The CPU might prefetch instructions, which means it in some cases
will try to fetch instruction located after the last instruction in
flash.text.
Add dummy bytes to ensure fetching these wont result in an error,
e.g. MMU exceptions
Additionally, always enable the partition MD5 check if flash encryption is on in
Release mode. This ensures the partition table ciphertext has not been modified
(CVE-2021-27926).
The exception is pre-V3.1 ESP-IDF bootloaders and partition tables, which
don't have support for the MD5 entry.
Fixes issue with DPORT init task, this task uses minimum stack size and may not be
enough if stack smashing detection is set to Overall mode.
Also reworks the way we calculate minimum stack to allow for adding multiple
contributing factors.
Closes https://github.com/espressif/esp-idf/issues/6403
Sometimes the flash size read from bootloader is not correct. This may
forbid SPI Flash driver from reading the the area larger than the size
in bootloader header.
When the new config option is enabled, the latest configured
ESPTOOLPY_FLAHSIZE in the app header will be used to override the value
read from bootloader header.
If esp_restart_noos() is run and the stack address points to external memory (SPIRAM)
then Cache_Read_Disable() raises up the error "Cache disabled but cached memory region accessed"
to fix this we switch stack to internal RAM before disable cache.
Added unit tests.
Closes: https://github.com/espressif/esp-idf/issues/5107
The issue is caused by:
1. The disable_qio_mode inside read_id may have side effects.
2. read_id twice may have side effects.
Fix this issue by moving disable_qio_mode out of read_id and only do it
once before read_id. And retry read_id only when the first one is
failed.
Issue introduced in 3ecbb59c15.
On ESP32, due to fifo reset issue, UART2 will work incorrectly if reset the fifo of UART1(TX fifo and RX fifo). The software can workaround the RX fifo reset issue,
while the TX fifo reset issue can not. When UART2 is used and UART1 is used as the log output port, a software reset can reproduce this issue. So we should reset the UART memory
before the software reset to solve this problem.
InstrFetchProhibited usually occurs because of a jump to an invalid
pointer. In this case, PC in the exception frame is the address of
the jump destination. 'esp_ptr_executable' check in print_backtrace
function recognizes the first frame as invalid, and the backtrace is
interrupted. This prevents the user from finding the location where
the invalid pointer is dereferenced.
Bypass the 'esp_ptr_executable' check if the exception cause is
InstrFetchProhibited. Update the test case to no longer ignore this
issue.
1. add enable PSRAM 2T mode function
2. abort when himem and 2T mode are enabled meanwhile
3. set SPIRAM_2T_MODE as "n" by default, enable it when needed
Even if frame->exccause != PANIC_RSN_CACHEERR, it is possible that
the cache error interrupt status is set. For example, this may happen
due to an invalid cache access in the panic handler itself.
Check cache error interrupt status instead of frame->exccause to
decide whether to do CPU reset or digital reset.
Also remove unnecessary esp_dport_access_int_pause from
esp_cache_err_get_cpuid, since the panic handler already calls
esp_dport_access_int_abort on entry.
arg1 = MAX(int64_t arg1, uint64_t arg2) gave the wrong result, if arg1 < 0, it was presented as a larger value.
And ALARM_REG = (uin32_t)arg1. This leads to an infinite loop.
Fixed: both args are int64_t.
Closes: WIFI-1511