When the virt efuse mode is on and psram is on as well
then efuse buffer is not filled by efuses (it is filled by 0).
So the psram init func gets wrong pkg_ver = 0.
Closes https://github.com/espressif/esp-idf/issues/10925
Close IDFGH-9576
When `DIS_USB_JTAG` eFuse is NOT burned (`False`), it is not possible
to set pins 18 and 19 as GPIOs. This commit solves this by manually
disabling USB JTAG when using pins 18 or 19.
The functions shall use `gpio_hal_iomux_func_sel` instead of
`PIN_FUNC_SELELECT`.
During HAL layer refactoring and new chip bringup, we have several
caps.h for each part, to reduce the conflicts to minimum. But this is
The capabilities headers will be relataive stable once completely
written (maybe after the featues are supported by drivers).
Now ESP32 and ESP32-S2 drivers are relative stable, making it a good
time to combine all these caps.h into one soc_caps.h
This cleanup also move HAL config and pin config into separated files,
to make the responsibilities of these headers more clear. This is
helpful for the stabilities of soc_caps.h because we want to make it
public some day.
Allows booting in QIO/QOUT mode or with PSRAM on ESP32-PICO-V3 and
ESP32-PICO-V3-O2 without any config changes.
Custom WP pins (needed for fully custom circuit boards) should still be compatible.
The issue is caused by:
1. The disable_qio_mode inside read_id may have side effects.
2. read_id twice may have side effects.
Fix this issue by moving disable_qio_mode out of read_id and only do it
once before read_id. And retry read_id only when the first one is
failed.
Issue introduced in 3ecbb59c15e0fd8209bd8921725d52cff3f0fb12.
1. add enable PSRAM 2T mode function
2. enable PSRAM 2T mode base on PSRAM ID
3. abort when himem and 2T mode are enabled meanwhile
4. set SPIRAM_2T_MODE as "y" by default and modify SPIRAM_BANKSWITCH_ENABLE as "n" by default
The workaround for PSRAM that will occupy an SPI bus is enabled only when:
1. used on 32MBit ver 0 PSRAM.
2. work at 80MHz.
The test used to only check 32MBit by the config option, but for PSRAM
on Wrover-B module seems to use a newer version of 32MBit PSRAM. So it
expects the workaround to be enabled, but actually not.
This commit split the unit test into two parts:
1. check all SPI buses are available, for all configs except psram_hspi
and psram_vspi, run on regular runners (including Wrover and Wrover-B).
a hidden option is enabled so that the compiler knows it's not building
psram_hspi or psram_vspi.
2. check the specified bus are acquired, for config psram_hspi and
psram_vspi. This only run on special runner (legacy Wrover module).
We fixed some flash bugs in bootloader, but for the users used the old
vrsion bootloader, they can not fix these bugs via OTA, the solution is
add these updates in app startup.
These updates include:
1. SPI flash gpio matrix and drive strength configuration
2. SPI flash clock configuration
3. SPI flash read dummy configuration
4. SPI flash cs timing configuration
5. Update flash id of g_rom_flashchip
Using xxx_periph.h in whole IDF instead of xxx_reg.h, xxx_struct.h, xxx_channel.h ... .
Cleaned up header files from unnecessary headers (releated to soc/... headers).
When flash work in DIO Mode, in order to ensure the fast read mode of flash
is a fixed value, we merged the mode bits into address part, and the fast
read mode value is 0 (the default value).
1. remove redundant SPI clock settings, use rom functions to set clock.
2. remove redundant SPI cs setup and hold settings.
3. for old 32Mbit psram, cs hold time must only be 0.5T due to the special driving mode.(cs_setup = 0; cs_hold = 0)
4. for new 64Mbit psram, cs hold time is recommended to be 2.5T. (cs_setup = 1, cs_setup_time = 0;cs_hold = 1, cs_hold_time = 1)
1. separate rom include files and linkscript to esp_rom
2. modefiy "include rom/xxx.h" to "include esp32/rom/xxx.h"
3. Forward compatible
4. update mqtt
1. esp32-pico use standard spi driver to access psram
2. for esp32-pico, flash and psram share the clock
3. for esp32-pico, psram cs io can be overwrite via menuconfig
1. Use BIT[7:5] of EID to determine psram size
2. Add ID support for 16Mbit psram
3. Remove module reset on SPI1
4. Confirmed with the vendor that only the old 32Mbit psram need special clock timing. For other psram chips, we should use standard QPI mode.
1. remove use EID to distinguish psram voltage
2. 1V8 64Mbit psram and 3V3 64Mbit psram use the same psram driver(standard spi interface)
3. set cs hold time register as 1
1. Add reading psram EID.
2. Configure different clock mode for different EID.
3. add API to get psram size and voltage.
4. Remove unnecessary VSPI claim.
For 32MBit@1.8V and 64MBit@3.3V psram, there should be 2 extra clock cycles after CS get high level.
For 64MBit@1.8 psram, we can just use standard SPI protocol to drive the psram. We also need to increase the HOLD time for CS in this case.
EID for psram:
32MBit 1.8v: 0x20
64MBit 1.8v: 0x26
64MBit 3.3v: 0x46
1. Bootloader reads SPI configuration from bin header, so that the burning configuration can be different with compiling configuration.
2. Psram mode init will overwrite original flash speed mode, so that users can change psram and flash speed after OTA. 3. Flash read mode(QIO/DIO…) will not be changed in app bin. It is decided by bootloader, OTA can not change this mode.
4. Add read flash ID function, and save flash ID in g_rom_flashchip
5. Set drive ability for all related GPIOs
6. Check raise VDDSDIO voltage in 80Mhz mode
7. Add check flash ID and update settings in bootloader
8. Read flash ID once and keep in global variable
9. Read flash image header once and reuse the result
Tested cases:
1. Test new and old version of bootloader
boot Flash 20M —> app Flash 80M + Psram 80M
boot Flash 40M —> app Flash 80M + Psram 80M
boot Flash 80M —> app Flash 80M + Psram 80M
boot Flash 20M —> app Flash 80M + Psram 40M
boot Flash 40M —> app Flash 80M + Psram 40M
boot Flash 80M —> app Flash 80M + Psram 40M
boot Flash 20M —> app Flash 40M + Psram 40M
boot Flash 40M —> app Flash 40M + Psram 40M
boot Flash 80M —> app Flash 40M + Psram 40M 2. Working after esp_restart reboot.