Kconfig option
During sleep, BBPLL clock always gets disabled
esp_restart does not disable BBPLL clock, so that first stage bootloader log can be printed
2. Add a new Kconfig option PM_NO_AUTO_LS_ON_USJ_CONNECTED
When this option is selected, IDF will constantly monitor USB CDC port connection status.
As long as it gets connected to a HOST, automatic light-sleep will not happen.
Closes https://github.com/espressif/esp-idf/issues/8507
cpu retention: add riscv core sleep critical and non-critical register layout structure definition
cpu retention: add assembly subroutine for cpu critical register backup and restore
cpu retention: add cpu core critical register context backup and restore support
cpu retention: add cpu core non-critical register context backup and restore support
cpu retention: add interrupt priority register context backup and restore support
cpu retention: add cache config register context backup and restore support
cpu retention: add plic interrupt register context backup and restore support
cpu retention: add clint interrupt register context backup and restore support
cpu retention: wait icache state idle before pmu enter sleep
Initialize the pmu sleep machine constant when pmu is initialized, and calculate
the pmu sleep time adjustment value and hardware configuration value according
to the machine constant during system sleep.
Calibrate fast OSC before each sleep and use the calibration value to calculate
PMU hardware wait cycles when use the fast OSC as the work clock.
1. add check in the gdma driver, to prevent multiple channels connecting
to the same peripheral
2. memory copy DMA ID will occupy the peripheral's DMA ID on some ESP
targets (e.g. esp32c3/s3). We should search for a free one when
install async memcpy driver.
Closes https://github.com/espressif/esp-idf/issues/10575
Since DRAM and IRAM are superposed on esp32c6 it is not necessary to convert a freshly allocated
DRAM addr to its IRAM equivalent when MALLOC_CAP_EXEC is passed to heap_caps_malloc(). Instead,
proceed with a default allocation since the address returned by multi_heap_malloc() already belongs
to the IRAM region.
Applies for esp32c6 and every boards with superposed DRAM and IRAM addresses.