Multiple ssl-related features have been backported from Python 3.x
to Python 2.7.9. This adds a fallback so that idf_tools.py can work
on older versions.
freertos: replace the freertos regular malloc to the specific malloc from xtensa port for tcb and stack allocations
freertos: avoid the cpu1 to unwind pended ticks when xTaskResumeAll is called insed of an ISR
freertos: protected the xPortGetCoreID functions with missing critical sections
tests: re-eanble the ignored tests that was failling before race-condition fixes
heap: ported tlsf allocator into multi heap
heap_host_tests: added tlsf allocator into host test
heap_host_test: update freebytes after using free
heap_tests: tlsf now passing on host tests without poisoning
multi_heap: added support for memalign using tlsf implementation
heap_caps: removed heap_caps_aligned_free
heap/test: fixed broken aligned alloc test build
heap: added poisoning pattern when blocks are being merged
heap/tests: added timing tests for memory allocation
heap: reduced tlsf structure overhead
heap/tlsf: made all short functions inside of tlsf module as inline to improve timings
heap: moved tlsf heap routines outside of flash memory
newlib: linked multiheap memalign with newlib memalign function
heap: moved block member functions to a separate file so multi_heap can use the functions
heap/test: improved the tlsf timing test
heap/test: added memalign on aligned alloc tests
heap: moved tlsf configuration constants to a separated file
heap: added random allocations test with timings
heap: modified the calculation of heap free bytes
heap: make aligned free true deprecated functions and update their documentation
heap: add extra assert after successive mallocs on small allocation host test
heap: remove legacy aligned alloc implementation.
performance: added malloc and free time performance default values
freertos/port: update the port files and split into xtensa and riscv ports
freertos: separated cpu files from rest of the kernel sources
freertos/port_xtensa: separated private include files into a folder
freertos/tasks: added task create pinned to core function do not break current IDF API
freertos/tasks: mimiced task create pinned function into tasks.c to do not break the IDF API.
freertos: freertos component now compiling
freertos: freertos component now building
freertos: moved critical sections outside from FR kernel section to portable section
portmacro_xtensa: add void indentifier on functions that take no arguments
freertos: fix critical sections implementation to match with their function prototype
freertos: add cmake changes of freertos into make
freertos: remove portDONT_DISCARD attribute from switch context function, it was breaking the docs building.
freertos: fix conflicitng types of vApplicationSleep function
license: update the license of freertos
freertos: Doxygen comments refactored to render them correctly on docs
freertos: added new functions of freertos into the documentation
freertos: added message buffers and stream buffers to documentation
sysview: update freertos system view to the compatible with version 10
freertos: fixed event group documentation rendering
freertos: update static task structure to match the actual tcb size
freertos: removed backported test functions
freertos/smp: brought SMP code to FreeRTOS 10 port
freertos/portmacro: added missing crosscore interrupt for yielding tasks
freertos: replaced soft-critical sections with hard-critical sections used by SMP
freertos: placed muxes inside of kernel objects
freertos: replaced original FR critical sections with SMP enabled spinlocks critical sections
freertos: moved xtensa port files to a separated folder
freertos: added multiple instance of global variables required to SMP
freertos: added SMP modifications on specific tasks module functions
freertos: added TLS deletion function to task module
freertos/tls: initialize TLS deletion callback to avoid crashing when calling task delete
freertos: modified vTaskDelete to do not erase current task that runs on other core
freertos: reverted taskhandle and timerhandle as void* type
freertos: fixed de-referencing void pointer to get run time counter
freertos: fix system view trace enter macro arguments
freertos: Replaced soft critical sections with spinlocks on event_groups
freertos: fixed tick function to avoid calling tick hooks twice
freertos: Nofity give checking per CPU if schedule is suspended
freertos: added mpu release on TCB deletion
freertos: Added SMP changes when deleting a TCB on idle task
freertos/license: update freertos license in COPYRIGHT.rst
freertos: unicore configurations can use task create pinned to core, it will be always pinned to core 0
freertos/portmacro: added cpu_hal_get_core_id() function instead of inline assembly
freertos/xtensa: update xtensa specific files used in master branch
newlib/locks: revert the preemption checking in lock acquisition and release
ref_clock: fix initial state of ref_clock interrupt handler
freertos: added missing critical sections and yielding checkings
freertos: remove magic numbers in vTaskDelete
freertos: added missing critical section in prvIsQueueEmpty
This commit fixes an issue with gdbstub, where it would list threads
with TIDs 1 to N in qfThreadInfo/qsThreadInfo responses, and then
would tell GDB that the current TID is 0 in the qC response. This
caused an assertion failure in GDB, because it couldn't find the
thread structure corresponding to TID 0:
src/gdb/gdb/thread.c:93: internal-error: thread_info* inferior_thread(): Assertion `tp' failed.
The issue was caused by the logic of qfThreadInfo/qsThreadInfo.
If the "paniced" task index was 1, the code would report it in the
response to qfThreadInfo, and then mistakenly skip task with index 0
in qsThreadInfo, due to the use of pre-increment instead of a
post-increment.
With that issue fixed, GDB assertion doesn't happen anymore. However
the code contained a deeper problem, which manifested itself in the
fact that GDB would incorrectly show task index 0 as the current task,
after the above fix.
Previous version of the code assumed that when GDB requests the thread
list, it uses the first thread returned by the target as the "default"
thread, and subsequently shows the user that the program is stopped
in that thread. This assumption was incorrect. In fact, after
connecting to a remote target, GDB obtains information about the
"default" or "current" thread from two sources:
1. the 'thread' special register indicated in the status response
($T00thread;00000001#ee)
2. if the target has only sent the plain stop response ($T00#ee), GDB
would ask for the current thread using a qC packet.
With that in mind, it is not necessary to report the paniced task as
the first task in qfThreadInfo response. We can simply returns the
tasks in their natural order, and then indicate the current task in
the qS packet response.
However even that change does not fully resolve the issues with task
list. The previous version of this code also incorrectly interpreted
the meaning of GDB TIDs -1 and 0. When GDB sends an "Hg0" command
early in the connection process, it doesn't expect the server to set
task 0 as the current task, as the code assumed. Rather, it tells the
server to "set any (arbitrary) task as the current one", and the most
logical thing to do for the server that is already in "stopped" state
is to keep the current task selection.
Since TID 0 has a special meaning in GDB remote protocol, gdbstub code
is now modified to map task indices (which start from 0) to GDB TIDs.
GDB TIDs are arbitrary, and for simplicity we keep the same order and
start counting them from 1.
The summary of all the above changes is:
1. Use "task index + 1" as the TID reported to GDB
2. Report the tasks in natural order; don't complicate the code to
make the paniced task first in the list.
3. Centralize modification of 'current_task_index' and 'regfile'
in the new 'set_active_task' function, to improve encapsulation.