efuse: Validates data after burning and re-burnes it if necessary

This commit is contained in:
Konstantin Kondrashov 2022-04-27 01:10:41 +08:00
parent 1f0e27ca63
commit df30b362a8
25 changed files with 721 additions and 127 deletions

View File

@ -27,15 +27,27 @@ const esp_efuse_range_addr_t range_read_addr_blocks[] = {
{EFUSE_BLK3_RDATA0_REG, EFUSE_BLK3_RDATA7_REG} // range address of EFUSE_BLK3
};
/*Range addresses to write blocks*/
static uint32_t write_mass_blocks[EFUSE_BLK_MAX][COUNT_EFUSE_REG_PER_BLOCK] = { 0 };
/*Range addresses to write blocks (it is not real regs, it is a buffer) */
const esp_efuse_range_addr_t range_write_addr_blocks[] = {
{EFUSE_BLK0_WDATA0_REG, EFUSE_BLK0_WDATA6_REG}, // range address of EFUSE_BLK0
{EFUSE_BLK1_WDATA0_REG, EFUSE_BLK1_WDATA7_REG}, // range address of EFUSE_BLK1
{EFUSE_BLK2_WDATA0_REG, EFUSE_BLK2_WDATA7_REG}, // range address of EFUSE_BLK2
{EFUSE_BLK3_WDATA0_REG, EFUSE_BLK3_WDATA7_REG} // range address of EFUSE_BLK3
{(uint32_t) &write_mass_blocks[EFUSE_BLK0][0], (uint32_t) &write_mass_blocks[EFUSE_BLK0][6]},
{(uint32_t) &write_mass_blocks[EFUSE_BLK1][0], (uint32_t) &write_mass_blocks[EFUSE_BLK1][7]},
{(uint32_t) &write_mass_blocks[EFUSE_BLK2][0], (uint32_t) &write_mass_blocks[EFUSE_BLK2][7]},
{(uint32_t) &write_mass_blocks[EFUSE_BLK3][0], (uint32_t) &write_mass_blocks[EFUSE_BLK3][7]},
};
#ifndef CONFIG_EFUSE_VIRTUAL
/* Addresses to write blocks*/
const uint32_t start_write_addr[] = {
EFUSE_BLK0_WDATA0_REG,
EFUSE_BLK1_WDATA0_REG,
EFUSE_BLK2_WDATA0_REG,
EFUSE_BLK3_WDATA0_REG,
};
static void apply_repeat_encoding(const uint8_t *in_bytes, uint32_t *out_words, size_t in_bytes_len);
// Update Efuse timing configuration
static esp_err_t esp_efuse_set_timing(void)
{
@ -52,27 +64,12 @@ void esp_efuse_utility_clear_program_registers(void)
}
// Burn values written to the efuse write registers
void esp_efuse_utility_burn_chip(void)
esp_err_t esp_efuse_utility_burn_chip(void)
{
esp_err_t error = ESP_OK;
#ifdef CONFIG_EFUSE_VIRTUAL
ESP_LOGW(TAG, "Virtual efuses enabled: Not really burning eFuses");
for (int num_block = EFUSE_BLK0; num_block < EFUSE_BLK_MAX; num_block++) {
esp_efuse_coding_scheme_t scheme = esp_efuse_get_coding_scheme(num_block);
if (scheme == EFUSE_CODING_SCHEME_3_4) {
uint8_t buf[COUNT_EFUSE_REG_PER_BLOCK * 4] = { 0 };
int i = 0;
for (uint32_t addr_wr_block = range_write_addr_blocks[num_block].start; addr_wr_block <= range_write_addr_blocks[num_block].end; addr_wr_block += 4, ++i) {
*((uint32_t*)buf + i) = REG_READ(addr_wr_block);
}
int j = 0;
uint32_t out_buf[COUNT_EFUSE_REG_PER_BLOCK] = { 0 };
for (int k = 0; k < 4; ++k, ++j) {
memcpy((uint8_t*)out_buf + j * 6, &buf[k * 8], 6);
}
for (int k = 0; k < COUNT_EFUSE_REG_PER_BLOCK; ++k) {
REG_WRITE(range_write_addr_blocks[num_block].start + k * 4, out_buf[k]);
}
}
for (int num_block = EFUSE_BLK_MAX - 1; num_block >= EFUSE_BLK0; num_block--) {
int subblock = 0;
for (uint32_t addr_wr_block = range_write_addr_blocks[num_block].start; addr_wr_block <= range_write_addr_blocks[num_block].end; addr_wr_block += 4) {
virt_blocks[num_block][subblock++] |= REG_READ(addr_wr_block);
@ -81,12 +78,87 @@ void esp_efuse_utility_burn_chip(void)
#ifdef CONFIG_EFUSE_VIRTUAL_KEEP_IN_FLASH
esp_efuse_utility_write_efuses_to_flash();
#endif
#else
esp_efuse_set_timing();
// Permanently update values written to the efuse write registers
efuse_hal_program(0);
#else // CONFIG_EFUSE_VIRTUAL
if (esp_efuse_set_timing() != ESP_OK) {
ESP_LOGE(TAG, "Efuse fields are not burnt");
} else {
// Permanently update values written to the efuse write registers
// It is necessary to process blocks in the order from MAX-> EFUSE_BLK0, because EFUSE_BLK0 has protection bits for other blocks.
for (int num_block = EFUSE_BLK_MAX - 1; num_block >= EFUSE_BLK0; num_block--) {
esp_efuse_coding_scheme_t scheme = esp_efuse_get_coding_scheme(num_block);
bool need_burn_block = false;
for (uint32_t addr_wr_block = range_write_addr_blocks[num_block].start; addr_wr_block <= range_write_addr_blocks[num_block].end; addr_wr_block += 4) {
if (REG_READ(addr_wr_block) != 0) {
need_burn_block = true;
break;
}
}
if (!need_burn_block) {
continue;
}
if (error) {
// It is done for a use case: BLOCK2 (Flash encryption key) could have an error (incorrect written data)
// in this case we can not burn any data into BLOCK0 because it might set read/write protections of BLOCK2.
ESP_LOGE(TAG, "BLOCK%d can not be burned because a previous block got an error, skipped.", num_block);
continue;
}
efuse_hal_clear_program_registers();
unsigned w_data_len;
unsigned r_data_len;
if (scheme == EFUSE_CODING_SCHEME_3_4) {
esp_efuse_utility_apply_34_encoding((void *)range_write_addr_blocks[num_block].start, (uint32_t *)start_write_addr[num_block], ESP_EFUSE_LEN_OF_3_4_SCHEME_BLOCK_IN_BYTES);
r_data_len = ESP_EFUSE_LEN_OF_3_4_SCHEME_BLOCK_IN_BYTES;
w_data_len = 32;
} else if (scheme == EFUSE_CODING_SCHEME_REPEAT) {
apply_repeat_encoding((void *)range_write_addr_blocks[num_block].start, (uint32_t *)start_write_addr[num_block], 16);
r_data_len = ESP_EFUSE_LEN_OF_REPEAT_BLOCK_IN_BYTES;
w_data_len = 32;
} else {
r_data_len = (range_read_addr_blocks[num_block].end - range_read_addr_blocks[num_block].start) + sizeof(uint32_t);
w_data_len = (range_write_addr_blocks[num_block].end - range_write_addr_blocks[num_block].start) + sizeof(uint32_t);
memcpy((void *)start_write_addr[num_block], (void *)range_write_addr_blocks[num_block].start, w_data_len);
}
uint32_t backup_write_data[8];
memcpy(backup_write_data, (void *)start_write_addr[num_block], w_data_len);
int repeat_burn_op = 1;
bool correct_written_data;
bool coding_error_before = efuse_hal_is_coding_error_in_block(num_block);
if (coding_error_before) {
ESP_LOGW(TAG, "BLOCK%d already has a coding error", num_block);
}
bool coding_error_occurred;
do {
ESP_LOGI(TAG, "BURN BLOCK%d", num_block);
efuse_hal_program(0); // BURN a block
bool coding_error_after = efuse_hal_is_coding_error_in_block(num_block);
coding_error_occurred = (coding_error_before != coding_error_after) && coding_error_before == false;
if (coding_error_occurred) {
ESP_LOGW(TAG, "BLOCK%d got a coding error", num_block);
}
correct_written_data = esp_efuse_utility_is_correct_written_data(num_block, r_data_len);
if (!correct_written_data || coding_error_occurred) {
ESP_LOGW(TAG, "BLOCK%d: next retry to fix an error [%d/3]...", num_block, repeat_burn_op);
memcpy((void *)start_write_addr[num_block], (void *)backup_write_data, w_data_len);
}
} while ((!correct_written_data || coding_error_occurred) && repeat_burn_op++ < 3);
if (coding_error_occurred) {
ESP_LOGW(TAG, "Coding error was not fixed");
}
if (!correct_written_data) {
ESP_LOGE(TAG, "Written data are incorrect");
error = ESP_FAIL;
}
}
}
#endif // CONFIG_EFUSE_VIRTUAL
esp_efuse_utility_reset();
return error;
}
esp_err_t esp_efuse_utility_apply_34_encoding(const uint8_t *in_bytes, uint32_t *out_words, size_t in_bytes_len)
@ -118,19 +190,15 @@ esp_err_t esp_efuse_utility_apply_34_encoding(const uint8_t *in_bytes, uint32_t
return ESP_OK;
}
static bool read_w_data_and_check_fill(esp_efuse_block_t num_block, uint32_t *buf_w_data)
#ifndef CONFIG_EFUSE_VIRTUAL
static void apply_repeat_encoding(const uint8_t *in_bytes, uint32_t *out_words, size_t in_bytes_len)
{
bool blk_is_filled = false;
int i = 0;
for (uint32_t addr_wr_block = range_write_addr_blocks[num_block].start; addr_wr_block <= range_write_addr_blocks[num_block].end; addr_wr_block += 4, ++i) {
buf_w_data[i] = REG_READ(addr_wr_block);
if (buf_w_data[i] != 0) {
REG_WRITE(addr_wr_block, 0);
blk_is_filled = true;
}
for (unsigned i = 0; i < 2; i++) {
memcpy(&out_words[i * 4], (uint32_t *)in_bytes, in_bytes_len);
}
return blk_is_filled;
}
#endif // CONFIG_EFUSE_VIRTUAL
static void read_r_data(esp_efuse_block_t num_block, uint32_t* buf_r_data)
{
@ -140,27 +208,30 @@ static void read_r_data(esp_efuse_block_t num_block, uint32_t* buf_r_data)
}
}
// After esp_efuse_write.. functions EFUSE_BLKx_WDATAx_REG were filled is not coded values.
// This function reads EFUSE_BLKx_WDATAx_REG registers, applies coding scheme and writes encoded values back to EFUSE_BLKx_WDATAx_REG.
// This function just checkes that given data for blocks will not rise a coding issue during the burn operation.
// Encoded data will be set during the burn operation.
esp_err_t esp_efuse_utility_apply_new_coding_scheme()
{
uint8_t buf_w_data[COUNT_EFUSE_REG_PER_BLOCK * 4];
uint8_t buf_r_data[COUNT_EFUSE_REG_PER_BLOCK * 4];
uint32_t reg[COUNT_EFUSE_REG_PER_BLOCK];
// start with EFUSE_BLK1. EFUSE_BLK0 - always uses EFUSE_CODING_SCHEME_NONE.
for (int num_block = EFUSE_BLK1; num_block < EFUSE_BLK_MAX; num_block++) {
esp_efuse_coding_scheme_t scheme = esp_efuse_get_coding_scheme(num_block);
// check and apply a new coding scheme.
if (scheme != EFUSE_CODING_SCHEME_NONE) {
memset(buf_w_data, 0, sizeof(buf_w_data));
memset((uint8_t*)reg, 0, sizeof(reg));
if (read_w_data_and_check_fill(num_block, (uint32_t*)buf_w_data) == true) {
bool is_write_data = false;
for (uint32_t addr_wr_block = range_write_addr_blocks[num_block].start; addr_wr_block <= range_write_addr_blocks[num_block].end; addr_wr_block += 4) {
if (REG_READ(addr_wr_block)) {
is_write_data = true;
break;
}
}
if (is_write_data) {
read_r_data(num_block, (uint32_t*)buf_r_data);
uint8_t* buf_w_data = (uint8_t*)range_write_addr_blocks[num_block].start;
if (scheme == EFUSE_CODING_SCHEME_3_4) {
if (*((uint32_t*)buf_w_data + 6) != 0 || *((uint32_t*)buf_w_data + 7) != 0) {
return ESP_ERR_CODING;
}
for (int i = 0; i < 24; ++i) {
for (int i = 0; i < ESP_EFUSE_LEN_OF_3_4_SCHEME_BLOCK_IN_BYTES; ++i) {
if (buf_w_data[i] != 0) {
int st_offset_buf = (i / 6) * 6;
// check that place is free.
@ -170,32 +241,14 @@ esp_err_t esp_efuse_utility_apply_new_coding_scheme()
return ESP_ERR_CODING;
}
}
esp_err_t err = esp_efuse_utility_apply_34_encoding(&buf_w_data[st_offset_buf], reg, 6);
if (err != ESP_OK) {
return err;
}
int num_reg = (st_offset_buf / 6) * 2;
for (int r = 0; r < 2; r++) {
REG_WRITE(range_write_addr_blocks[num_block].start + (num_reg + r) * 4, reg[r]);
}
i = st_offset_buf + 5;
}
}
} else if (scheme == EFUSE_CODING_SCHEME_REPEAT) {
uint32_t* buf_32 = (uint32_t*)buf_w_data;
for (int i = 4; i < 8; ++i) {
if (*(buf_32 + i) != 0) {
if (*((uint32_t*)buf_w_data + i) != 0) {
return ESP_ERR_CODING;
}
}
for (int i = 0; i < 4; ++i) {
if (buf_32[i] != 0) {
REG_WRITE(range_write_addr_blocks[num_block].start + i * 4, buf_32[i]);
REG_WRITE(range_write_addr_blocks[num_block].start + (i + 4) * 4, buf_32[i]);
}
}
}
}
}

View File

@ -10,6 +10,9 @@
extern "C" {
#endif
#define ESP_EFUSE_LEN_OF_3_4_SCHEME_BLOCK_IN_BYTES (24)
#define ESP_EFUSE_LEN_OF_REPEAT_BLOCK_IN_BYTES (16)
#define COUNT_EFUSE_REG_PER_BLOCK 8 /* The number of registers per block. */
#define ESP_EFUSE_SECURE_VERSION_NUM_BLOCK EFUSE_BLK3

View File

@ -12,6 +12,7 @@
#include "soc/efuse_periph.h"
#include "esp_private/esp_clk.h"
#include "esp32c2/rom/efuse.h"
#include "hal/efuse_hal.h"
static const char *TAG = "efuse";
@ -54,8 +55,9 @@ void esp_efuse_utility_clear_program_registers(void)
}
// Burn values written to the efuse write registers
void esp_efuse_utility_burn_chip(void)
esp_err_t esp_efuse_utility_burn_chip(void)
{
esp_err_t error = ESP_OK;
#ifdef CONFIG_EFUSE_VIRTUAL
ESP_LOGW(TAG, "Virtual efuses enabled: Not really burning eFuses");
for (int num_block = EFUSE_BLK_MAX - 1; num_block >= EFUSE_BLK0; num_block--) {
@ -67,30 +69,90 @@ void esp_efuse_utility_burn_chip(void)
#ifdef CONFIG_EFUSE_VIRTUAL_KEEP_IN_FLASH
esp_efuse_utility_write_efuses_to_flash();
#endif
#else
#else // CONFIG_EFUSE_VIRTUAL
if (esp_efuse_set_timing() != ESP_OK) {
ESP_LOGE(TAG, "Efuse fields are not burnt");
} else {
// Permanently update values written to the efuse write registers
// It is necessary to process blocks in the order from MAX-> EFUSE_BLK0, because EFUSE_BLK0 has protection bits for other blocks.
for (int num_block = EFUSE_BLK_MAX - 1; num_block >= EFUSE_BLK0; num_block--) {
bool need_burn_block = false;
for (uint32_t addr_wr_block = range_write_addr_blocks[num_block].start; addr_wr_block <= range_write_addr_blocks[num_block].end; addr_wr_block += 4) {
if (REG_READ(addr_wr_block) != 0) {
if (esp_efuse_get_coding_scheme(num_block) == EFUSE_CODING_SCHEME_RS) {
uint8_t block_rs[12];
ets_efuse_rs_calculate((void *)range_write_addr_blocks[num_block].start, block_rs);
memcpy((void *)EFUSE_PGM_CHECK_VALUE0_REG, block_rs, sizeof(block_rs));
}
int data_len = (range_write_addr_blocks[num_block].end - range_write_addr_blocks[num_block].start) + sizeof(uint32_t);
memcpy((void *)EFUSE_PGM_DATA0_REG, (void *)range_write_addr_blocks[num_block].start, data_len);
ets_efuse_program(num_block);
need_burn_block = true;
break;
}
}
if (!need_burn_block) {
continue;
}
if (error) {
// It is done for a use case: BLOCK2 (Flash encryption key) could have an error (incorrect written data)
// in this case we can not burn any data into BLOCK0 because it might set read/write protections of BLOCK2.
ESP_LOGE(TAG, "BLOCK%d can not be burned because a previous block got an error, skipped.", num_block);
continue;
}
efuse_hal_clear_program_registers();
if (esp_efuse_get_coding_scheme(num_block) == EFUSE_CODING_SCHEME_RS) {
uint8_t block_rs[12];
efuse_hal_rs_calculate((void *)range_write_addr_blocks[num_block].start, block_rs);
memcpy((void *)EFUSE_PGM_CHECK_VALUE0_REG, block_rs, sizeof(block_rs));
}
unsigned r_data_len = (range_read_addr_blocks[num_block].end - range_read_addr_blocks[num_block].start) + sizeof(uint32_t);
unsigned data_len = (range_write_addr_blocks[num_block].end - range_write_addr_blocks[num_block].start) + sizeof(uint32_t);
memcpy((void *)EFUSE_PGM_DATA0_REG, (void *)range_write_addr_blocks[num_block].start, data_len);
uint32_t backup_write_data[8 + 3]; // 8 words are data and 3 words are RS coding data
memcpy(backup_write_data, (void *)EFUSE_PGM_DATA0_REG, sizeof(backup_write_data));
int repeat_burn_op = 1;
bool correct_written_data;
bool coding_error_before = efuse_hal_is_coding_error_in_block(num_block);
if (coding_error_before) {
ESP_LOGW(TAG, "BLOCK%d already has a coding error", num_block);
}
bool coding_error_occurred;
do {
ESP_LOGI(TAG, "BURN BLOCK%d", num_block);
efuse_hal_program(num_block); // BURN a block
bool coding_error_after;
for (unsigned i = 0; i < 5; i++) {
efuse_hal_read();
coding_error_after = efuse_hal_is_coding_error_in_block(num_block);
if (coding_error_after == true) {
break;
}
}
coding_error_occurred = (coding_error_before != coding_error_after) && coding_error_before == false;
if (coding_error_occurred) {
ESP_LOGW(TAG, "BLOCK%d got a coding error", num_block);
}
correct_written_data = esp_efuse_utility_is_correct_written_data(num_block, r_data_len);
if (!correct_written_data || coding_error_occurred) {
ESP_LOGW(TAG, "BLOCK%d: next retry to fix an error [%d/3]...", num_block, repeat_burn_op);
memcpy((void *)EFUSE_PGM_DATA0_REG, (void *)backup_write_data, sizeof(backup_write_data));
}
} while ((!correct_written_data || coding_error_occurred) && repeat_burn_op++ < 3);
if (coding_error_occurred) {
ESP_LOGW(TAG, "Coding error was not fixed");
if (num_block == 0) {
ESP_LOGE(TAG, "BLOCK0 got a coding error, which might be critical for security");
error = ESP_FAIL;
}
}
if (!correct_written_data) {
ESP_LOGE(TAG, "Written data are incorrect");
error = ESP_FAIL;
}
}
}
#endif // CONFIG_EFUSE_VIRTUAL
esp_efuse_utility_reset();
return error;
}
// After esp_efuse_write.. functions EFUSE_BLKx_WDATAx_REG were filled is not coded values.

View File

@ -69,8 +69,9 @@ void esp_efuse_utility_clear_program_registers(void)
}
// Burn values written to the efuse write registers
void esp_efuse_utility_burn_chip(void)
esp_err_t esp_efuse_utility_burn_chip(void)
{
esp_err_t error = ESP_OK;
#ifdef CONFIG_EFUSE_VIRTUAL
ESP_LOGW(TAG, "Virtual efuses enabled: Not really burning eFuses");
for (int num_block = EFUSE_BLK_MAX - 1; num_block >= EFUSE_BLK0; num_block--) {
@ -82,30 +83,90 @@ void esp_efuse_utility_burn_chip(void)
#ifdef CONFIG_EFUSE_VIRTUAL_KEEP_IN_FLASH
esp_efuse_utility_write_efuses_to_flash();
#endif
#else
#else // CONFIG_EFUSE_VIRTUAL
if (esp_efuse_set_timing() != ESP_OK) {
ESP_LOGE(TAG, "Efuse fields are not burnt");
} else {
// Permanently update values written to the efuse write registers
// It is necessary to process blocks in the order from MAX-> EFUSE_BLK0, because EFUSE_BLK0 has protection bits for other blocks.
for (int num_block = EFUSE_BLK_MAX - 1; num_block >= EFUSE_BLK0; num_block--) {
bool need_burn_block = false;
for (uint32_t addr_wr_block = range_write_addr_blocks[num_block].start; addr_wr_block <= range_write_addr_blocks[num_block].end; addr_wr_block += 4) {
if (REG_READ(addr_wr_block) != 0) {
if (esp_efuse_get_coding_scheme(num_block) == EFUSE_CODING_SCHEME_RS) {
uint8_t block_rs[12];
efuse_hal_rs_calculate((void *)range_write_addr_blocks[num_block].start, block_rs);
memcpy((void *)EFUSE_PGM_CHECK_VALUE0_REG, block_rs, sizeof(block_rs));
}
int data_len = (range_write_addr_blocks[num_block].end - range_write_addr_blocks[num_block].start) + sizeof(uint32_t);
memcpy((void *)EFUSE_PGM_DATA0_REG, (void *)range_write_addr_blocks[num_block].start, data_len);
efuse_hal_program(num_block);
need_burn_block = true;
break;
}
}
if (!need_burn_block) {
continue;
}
if (error) {
// It is done for a use case: BLOCK2 (Flash encryption key) could have an error (incorrect written data)
// in this case we can not burn any data into BLOCK0 because it might set read/write protections of BLOCK2.
ESP_LOGE(TAG, "BLOCK%d can not be burned because a previous block got an error, skipped.", num_block);
continue;
}
efuse_hal_clear_program_registers();
if (esp_efuse_get_coding_scheme(num_block) == EFUSE_CODING_SCHEME_RS) {
uint8_t block_rs[12];
efuse_hal_rs_calculate((void *)range_write_addr_blocks[num_block].start, block_rs);
memcpy((void *)EFUSE_PGM_CHECK_VALUE0_REG, block_rs, sizeof(block_rs));
}
unsigned r_data_len = (range_read_addr_blocks[num_block].end - range_read_addr_blocks[num_block].start) + sizeof(uint32_t);
unsigned data_len = (range_write_addr_blocks[num_block].end - range_write_addr_blocks[num_block].start) + sizeof(uint32_t);
memcpy((void *)EFUSE_PGM_DATA0_REG, (void *)range_write_addr_blocks[num_block].start, data_len);
uint32_t backup_write_data[8 + 3]; // 8 words are data and 3 words are RS coding data
memcpy(backup_write_data, (void *)EFUSE_PGM_DATA0_REG, sizeof(backup_write_data));
int repeat_burn_op = 1;
bool correct_written_data;
bool coding_error_before = efuse_hal_is_coding_error_in_block(num_block);
if (coding_error_before) {
ESP_LOGW(TAG, "BLOCK%d already has a coding error", num_block);
}
bool coding_error_occurred;
do {
ESP_LOGI(TAG, "BURN BLOCK%d", num_block);
efuse_hal_program(num_block); // BURN a block
bool coding_error_after;
for (unsigned i = 0; i < 5; i++) {
efuse_hal_read();
coding_error_after = efuse_hal_is_coding_error_in_block(num_block);
if (coding_error_after == true) {
break;
}
}
coding_error_occurred = (coding_error_before != coding_error_after) && coding_error_before == false;
if (coding_error_occurred) {
ESP_LOGW(TAG, "BLOCK%d got a coding error", num_block);
}
correct_written_data = esp_efuse_utility_is_correct_written_data(num_block, r_data_len);
if (!correct_written_data || coding_error_occurred) {
ESP_LOGW(TAG, "BLOCK%d: next retry to fix an error [%d/3]...", num_block, repeat_burn_op);
memcpy((void *)EFUSE_PGM_DATA0_REG, (void *)backup_write_data, sizeof(backup_write_data));
}
} while ((!correct_written_data || coding_error_occurred) && repeat_burn_op++ < 3);
if (coding_error_occurred) {
ESP_LOGW(TAG, "Coding error was not fixed");
if (num_block == 0) {
ESP_LOGE(TAG, "BLOCK0 got a coding error, which might be critical for security");
error = ESP_FAIL;
}
}
if (!correct_written_data) {
ESP_LOGE(TAG, "Written data are incorrect");
error = ESP_FAIL;
}
}
}
#endif // CONFIG_EFUSE_VIRTUAL
esp_efuse_utility_reset();
return error;
}
// After esp_efuse_write.. functions EFUSE_BLKx_WDATAx_REG were filled is not coded values.

View File

@ -69,8 +69,9 @@ void esp_efuse_utility_clear_program_registers(void)
}
// Burn values written to the efuse write registers
void esp_efuse_utility_burn_chip(void)
esp_err_t esp_efuse_utility_burn_chip(void)
{
esp_err_t error = ESP_OK;
#ifdef CONFIG_EFUSE_VIRTUAL
ESP_LOGW(TAG, "Virtual efuses enabled: Not really burning eFuses");
for (int num_block = EFUSE_BLK_MAX - 1; num_block >= EFUSE_BLK0; num_block--) {
@ -82,30 +83,90 @@ void esp_efuse_utility_burn_chip(void)
#ifdef CONFIG_EFUSE_VIRTUAL_KEEP_IN_FLASH
esp_efuse_utility_write_efuses_to_flash();
#endif
#else
#else // CONFIG_EFUSE_VIRTUAL
if (esp_efuse_set_timing() != ESP_OK) {
ESP_LOGE(TAG, "Efuse fields are not burnt");
} else {
// Permanently update values written to the efuse write registers
// It is necessary to process blocks in the order from MAX-> EFUSE_BLK0, because EFUSE_BLK0 has protection bits for other blocks.
for (int num_block = EFUSE_BLK_MAX - 1; num_block >= EFUSE_BLK0; num_block--) {
bool need_burn_block = false;
for (uint32_t addr_wr_block = range_write_addr_blocks[num_block].start; addr_wr_block <= range_write_addr_blocks[num_block].end; addr_wr_block += 4) {
if (REG_READ(addr_wr_block) != 0) {
if (esp_efuse_get_coding_scheme(num_block) == EFUSE_CODING_SCHEME_RS) {
uint8_t block_rs[12];
efuse_hal_rs_calculate((void *)range_write_addr_blocks[num_block].start, block_rs);
memcpy((void *)EFUSE_PGM_CHECK_VALUE0_REG, block_rs, sizeof(block_rs));
}
int data_len = (range_write_addr_blocks[num_block].end - range_write_addr_blocks[num_block].start) + sizeof(uint32_t);
memcpy((void *)EFUSE_PGM_DATA0_REG, (void *)range_write_addr_blocks[num_block].start, data_len);
efuse_hal_program(num_block);
need_burn_block = true;
break;
}
}
if (!need_burn_block) {
continue;
}
if (error) {
// It is done for a use case: BLOCK2 (Flash encryption key) could have an error (incorrect written data)
// in this case we can not burn any data into BLOCK0 because it might set read/write protections of BLOCK2.
ESP_LOGE(TAG, "BLOCK%d can not be burned because a previous block got an error, skipped.", num_block);
continue;
}
efuse_hal_clear_program_registers();
if (esp_efuse_get_coding_scheme(num_block) == EFUSE_CODING_SCHEME_RS) {
uint8_t block_rs[12];
efuse_hal_rs_calculate((void *)range_write_addr_blocks[num_block].start, block_rs);
memcpy((void *)EFUSE_PGM_CHECK_VALUE0_REG, block_rs, sizeof(block_rs));
}
unsigned r_data_len = (range_read_addr_blocks[num_block].end - range_read_addr_blocks[num_block].start) + sizeof(uint32_t);
unsigned data_len = (range_write_addr_blocks[num_block].end - range_write_addr_blocks[num_block].start) + sizeof(uint32_t);
memcpy((void *)EFUSE_PGM_DATA0_REG, (void *)range_write_addr_blocks[num_block].start, data_len);
uint32_t backup_write_data[8 + 3]; // 8 words are data and 3 words are RS coding data
memcpy(backup_write_data, (void *)EFUSE_PGM_DATA0_REG, sizeof(backup_write_data));
int repeat_burn_op = 1;
bool correct_written_data;
bool coding_error_before = efuse_hal_is_coding_error_in_block(num_block);
if (coding_error_before) {
ESP_LOGW(TAG, "BLOCK%d already has a coding error", num_block);
}
bool coding_error_occurred;
do {
ESP_LOGI(TAG, "BURN BLOCK%d", num_block);
efuse_hal_program(num_block); // BURN a block
bool coding_error_after;
for (unsigned i = 0; i < 5; i++) {
efuse_hal_read();
coding_error_after = efuse_hal_is_coding_error_in_block(num_block);
if (coding_error_after == true) {
break;
}
}
coding_error_occurred = (coding_error_before != coding_error_after) && coding_error_before == false;
if (coding_error_occurred) {
ESP_LOGW(TAG, "BLOCK%d got a coding error", num_block);
}
correct_written_data = esp_efuse_utility_is_correct_written_data(num_block, r_data_len);
if (!correct_written_data || coding_error_occurred) {
ESP_LOGW(TAG, "BLOCK%d: next retry to fix an error [%d/3]...", num_block, repeat_burn_op);
memcpy((void *)EFUSE_PGM_DATA0_REG, (void *)backup_write_data, sizeof(backup_write_data));
}
} while ((!correct_written_data || coding_error_occurred) && repeat_burn_op++ < 3);
if (coding_error_occurred) {
ESP_LOGW(TAG, "Coding error was not fixed");
if (num_block == 0) {
ESP_LOGE(TAG, "BLOCK0 got a coding error, which might be critical for security");
error = ESP_FAIL;
}
}
if (!correct_written_data) {
ESP_LOGE(TAG, "Written data are incorrect");
error = ESP_FAIL;
}
}
}
#endif // CONFIG_EFUSE_VIRTUAL
esp_efuse_utility_reset();
return error;
}
// After esp_efuse_write.. functions EFUSE_BLKx_WDATAx_REG were filled is not coded values.

View File

@ -69,8 +69,9 @@ void esp_efuse_utility_clear_program_registers(void)
}
// Burn values written to the efuse write registers
void esp_efuse_utility_burn_chip(void)
esp_err_t esp_efuse_utility_burn_chip(void)
{
esp_err_t error = ESP_OK;
#ifdef CONFIG_EFUSE_VIRTUAL
ESP_LOGW(TAG, "Virtual efuses enabled: Not really burning eFuses");
for (int num_block = EFUSE_BLK_MAX - 1; num_block >= EFUSE_BLK0; num_block--) {
@ -82,30 +83,90 @@ void esp_efuse_utility_burn_chip(void)
#ifdef CONFIG_EFUSE_VIRTUAL_KEEP_IN_FLASH
esp_efuse_utility_write_efuses_to_flash();
#endif
#else
#else // CONFIG_EFUSE_VIRTUAL
if (esp_efuse_set_timing() != ESP_OK) {
ESP_LOGE(TAG, "Efuse fields are not burnt");
} else {
// Permanently update values written to the efuse write registers
// It is necessary to process blocks in the order from MAX-> EFUSE_BLK0, because EFUSE_BLK0 has protection bits for other blocks.
for (int num_block = EFUSE_BLK_MAX - 1; num_block >= EFUSE_BLK0; num_block--) {
bool need_burn_block = false;
for (uint32_t addr_wr_block = range_write_addr_blocks[num_block].start; addr_wr_block <= range_write_addr_blocks[num_block].end; addr_wr_block += 4) {
if (REG_READ(addr_wr_block) != 0) {
if (esp_efuse_get_coding_scheme(num_block) == EFUSE_CODING_SCHEME_RS) {
uint8_t block_rs[12];
efuse_hal_rs_calculate((void *)range_write_addr_blocks[num_block].start, block_rs);
memcpy((void *)EFUSE_PGM_CHECK_VALUE0_REG, block_rs, sizeof(block_rs));
}
int data_len = (range_write_addr_blocks[num_block].end - range_write_addr_blocks[num_block].start) + sizeof(uint32_t);
memcpy((void *)EFUSE_PGM_DATA0_REG, (void *)range_write_addr_blocks[num_block].start, data_len);
efuse_hal_program(num_block);
need_burn_block = true;
break;
}
}
if (!need_burn_block) {
continue;
}
if (error) {
// It is done for a use case: BLOCK2 (Flash encryption key) could have an error (incorrect written data)
// in this case we can not burn any data into BLOCK0 because it might set read/write protections of BLOCK2.
ESP_LOGE(TAG, "BLOCK%d can not be burned because a previous block got an error, skipped.", num_block);
continue;
}
efuse_hal_clear_program_registers();
if (esp_efuse_get_coding_scheme(num_block) == EFUSE_CODING_SCHEME_RS) {
uint8_t block_rs[12];
efuse_hal_rs_calculate((void *)range_write_addr_blocks[num_block].start, block_rs);
memcpy((void *)EFUSE_PGM_CHECK_VALUE0_REG, block_rs, sizeof(block_rs));
}
unsigned r_data_len = (range_read_addr_blocks[num_block].end - range_read_addr_blocks[num_block].start) + sizeof(uint32_t);
unsigned data_len = (range_write_addr_blocks[num_block].end - range_write_addr_blocks[num_block].start) + sizeof(uint32_t);
memcpy((void *)EFUSE_PGM_DATA0_REG, (void *)range_write_addr_blocks[num_block].start, data_len);
uint32_t backup_write_data[8 + 3]; // 8 words are data and 3 words are RS coding data
memcpy(backup_write_data, (void *)EFUSE_PGM_DATA0_REG, sizeof(backup_write_data));
int repeat_burn_op = 1;
bool correct_written_data;
bool coding_error_before = efuse_hal_is_coding_error_in_block(num_block);
if (coding_error_before) {
ESP_LOGW(TAG, "BLOCK%d already has a coding error", num_block);
}
bool coding_error_occurred;
do {
ESP_LOGI(TAG, "BURN BLOCK%d", num_block);
efuse_hal_program(num_block); // BURN a block
bool coding_error_after;
for (unsigned i = 0; i < 5; i++) {
efuse_hal_read();
coding_error_after = efuse_hal_is_coding_error_in_block(num_block);
if (coding_error_after == true) {
break;
}
}
coding_error_occurred = (coding_error_before != coding_error_after) && coding_error_before == false;
if (coding_error_occurred) {
ESP_LOGW(TAG, "BLOCK%d got a coding error", num_block);
}
correct_written_data = esp_efuse_utility_is_correct_written_data(num_block, r_data_len);
if (!correct_written_data || coding_error_occurred) {
ESP_LOGW(TAG, "BLOCK%d: next retry to fix an error [%d/3]...", num_block, repeat_burn_op);
memcpy((void *)EFUSE_PGM_DATA0_REG, (void *)backup_write_data, sizeof(backup_write_data));
}
} while ((!correct_written_data || coding_error_occurred) && repeat_burn_op++ < 3);
if (coding_error_occurred) {
ESP_LOGW(TAG, "Coding error was not fixed");
if (num_block == 0) {
ESP_LOGE(TAG, "BLOCK0 got a coding error, which might be critical for security");
error = ESP_FAIL;
}
}
if (!correct_written_data) {
ESP_LOGE(TAG, "Written data are incorrect");
error = ESP_FAIL;
}
}
}
#endif // CONFIG_EFUSE_VIRTUAL
esp_efuse_utility_reset();
return error;
}
// After esp_efuse_write.. functions EFUSE_BLKx_WDATAx_REG were filled is not coded values.

View File

@ -69,8 +69,9 @@ void esp_efuse_utility_clear_program_registers(void)
}
// Burn values written to the efuse write registers
void esp_efuse_utility_burn_chip(void)
esp_err_t esp_efuse_utility_burn_chip(void)
{
esp_err_t error = ESP_OK;
#ifdef CONFIG_EFUSE_VIRTUAL
ESP_LOGW(TAG, "Virtual efuses enabled: Not really burning eFuses");
for (int num_block = EFUSE_BLK_MAX - 1; num_block >= EFUSE_BLK0; num_block--) {
@ -82,30 +83,90 @@ void esp_efuse_utility_burn_chip(void)
#ifdef CONFIG_EFUSE_VIRTUAL_KEEP_IN_FLASH
esp_efuse_utility_write_efuses_to_flash();
#endif
#else
#else // CONFIG_EFUSE_VIRTUAL
if (esp_efuse_set_timing() != ESP_OK) {
ESP_LOGE(TAG, "Efuse fields are not burnt");
} else {
// Permanently update values written to the efuse write registers
// It is necessary to process blocks in the order from MAX-> EFUSE_BLK0, because EFUSE_BLK0 has protection bits for other blocks.
for (int num_block = EFUSE_BLK_MAX - 1; num_block >= EFUSE_BLK0; num_block--) {
bool need_burn_block = false;
for (uint32_t addr_wr_block = range_write_addr_blocks[num_block].start; addr_wr_block <= range_write_addr_blocks[num_block].end; addr_wr_block += 4) {
if (REG_READ(addr_wr_block) != 0) {
if (esp_efuse_get_coding_scheme(num_block) == EFUSE_CODING_SCHEME_RS) {
uint8_t block_rs[12];
efuse_hal_rs_calculate((void *)range_write_addr_blocks[num_block].start, block_rs);
memcpy((void *)EFUSE_PGM_CHECK_VALUE0_REG, block_rs, sizeof(block_rs));
}
int data_len = (range_write_addr_blocks[num_block].end - range_write_addr_blocks[num_block].start) + sizeof(uint32_t);
memcpy((void *)EFUSE_PGM_DATA0_REG, (void *)range_write_addr_blocks[num_block].start, data_len);
efuse_hal_program(num_block);
need_burn_block = true;
break;
}
}
if (!need_burn_block) {
continue;
}
if (error) {
// It is done for a use case: BLOCK2 (Flash encryption key) could have an error (incorrect written data)
// in this case we can not burn any data into BLOCK0 because it might set read/write protections of BLOCK2.
ESP_LOGE(TAG, "BLOCK%d can not be burned because a previous block got an error, skipped.", num_block);
continue;
}
efuse_hal_clear_program_registers();
if (esp_efuse_get_coding_scheme(num_block) == EFUSE_CODING_SCHEME_RS) {
uint8_t block_rs[12];
efuse_hal_rs_calculate((void *)range_write_addr_blocks[num_block].start, block_rs);
memcpy((void *)EFUSE_PGM_CHECK_VALUE0_REG, block_rs, sizeof(block_rs));
}
unsigned r_data_len = (range_read_addr_blocks[num_block].end - range_read_addr_blocks[num_block].start) + sizeof(uint32_t);
unsigned data_len = (range_write_addr_blocks[num_block].end - range_write_addr_blocks[num_block].start) + sizeof(uint32_t);
memcpy((void *)EFUSE_PGM_DATA0_REG, (void *)range_write_addr_blocks[num_block].start, data_len);
uint32_t backup_write_data[8 + 3]; // 8 words are data and 3 words are RS coding data
memcpy(backup_write_data, (void *)EFUSE_PGM_DATA0_REG, sizeof(backup_write_data));
int repeat_burn_op = 1;
bool correct_written_data;
bool coding_error_before = efuse_hal_is_coding_error_in_block(num_block);
if (coding_error_before) {
ESP_LOGW(TAG, "BLOCK%d already has a coding error", num_block);
}
bool coding_error_occurred;
do {
ESP_LOGI(TAG, "BURN BLOCK%d", num_block);
efuse_hal_program(num_block); // BURN a block
bool coding_error_after;
for (unsigned i = 0; i < 5; i++) {
efuse_hal_read();
coding_error_after = efuse_hal_is_coding_error_in_block(num_block);
if (coding_error_after == true) {
break;
}
}
coding_error_occurred = (coding_error_before != coding_error_after) && coding_error_before == false;
if (coding_error_occurred) {
ESP_LOGW(TAG, "BLOCK%d got a coding error", num_block);
}
correct_written_data = esp_efuse_utility_is_correct_written_data(num_block, r_data_len);
if (!correct_written_data || coding_error_occurred) {
ESP_LOGW(TAG, "BLOCK%d: next retry to fix an error [%d/3]...", num_block, repeat_burn_op);
memcpy((void *)EFUSE_PGM_DATA0_REG, (void *)backup_write_data, sizeof(backup_write_data));
}
} while ((!correct_written_data || coding_error_occurred) && repeat_burn_op++ < 3);
if (coding_error_occurred) {
ESP_LOGW(TAG, "Coding error was not fixed");
if (num_block == 0) {
ESP_LOGE(TAG, "BLOCK0 got a coding error, which might be critical for security");
error = ESP_FAIL;
}
}
if (!correct_written_data) {
ESP_LOGE(TAG, "Written data are incorrect");
error = ESP_FAIL;
}
}
}
#endif // CONFIG_EFUSE_VIRTUAL
esp_efuse_utility_reset();
return error;
}
// After esp_efuse_write.. functions EFUSE_BLKx_WDATAx_REG were filled is not coded values.

View File

@ -93,8 +93,12 @@ esp_err_t esp_efuse_utility_fill_buff(unsigned int num_reg, esp_efuse_block_t ef
*
* If CONFIG_EFUSE_VIRTUAL is set, writing will not be performed.
* After the function is completed, the writing registers are cleared.
*
* @return
* - ESP_OK: The operation was successfully completed.
* - ESP_FAIL: The operation was not successfully completed.
*/
void esp_efuse_utility_burn_efuses(void);
esp_err_t esp_efuse_utility_burn_efuses(void);
/**
* @brief Chip specific operations to perform the burn of values written to the efuse write registers.
@ -103,8 +107,12 @@ void esp_efuse_utility_burn_efuses(void);
*
* If CONFIG_EFUSE_VIRTUAL is set, writing will not be performed.
* After the function is completed, the writing registers are cleared.
*
* @return
* - ESP_OK: The operation was successfully completed.
* - ESP_FAIL: The operation was not successfully completed.
*/
void esp_efuse_utility_burn_chip(void);
esp_err_t esp_efuse_utility_burn_chip(void);
/**
* @brief Returns the number of array elements for placing these "bits" in an array with the length of each element equal to "size_of_base".
@ -189,6 +197,19 @@ void esp_efuse_utility_erase_efuses_in_flash(void);
*/
uint32_t esp_efuse_utility_get_read_register_address(esp_efuse_block_t block);
/**
* @brief Checks the correctness of burned data in the given block.
*
* @note Internal use. Do not call it.
*
* @param[in] block Index of efuse block.
* @param[in] r_data_len Block length for reading data in bytes (multiple of 4).
*
* @return True - written data are correct.
* False - written data are incorrect.
*/
bool esp_efuse_utility_is_correct_written_data(esp_efuse_block_t block, unsigned r_data_len);
#ifdef __cplusplus
}
#endif

View File

@ -94,7 +94,7 @@ esp_err_t esp_efuse_write_field_blob(const esp_efuse_desc_t* field[], const void
if (err == ESP_OK) {
err = esp_efuse_utility_apply_new_coding_scheme();
if (err == ESP_OK) {
esp_efuse_utility_burn_efuses();
err = esp_efuse_utility_burn_efuses();
}
}
esp_efuse_utility_reset();
@ -129,7 +129,7 @@ esp_err_t esp_efuse_write_field_cnt(const esp_efuse_desc_t* field[], size_t cnt)
if (err == ESP_OK) {
err = esp_efuse_utility_apply_new_coding_scheme();
if (err == ESP_OK) {
esp_efuse_utility_burn_efuses();
err = esp_efuse_utility_burn_efuses();
}
}
esp_efuse_utility_reset();
@ -194,7 +194,7 @@ esp_err_t esp_efuse_write_reg(esp_efuse_block_t blk, unsigned int num_reg, uint3
if (err == ESP_OK) {
err = esp_efuse_utility_apply_new_coding_scheme();
if (err == ESP_OK) {
esp_efuse_utility_burn_efuses();
err = esp_efuse_utility_burn_efuses();
}
}
esp_efuse_utility_reset();
@ -277,7 +277,7 @@ esp_err_t esp_efuse_batch_write_commit(void)
if (--s_batch_writing_mode == 0) {
esp_err_t err = esp_efuse_utility_apply_new_coding_scheme();
if (err == ESP_OK) {
esp_efuse_utility_burn_efuses();
err = esp_efuse_utility_burn_efuses();
ESP_LOGI(TAG, "Batch mode. Prepared fields are committed");
} else {
esp_efuse_utility_reset();

View File

@ -165,11 +165,12 @@ void esp_efuse_utility_reset(void)
}
// Burn values written to the efuse write registers
void esp_efuse_utility_burn_efuses(void)
esp_err_t esp_efuse_utility_burn_efuses(void)
{
++s_burn_counter;
esp_efuse_utility_burn_chip();
esp_err_t err = esp_efuse_utility_burn_chip();
++s_burn_counter;
return err;
}
// Erase the virt_blocks array.
@ -474,3 +475,29 @@ void esp_efuse_utility_write_efuses_to_flash(void)
}
}
#endif // CONFIG_EFUSE_VIRTUAL_KEEP_IN_FLASH
bool esp_efuse_utility_is_correct_written_data(esp_efuse_block_t block, unsigned r_data_len)
{
uint32_t* w_data = (uint32_t*)range_write_addr_blocks[block].start;
uint32_t* r_data = (uint32_t*)range_read_addr_blocks[block].start;
bool correct_written_data = memcmp(w_data, r_data, r_data_len) == 0;
if (correct_written_data) {
ESP_LOGI(TAG, "BURN BLOCK%d - OK (write block == read block)", block);
return true;
}
correct_written_data = true;
for (unsigned i = 0; i < r_data_len / 4; i++) {
if ((*(r_data + i) & *(w_data + i)) != *(w_data + i)) {
correct_written_data = false;
break;
}
}
if (correct_written_data) {
ESP_LOGI(TAG, "BURN BLOCK%d - OK (all write block bits are set)", block);
} else {
ESP_LOGE(TAG, "BURN BLOCK%d - ERROR (written bits != read bits)", block);
}
return correct_written_data;
}

View File

@ -173,7 +173,7 @@ TEST_CASE("Test Coding Scheme for efuse manager", "[efuse]")
}
printf("\n");
#endif
TEST_ASSERT_EQUAL_HEX32_ARRAY(encoded, w_data_after_coding, 8);
TEST_ASSERT_EQUAL_HEX32_ARRAY(buf, w_data_after_coding, 8);
}
esp_efuse_utility_reset();
bootloader_random_disable();
@ -197,7 +197,7 @@ TEST_CASE("Test data does not match the coding scheme", "[efuse]")
esp_efuse_utility_reset();
for (int i = 0; i < count_useful_reg; ++i) {
REG_WRITE(EFUSE_BLK2_WDATA0_REG + i * 4, 0xABCDEF01 + i);
TEST_ESP_OK(esp_efuse_utility_write_reg(2, i, 0xABCDEF01 + i));
}
if (coding_scheme == EFUSE_CODING_SCHEME_NONE) {

View File

@ -105,7 +105,7 @@ TEST_CASE("Test a real write (FPGA)2", "[efuse]")
esp_efuse_utility_debug_dump_blocks();
ESP_LOGI(TAG, "2. Set a read protection for KEY3");
TEST_ESP_OK(esp_efuse_set_read_protect(ESP_EFUSE_KEY3));
TEST_ESP_OK(esp_efuse_set_read_protect(EFUSE_BLK_KEY3));
TEST_ESP_OK(esp_efuse_read_field_blob(ESP_EFUSE_KEY3, &key, 256));
#ifndef CONFIG_EFUSE_VIRTUAL
TEST_ASSERT_EACH_EQUAL_HEX8(0, key, sizeof(key));

View File

@ -88,7 +88,18 @@ void efuse_hal_read(void)
void efuse_hal_clear_program_registers(void)
{
efuse_ll_set_conf_read_op_code();
for (uint32_t r = EFUSE_BLK0_WDATA0_REG; r <= EFUSE_BLK0_WDATA6_REG; r += 4) {
REG_WRITE(r, 0);
}
for (uint32_t r = EFUSE_BLK1_WDATA0_REG; r <= EFUSE_BLK1_WDATA7_REG; r += 4) {
REG_WRITE(r, 0);
}
for (uint32_t r = EFUSE_BLK2_WDATA0_REG; r <= EFUSE_BLK2_WDATA7_REG; r += 4) {
REG_WRITE(r, 0);
}
for (uint32_t r = EFUSE_BLK3_WDATA0_REG; r <= EFUSE_BLK3_WDATA7_REG; r += 4) {
REG_WRITE(r, 0);
}
}
void efuse_hal_program(uint32_t block)
@ -103,3 +114,10 @@ void efuse_hal_program(uint32_t block)
}
/******************* eFuse control functions *************************/
bool efuse_hal_is_coding_error_in_block(unsigned block)
{
return block > 0 &&
efuse_ll_get_coding_scheme() == 1 && // 3/4 coding scheme
efuse_ll_get_dec_warnings(block);
}

View File

@ -50,6 +50,16 @@ void efuse_hal_clear_program_registers(void);
*/
void efuse_hal_program(uint32_t block);
/**
* @brief Checks coding error in a block
*
* @param block Index of efuse block
*
* @return True - block has an error.
* False - no error.
*/
bool efuse_hal_is_coding_error_in_block(unsigned block);
#ifdef __cplusplus
}
#endif

View File

@ -15,6 +15,8 @@
extern "C" {
#endif
#define ESP_EFUSE_BLOCK_ERROR_BITS(error_reg, block) ((error_reg) & (0x0F << (4 * (block))))
// Always inline these functions even no gcc optimization is applied.
/******************* eFuse fields *************************/
@ -151,6 +153,15 @@ __attribute__((always_inline)) static inline uint32_t efuse_ll_get_adc2_tp_high(
return REG_GET_FIELD(EFUSE_BLK3_RDATA3_REG, EFUSE_RD_ADC2_TP_HIGH);
}
__attribute__((always_inline)) static inline bool efuse_ll_get_dec_warnings(unsigned block)
{
if (block == 0 || block > 4) {
return false;
}
uint32_t error_reg = REG_GET_FIELD(EFUSE_DEC_STATUS_REG, EFUSE_DEC_WARNINGS);
return ESP_EFUSE_BLOCK_ERROR_BITS(error_reg, block - 1) != 0;
}
/******************* eFuse control functions *************************/
__attribute__((always_inline)) static inline bool efuse_ll_get_cmd(void)

View File

@ -11,6 +11,7 @@
#include "hal/efuse_hal.h"
#include "hal/efuse_ll.h"
#define ESP_EFUSE_BLOCK_ERROR_BITS(error_reg, block) ((error_reg) & (0x0F << (4 * (block))))
uint32_t efuse_hal_get_chip_revision(void)
{
@ -61,3 +62,19 @@ void efuse_hal_rs_calculate(const void *data, void *rs_values)
}
/******************* eFuse control functions *************************/
bool efuse_hal_is_coding_error_in_block(unsigned block)
{
if (block == 0) {
for (unsigned i = 0; i < 5; i++) {
if (REG_READ(EFUSE_RD_REPEAT_ERR_REG + i * 4)) {
return true;
}
}
} else if (block <= 3) {
// EFUSE_RD_RS_ERR_REG: (hi) ----, ----, ----, ----, ----, BLOCK3, BLOCK2, BLOCK1 (low)
uint32_t error_reg = REG_READ(EFUSE_RD_RS_ERR_REG);
return ESP_EFUSE_BLOCK_ERROR_BITS(error_reg, block - 1) != 0;
}
return false;
}

View File

@ -54,6 +54,16 @@ void efuse_hal_program(uint32_t block);
*/
void efuse_hal_rs_calculate(const void *data, void *rs_values);
/**
* @brief Checks coding error in a block
*
* @param block Index of efuse block
*
* @return True - block has an error.
* False - no error.
*/
bool efuse_hal_is_coding_error_in_block(unsigned block);
#ifdef __cplusplus
}
#endif

View File

@ -11,6 +11,7 @@
#include "hal/efuse_hal.h"
#include "hal/efuse_ll.h"
#define ESP_EFUSE_BLOCK_ERROR_BITS(error_reg, block) ((error_reg) & (0x0F << (4 * (block))))
uint32_t efuse_hal_get_chip_revision(void)
{
@ -61,3 +62,22 @@ void efuse_hal_rs_calculate(const void *data, void *rs_values)
}
/******************* eFuse control functions *************************/
bool efuse_hal_is_coding_error_in_block(unsigned block)
{
if (block == 0) {
for (unsigned i = 0; i < 5; i++) {
if (REG_READ(EFUSE_RD_REPEAT_ERR0_REG + i * 4)) {
return true;
}
}
} else if (block <= 10) {
// The order of error in these regs is different only for the C3 chip.
// EFUSE_RD_RS_ERR0_REG: (hi) BLOCK7, BLOCK6, BLOCK5, BLOCK4, BLOCK3, BLOCK2, BLOCK1, ------ (low)
// EFUSE_RD_RS_ERR1_REG: BLOCK9, BLOCK8
// BLOCK10 is not presented in the error regs.
uint32_t error_reg = REG_READ(EFUSE_RD_RS_ERR0_REG + (block / 8) * 4);
return ESP_EFUSE_BLOCK_ERROR_BITS(error_reg, block % 8) != 0;
}
return false;
}

View File

@ -54,6 +54,16 @@ void efuse_hal_program(uint32_t block);
*/
void efuse_hal_rs_calculate(const void *data, void *rs_values);
/**
* @brief Checks coding error in a block
*
* @param block Index of efuse block
*
* @return True - block has an error.
* False - no error.
*/
bool efuse_hal_is_coding_error_in_block(unsigned block);
#ifdef __cplusplus
}
#endif

View File

@ -11,6 +11,7 @@
#include "hal/efuse_hal.h"
#include "hal/efuse_ll.h"
#define ESP_EFUSE_BLOCK_ERROR_BITS(error_reg, block) ((error_reg) & (0x0F << (4 * (block))))
uint32_t efuse_hal_get_chip_revision(void)
{
@ -61,3 +62,21 @@ void efuse_hal_rs_calculate(const void *data, void *rs_values)
}
/******************* eFuse control functions *************************/
bool efuse_hal_is_coding_error_in_block(unsigned block)
{
if (block == 0) {
for (unsigned i = 0; i < 5; i++) {
if (REG_READ(EFUSE_RD_REPEAT_ERR0_REG + i * 4)) {
return true;
}
}
} else if (block <= 10) {
// EFUSE_RD_RS_ERR0_REG: (hi) BLOCK8, BLOCK7, BLOCK6, BLOCK5, BLOCK4, BLOCK3, BLOCK2, BLOCK1 (low)
// EFUSE_RD_RS_ERR1_REG: BLOCK10, BLOCK9
block--;
uint32_t error_reg = REG_READ(EFUSE_RD_RS_ERR0_REG + (block / 8) * 4);
return ESP_EFUSE_BLOCK_ERROR_BITS(error_reg, block % 8) != 0;
}
return false;
}

View File

@ -54,6 +54,16 @@ void efuse_hal_program(uint32_t block);
*/
void efuse_hal_rs_calculate(const void *data, void *rs_values);
/**
* @brief Checks coding error in a block
*
* @param block Index of efuse block
*
* @return True - block has an error.
* False - no error.
*/
bool efuse_hal_is_coding_error_in_block(unsigned block);
#ifdef __cplusplus
}
#endif

View File

@ -12,6 +12,7 @@
#include "hal/efuse_ll.h"
#include "esp32s2/rom/efuse.h"
#define ESP_EFUSE_BLOCK_ERROR_BITS(error_reg, block) ((error_reg) & (0x0F << (4 * (block))))
uint32_t efuse_hal_get_chip_revision(void)
{
@ -46,3 +47,21 @@ void efuse_hal_rs_calculate(const void *data, void *rs_values)
}
/******************* eFuse control functions *************************/
bool efuse_hal_is_coding_error_in_block(unsigned block)
{
if (block == 0) {
for (unsigned i = 0; i < 5; i++) {
if (REG_READ(EFUSE_RD_REPEAT_ERR0_REG + i * 4)) {
return true;
}
}
} else if (block <= 10) {
// EFUSE_RD_RS_ERR0_REG: (hi) BLOCK8, BLOCK7, BLOCK6, BLOCK5, BLOCK4, BLOCK3, BLOCK2, BLOCK1 (low)
// EFUSE_RD_RS_ERR1_REG: BLOCK10, BLOCK9
block--;
uint32_t error_reg = REG_READ(EFUSE_RD_RS_ERR0_REG + (block / 8) * 4);
return ESP_EFUSE_BLOCK_ERROR_BITS(error_reg, block % 8) != 0;
}
return false;
}

View File

@ -53,6 +53,16 @@ void efuse_hal_program(uint32_t block);
*/
void efuse_hal_rs_calculate(const void *data, void *rs_values);
/**
* @brief Checks coding error in a block
*
* @param block Index of efuse block
*
* @return True - block has an error.
* False - no error.
*/
bool efuse_hal_is_coding_error_in_block(unsigned block);
#ifdef __cplusplus
}
#endif

View File

@ -12,6 +12,8 @@
#include "hal/efuse_ll.h"
#include "esp32s3/rom/efuse.h"
#define ESP_EFUSE_BLOCK_ERROR_BITS(error_reg, block) ((error_reg) & (0x0F << (4 * (block))))
uint32_t efuse_hal_get_chip_revision(void)
{
return efuse_ll_get_chip_revision();
@ -61,3 +63,21 @@ void efuse_hal_rs_calculate(const void *data, void *rs_values)
}
/******************* eFuse control functions *************************/
bool efuse_hal_is_coding_error_in_block(unsigned block)
{
if (block == 0) {
for (unsigned i = 0; i < 5; i++) {
if (REG_READ(EFUSE_RD_REPEAT_ERR0_REG + i * 4)) {
return true;
}
}
} else if (block <= 10) {
// EFUSE_RD_RS_ERR0_REG: (hi) BLOCK8, BLOCK7, BLOCK6, BLOCK5, BLOCK4, BLOCK3, BLOCK2, BLOCK1 (low)
// EFUSE_RD_RS_ERR1_REG: BLOCK10, BLOCK9
block--;
uint32_t error_reg = REG_READ(EFUSE_RD_RS_ERR0_REG + (block / 8) * 4);
return ESP_EFUSE_BLOCK_ERROR_BITS(error_reg, block % 8) != 0;
}
return false;
}

View File

@ -54,6 +54,16 @@ void efuse_hal_program(uint32_t block);
*/
void efuse_hal_rs_calculate(const void *data, void *rs_values);
/**
* @brief Checks coding error in a block
*
* @param block Index of efuse block
*
* @return True - block has an error.
* False - no error.
*/
bool efuse_hal_is_coding_error_in_block(unsigned block);
#ifdef __cplusplus
}
#endif