Summary of changes:
- bootloader_clock split into *_clock_init and *_clock_loader.
Only esp_clk_apb_freq is in *_clock_loader.
- bootloader_common moved out of loader; functions needed in loader
(or, referenced from bootloader_utility) were moved into
bootloader_common_loader.c.
- assert and abort moved into bootloader_panic, made part of the
loader
- rtc_clk and rtc_time made part of loader
Bootloader DRAM now ends at 0x3FFEAB00 which is the start of ROM
static RAM (reclaimable after app is running).
IRAM loader segment increased by 8KB.
Available total static RAM for the app is now reduced by 16KB.
This commit updates the watchdog timers (MWDT and RWDT)
in the following ways:
- Add seprate LL for MWDT and RWDT.
- Add a combined WDT HAL for all Watchdog Timers
- Update int_wdt.c and task_wdt.c to use WDT HAL
- Remove most dependencies on LL or direct register access
in other components. They will now use the WDT HAL
- Update use of watchdogs (including RTC WDT) in bootloader and
startup code to use the HAL layer.
Goal is that multiple faults would be required to bypass a boot-time signature check.
- Also strengthens some address range checks for safe app memory addresses
- Change pre-enable logic to also check the bootloader signature before enabling SBV2 on ESP32
Add some additional checks for invalid sections:
- Sections only partially in DRAM or IRAM are invalid
- If a section is in D/IRAM, allow the possibility only some is in D/IRAM
- Only pass sections that are entirely in the same type of RTC memory region
Do not include bootloader in flash target when secure boot is enabled.
Emit signing warning on all cases where signed apps are enabled (secure
boot and signed images)
Follow convention of capital letters for SECURE_BOOT_SIGNING_KEY variable, since it is
relevant to other components, not just bootloader.
Pass signing key and verification key via config, not requiring
bootloader to know parent app dir.
Misc. variables name corrections
!4452 used setting LINK_LIBRARIES and INTERFACE_LINK_LIBRARIES to link
components built under ESP-IDF build system. However, LINK_LIBRARIES does
not produce behavior same as linking PRIVATE. This MR uses the new
signature for target_link_libraries directly instead. This also moves
setting dependencies during component registration rather than after all
components have been processed.
The consequence is that internally, components have to use the new
signature form as well. This does not affect linking the components to
external targets, such as with idf_as_lib example. This only affects
linking additional libraries to ESP-IDF libraries outside component processing (after
idf_build_process), which is not even possible for CMake<v3.13 as
target_link_libraries is not valid for targets not created in current
directory. See https://cmake.org/cmake/help/v3.13/policy/CMP0079.html#policy:CMP0079
Removes the need to know/guess the paths to these libraries. Once we are gcc 8 only, we
can remove -nostdlib and no additional arguments are needed for system libraries.
The catch is: any time IDF overrides a symbol in the toolchain sysroot, we need
an undefined linker marker to make sure this symbol is seen by linker.
This MR removes the common dependency from every IDF components to the SOC component.
Currently, in the ``idf_functions.cmake`` script, we include the header path of SOC component by default for all components.
But for better code organization (or maybe also benifits to the compiling speed), we may remove the dependency to SOC components for most components except the driver and kernel related components.
In CMAKE, we have two kinds of header visibilities (set by include path visibility):
(Assume component A --(depends on)--> B, B is the current component)
1. public (``COMPONENT_ADD_INCLUDEDIRS``): means this path is visible to other depending components (A) (visible to A and B)
2. private (``COMPONENT_PRIV_INCLUDEDIRS``): means this path is only visible to source files inside the component (visible to B only)
and we have two kinds of depending ways:
(Assume component A --(depends on)--> B --(depends on)--> C, B is the current component)
1. public (```COMPONENT_REQUIRES```): means B can access to public include path of C. All other components rely on you (A) will also be available for the public headers. (visible to A, B)
2. private (``COMPONENT_PRIV_REQUIRES``): means B can access to public include path of C, but don't propagate this relation to other components (A). (visible to B)
1. remove the common requirement in ``idf_functions.cmake``, this makes the SOC components invisible to all other components by default.
2. if a component (for example, DRIVER) really needs the dependency to SOC, add a private dependency to SOC for it.
3. some other components that don't really depends on the SOC may still meet some errors saying "can't find header soc/...", this is because it's depended component (DRIVER) incorrectly include the header of SOC in its public headers. Moving all this kind of #include into source files, or private headers
4. Fix the include requirements for some file which miss sufficient #include directives. (Previously they include some headers by the long long long header include link)
This is a breaking change. Previous code may depends on the long include chain.
You may need to include the following headers for some files after this commit:
- soc/soc.h
- soc/soc_memory_layout.h
- driver/gpio.h
- esp_sleep.h
The major broken include chain includes:
1. esp_system.h no longer includes esp_sleep.h. The latter includes driver/gpio.h and driver/touch_pad.h.
2. ets_sys.h no longer includes soc/soc.h
3. freertos/portmacro.h no longer includes soc/soc_memory_layout.h
some peripheral headers no longer includes their hw related headers, e.g. rom/gpio.h no longer includes soc/gpio_pins.h and soc/gpio_reg.h
BREAKING CHANGE
1. separate rom include files and linkscript to esp_rom
2. modefiy "include rom/xxx.h" to "include esp32/rom/xxx.h"
3. Forward compatible
4. update mqtt
In some cases, linker could choose to use ROM functions instead of the
ones defined in IDF.
For functions used in ROM stub table, this would lead to infinite
recursion when the corresponding function was called from ROM.
For crypto functions, some of these were modified in IDF, and
incompatible with ROM counterparts.
It is possible to utilize some of the routines related to otadata
partition validation, after firmware image is downloaded to RAM. Hence
these routines should be part of app cpu cache, so that they do not
get overwritten by firmware.
Signed-off-by: Mahavir Jain <mahavir@espressif.com>
* Fixes some "noreturn" functions in bootloader utils which did return (causing fatal CPU
exceptions).
* Marks bootloader entry as "noreturn", preventing "user code done" from stalling boot
Partial fix for https://github.com/espressif/esp-idf/issues/1814 TW20016
(Comprehensive fix for this issue will be enabling WDT during bootloader, coming shortly.)
When 2nd stage bootloader loads the ROM bootloader, it prints a
message similar to "entry 0x40080xxx", which idf_monitor decodes
(using application ELF file) as one of the reset vectors (xxx is <
400h). This moves the iram_seg of bootloader 1k up to prevent overlap
of bootloader .text and application vectors, making the output look
nicer. There is still a chance that the entry point decodes as some
symbol in application ELF file, but at least it won't have
"Exception" in its name.
Allows you to move the partition table, it gives more space for the bootloader.
Added a new utility - parttool.py. This utility can search for the offset and/or size of the partitions by name and type/subtype. Use for getting APP_OFFSET and PHY_DATA_OFFSET.
The linker(esp32.bootloader.ld) made changes that allow you to write a custom bootloader code more.
TW14125
Added feature:
- reset firmware to Factory app.(by long pressing of the button)
- boot Test app. (by long pressing of the button)
- Added feature erase data partitions from factory reset.
TW10281
TW10280
Refactor IDF "project" functionality under a wrapping of the default
"project" command, so we can tweak it a bit...
Will need more testing in other environments.
Need to make the bootloader modular so that users can redefine its functional part.
- refactoring and moving functions to the bootloader_support component
- Changed function to `void` bootloader_utility_load_image(...);
TW19596
This commit adds support for CPU max freqeuency rating
bits in CPU. Bootloader will now print an error if attempting
to 160MHz rated ESP32 at 240MHz.
EFUSE_CHIP_VER_RESERVE has been replaced by the
frequency rating bits. Dependancies on EFUSE_CHIP_VER_RESERVE
have been changed to use EFUSE_CHIP_VER_PKG