Removed leftover code-paths that were never taken. Upstream freertos uses
vTaskSuspendAll() and xTaskResumeAll(), and therefor check if the task already
yielded.
In the IDF port of freertos we use critcal sections instead, so xAlreadyYielded
will never be set.
Partially addresses https://github.com/espressif/esp-idf/issues/6440
freertos: replace the freertos regular malloc to the specific malloc from xtensa port for tcb and stack allocations
freertos: avoid the cpu1 to unwind pended ticks when xTaskResumeAll is called insed of an ISR
freertos: protected the xPortGetCoreID functions with missing critical sections
tests: re-eanble the ignored tests that was failling before race-condition fixes
freertos/port: update the port files and split into xtensa and riscv ports
freertos: separated cpu files from rest of the kernel sources
freertos/port_xtensa: separated private include files into a folder
freertos/tasks: added task create pinned to core function do not break current IDF API
freertos/tasks: mimiced task create pinned function into tasks.c to do not break the IDF API.
freertos: freertos component now compiling
freertos: freertos component now building
freertos: moved critical sections outside from FR kernel section to portable section
portmacro_xtensa: add void indentifier on functions that take no arguments
freertos: fix critical sections implementation to match with their function prototype
freertos: add cmake changes of freertos into make
freertos: remove portDONT_DISCARD attribute from switch context function, it was breaking the docs building.
freertos: fix conflicitng types of vApplicationSleep function
license: update the license of freertos
freertos: Doxygen comments refactored to render them correctly on docs
freertos: added new functions of freertos into the documentation
freertos: added message buffers and stream buffers to documentation
sysview: update freertos system view to the compatible with version 10
freertos: fixed event group documentation rendering
freertos: update static task structure to match the actual tcb size
freertos: removed backported test functions
freertos/smp: brought SMP code to FreeRTOS 10 port
freertos/portmacro: added missing crosscore interrupt for yielding tasks
freertos: replaced soft-critical sections with hard-critical sections used by SMP
freertos: placed muxes inside of kernel objects
freertos: replaced original FR critical sections with SMP enabled spinlocks critical sections
freertos: moved xtensa port files to a separated folder
freertos: added multiple instance of global variables required to SMP
freertos: added SMP modifications on specific tasks module functions
freertos: added TLS deletion function to task module
freertos/tls: initialize TLS deletion callback to avoid crashing when calling task delete
freertos: modified vTaskDelete to do not erase current task that runs on other core
freertos: reverted taskhandle and timerhandle as void* type
freertos: fixed de-referencing void pointer to get run time counter
freertos: fix system view trace enter macro arguments
freertos: Replaced soft critical sections with spinlocks on event_groups
freertos: fixed tick function to avoid calling tick hooks twice
freertos: Nofity give checking per CPU if schedule is suspended
freertos: added mpu release on TCB deletion
freertos: Added SMP changes when deleting a TCB on idle task
freertos/license: update freertos license in COPYRIGHT.rst
freertos: unicore configurations can use task create pinned to core, it will be always pinned to core 0
freertos/portmacro: added cpu_hal_get_core_id() function instead of inline assembly
freertos/xtensa: update xtensa specific files used in master branch
newlib/locks: revert the preemption checking in lock acquisition and release
ref_clock: fix initial state of ref_clock interrupt handler
freertos: added missing critical sections and yielding checkings
freertos: remove magic numbers in vTaskDelete
freertos: added missing critical section in prvIsQueueEmpty
spin_lock: cleaned-up port files and removed portmux files
components/soc: decoupled compare and set operations from FreeRTOS
soc/spinlock: filled initial implementation of spinlock refactor
It will decouple the spinlocks into separated components with not depencences of freertos
an similar interface was provided focusing the readabillity and maintenance, also
naming to spinlocks were adopted. On FreeRTOS side the legacy portMUX macros
gained a form of wrapper functions that calls the spinlocks component thus
minimizing the impact on RTOS side.
This feature aims to close IDF-967
soc/spinlock: spinlocks passed on unit test, missing test corner cases
components/compare_set: added better function namings plus minor performance optimization on spinlocks
soc/spinlock: code reordering to remove ISC C90 mix error
freertos/portmacro: gor rid of critical sections multiline macros, placed inline functions instead
soc/spinlock: improved spinlock performance from internal RAM
For cases where the spinlock is executed from IRAM, there is no
need to check where the spinlock object is placed on memory,
removing this checks caused a great improvement on performance.
components/freertos: cleaned up multicore option scheduler.
components/freertos: more cleanup and test optimization to present realistic results
components/freertos: remove unused macros of optimized task selection when multicore is used
FreeRTOS have an platform dependent configuration to enable selection task in a optimized way.
Provided the platform dependent functions in order to allow the scheduler to use the optimized algorithms by telling to the port layer where to found bitscan instruction i.e. NSAU.
This closes IDF-1116
components/freertos: added option to disable the optimized scheduler
esp_common/esp_compiler: renamed esp_macros file to a more specific one
esp_common/esp_compiler: removed CONTAINER_OF macro, it was a duplicate
components/freertos: placed likely macros around port and critical sections
component/freertos: placed likely macros on lists module
components/freertos: placed unlikely macros inside of assertion points, they likely wont fail
components/freertos: added likely macros on queue modules
FreeRTOS queues are one of most hot code path, because to queues itself tend to
be used a lot by the applications, besides that, queues are the basic primitive
to form both mutexes and semaphores, The focus here is to place likely
macros inside lowest level send and receive routines, since they're common
from all kobjects: semaphores, queues, mutexes and FR internals (like timer queue)
components/lwip: placed likely/unlikey on net-interfaces code
components/fatfs: added unlikely macros on disk drivers code
components/spiffs: added unlikely macros on low level fs driver
components/freertos: added likely/unlikely macros on timers and ticker
freertos/event_group: placed likely/unlikely macros on hot event group code paths
components/sdmmc: placed likely / unlikely macros on lower level path of sdmmc
components/bt: placed unlikely macros around bt HCI functions calling
components/lwip: added likely/unlikely macros on OS port code section
components/freertos: fix code style on tick handler
Regression introduced in commit 79e74e5d5f
It is possible that some FreeRTOS APIs are invoked prior to
scheduler start condition (e.g. flash initialization in unicore mode).
In that condition these asserts should not trigger (scheduler state being yet to be started),
hence changes per this fix.
This commit fixes thread safety issues with configASSERT() calls
regarding the value of uxSchedulerSuspended. A false negative
occurs if a context switch to the opposite core occurs in between
the getting the core ID and the assesment.
Closes https://github.com/espressif/esp-idf/issues/4230
This commit refactors backtracing within the panic handler so that a common
function esp_backtrace_get_next_frame() is used iteratively to traverse a
callstack.
A esp_backtrace_print() function has also be added that allows the printing
of a backtrace at runtime. The esp_backtrace_print() function allows unity to
print the backtrace of failed test cases and jump back to the main test menu
without the need reset the chip. esp_backtrace_print() can also be used as a
debugging function by users.
- esp_stack_ptr_is_sane() moved to soc_memory_layout.h
- removed uncessary includes of "esp_debug_helpers.h"
xTaskIncrementTick have to unwind uxPendedTicks on CPU1 and CPU0.
Use case: If an erase operation was run on the CPU1 then it leads
to starving other tasks which waiting time. Waited tasks just skipped.
Closes: https://github.com/espressif/esp-idf/issues/1952
Closes: IDF-183
This MR removes the common dependency from every IDF components to the SOC component.
Currently, in the ``idf_functions.cmake`` script, we include the header path of SOC component by default for all components.
But for better code organization (or maybe also benifits to the compiling speed), we may remove the dependency to SOC components for most components except the driver and kernel related components.
In CMAKE, we have two kinds of header visibilities (set by include path visibility):
(Assume component A --(depends on)--> B, B is the current component)
1. public (``COMPONENT_ADD_INCLUDEDIRS``): means this path is visible to other depending components (A) (visible to A and B)
2. private (``COMPONENT_PRIV_INCLUDEDIRS``): means this path is only visible to source files inside the component (visible to B only)
and we have two kinds of depending ways:
(Assume component A --(depends on)--> B --(depends on)--> C, B is the current component)
1. public (```COMPONENT_REQUIRES```): means B can access to public include path of C. All other components rely on you (A) will also be available for the public headers. (visible to A, B)
2. private (``COMPONENT_PRIV_REQUIRES``): means B can access to public include path of C, but don't propagate this relation to other components (A). (visible to B)
1. remove the common requirement in ``idf_functions.cmake``, this makes the SOC components invisible to all other components by default.
2. if a component (for example, DRIVER) really needs the dependency to SOC, add a private dependency to SOC for it.
3. some other components that don't really depends on the SOC may still meet some errors saying "can't find header soc/...", this is because it's depended component (DRIVER) incorrectly include the header of SOC in its public headers. Moving all this kind of #include into source files, or private headers
4. Fix the include requirements for some file which miss sufficient #include directives. (Previously they include some headers by the long long long header include link)
This is a breaking change. Previous code may depends on the long include chain.
You may need to include the following headers for some files after this commit:
- soc/soc.h
- soc/soc_memory_layout.h
- driver/gpio.h
- esp_sleep.h
The major broken include chain includes:
1. esp_system.h no longer includes esp_sleep.h. The latter includes driver/gpio.h and driver/touch_pad.h.
2. ets_sys.h no longer includes soc/soc.h
3. freertos/portmacro.h no longer includes soc/soc_memory_layout.h
some peripheral headers no longer includes their hw related headers, e.g. rom/gpio.h no longer includes soc/gpio_pins.h and soc/gpio_reg.h
BREAKING CHANGE
1. separate rom include files and linkscript to esp_rom
2. modefiy "include rom/xxx.h" to "include esp32/rom/xxx.h"
3. Forward compatible
4. update mqtt
Having two different spinlocks is problematic due to possibly
different order in which the locks will be taken. Changing the order
would require significant restructuring of kernel code which is
undesirable.
An additional place where taking xTickCountMutex was needed was in
vApplicationSleep function. Not taking xTickCountMutex resulted in
other CPU sometimes possibly advancing tick count while light sleep
entry/exit was happening. Taking xTickCountMutex in addition to
xTaskQueueMutex has shown a problem that in different code paths,
these two spinlocks could be taken in different order, leading to
(unlikely, but possible) deadlocks.
If CONFIG_FREERTOS_LEGACY_HOOKS is kept enabled then defining
idle/tick hooks will be applications responsibility as was the
case earlier.
Signed-off-by: Mahavir Jain <mahavir@espressif.com>