esp-idf/components/efuse/esp32c5/esp_efuse_utility.c

212 lines
10 KiB
C
Raw Normal View History

/*
* SPDX-FileCopyrightText: 2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <sys/param.h>
#include "sdkconfig.h"
#include "esp_log.h"
#include "assert.h"
#include "esp_efuse_utility.h"
#include "soc/efuse_periph.h"
#include "hal/efuse_hal.h"
// static const char *TAG = "efuse";
// TODO: [ESP32C5] IDF-8674
#ifdef CONFIG_EFUSE_VIRTUAL
extern uint32_t virt_blocks[EFUSE_BLK_MAX][COUNT_EFUSE_REG_PER_BLOCK];
#endif // CONFIG_EFUSE_VIRTUAL
/*Range addresses to read blocks*/
const esp_efuse_range_addr_t range_read_addr_blocks[] = {
// {EFUSE_RD_WR_DIS_REG, EFUSE_RD_REPEAT_DATA4_REG}, // range address of EFUSE_BLK0 REPEAT
// {EFUSE_RD_MAC_SPI_SYS_0_REG, EFUSE_RD_MAC_SPI_SYS_5_REG}, // range address of EFUSE_BLK1 MAC_SPI_8M
// {EFUSE_RD_SYS_PART1_DATA0_REG, EFUSE_RD_SYS_PART1_DATA7_REG}, // range address of EFUSE_BLK2 SYS_DATA
// {EFUSE_RD_USR_DATA0_REG, EFUSE_RD_USR_DATA7_REG}, // range address of EFUSE_BLK3 USR_DATA
// {EFUSE_RD_KEY0_DATA0_REG, EFUSE_RD_KEY0_DATA7_REG}, // range address of EFUSE_BLK4 KEY0
// {EFUSE_RD_KEY1_DATA0_REG, EFUSE_RD_KEY1_DATA7_REG}, // range address of EFUSE_BLK5 KEY1
// {EFUSE_RD_KEY2_DATA0_REG, EFUSE_RD_KEY2_DATA7_REG}, // range address of EFUSE_BLK6 KEY2
// {EFUSE_RD_KEY3_DATA0_REG, EFUSE_RD_KEY3_DATA7_REG}, // range address of EFUSE_BLK7 KEY3
// {EFUSE_RD_KEY4_DATA0_REG, EFUSE_RD_KEY4_DATA7_REG}, // range address of EFUSE_BLK8 KEY4
// {EFUSE_RD_KEY5_DATA0_REG, EFUSE_RD_KEY5_DATA7_REG}, // range address of EFUSE_BLK9 KEY5
// {EFUSE_RD_SYS_PART2_DATA0_REG, EFUSE_RD_SYS_PART2_DATA7_REG} // range address of EFUSE_BLK10 KEY6
};
static uint32_t write_mass_blocks[EFUSE_BLK_MAX][COUNT_EFUSE_REG_PER_BLOCK] = { 0 };
/*Range addresses to write blocks (it is not real regs, it is buffer) */
const esp_efuse_range_addr_t range_write_addr_blocks[] = {
{(uint32_t) &write_mass_blocks[EFUSE_BLK0][0], (uint32_t) &write_mass_blocks[EFUSE_BLK0][5]},
{(uint32_t) &write_mass_blocks[EFUSE_BLK1][0], (uint32_t) &write_mass_blocks[EFUSE_BLK1][5]},
{(uint32_t) &write_mass_blocks[EFUSE_BLK2][0], (uint32_t) &write_mass_blocks[EFUSE_BLK2][7]},
{(uint32_t) &write_mass_blocks[EFUSE_BLK3][0], (uint32_t) &write_mass_blocks[EFUSE_BLK3][7]},
{(uint32_t) &write_mass_blocks[EFUSE_BLK4][0], (uint32_t) &write_mass_blocks[EFUSE_BLK4][7]},
{(uint32_t) &write_mass_blocks[EFUSE_BLK5][0], (uint32_t) &write_mass_blocks[EFUSE_BLK5][7]},
{(uint32_t) &write_mass_blocks[EFUSE_BLK6][0], (uint32_t) &write_mass_blocks[EFUSE_BLK6][7]},
{(uint32_t) &write_mass_blocks[EFUSE_BLK7][0], (uint32_t) &write_mass_blocks[EFUSE_BLK7][7]},
{(uint32_t) &write_mass_blocks[EFUSE_BLK8][0], (uint32_t) &write_mass_blocks[EFUSE_BLK8][7]},
{(uint32_t) &write_mass_blocks[EFUSE_BLK9][0], (uint32_t) &write_mass_blocks[EFUSE_BLK9][7]},
{(uint32_t) &write_mass_blocks[EFUSE_BLK10][0], (uint32_t) &write_mass_blocks[EFUSE_BLK10][7]},
};
#ifndef CONFIG_EFUSE_VIRTUAL
// Update Efuse timing configuration
static esp_err_t esp_efuse_set_timing(void)
{
// efuse clock is fixed.
// An argument (0) is for compatibility and will be ignored.
// TODO: [ESP32C5] IDF-8674
abort();
// efuse_hal_set_timing(0);
return ESP_OK;
}
#endif // ifndef CONFIG_EFUSE_VIRTUAL
// Efuse read operation: copies data from physical efuses to efuse read registers.
void esp_efuse_utility_clear_program_registers(void)
{
// TODO: [ESP32C5] IDF-8674
abort();
// efuse_hal_read();
// efuse_hal_clear_program_registers();
}
esp_err_t esp_efuse_utility_check_errors(void)
{
return ESP_OK;
}
// Burn values written to the efuse write registers
esp_err_t esp_efuse_utility_burn_chip(void)
{
// TODO: [ESP32C5] IDF-8674
abort();
esp_err_t error = ESP_OK;
#ifdef CONFIG_EFUSE_VIRTUAL
// ESP_LOGW(TAG, "Virtual efuses enabled: Not really burning eFuses");
// for (int num_block = EFUSE_BLK_MAX - 1; num_block >= EFUSE_BLK0; num_block--) {
// int subblock = 0;
// for (uint32_t addr_wr_block = range_write_addr_blocks[num_block].start; addr_wr_block <= range_write_addr_blocks[num_block].end; addr_wr_block += 4) {
// virt_blocks[num_block][subblock++] |= REG_READ(addr_wr_block);
// }
// }
// #ifdef CONFIG_EFUSE_VIRTUAL_KEEP_IN_FLASH
// esp_efuse_utility_write_efuses_to_flash();
// #endif
#else // CONFIG_EFUSE_VIRTUAL
if (esp_efuse_set_timing() != ESP_OK) {
// ESP_LOGE(TAG, "Efuse fields are not burnt");
} else {
// // Permanently update values written to the efuse write registers
// // It is necessary to process blocks in the order from MAX-> EFUSE_BLK0, because EFUSE_BLK0 has protection bits for other blocks.
// for (int num_block = EFUSE_BLK_MAX - 1; num_block >= EFUSE_BLK0; num_block--) {
// bool need_burn_block = false;
// for (uint32_t addr_wr_block = range_write_addr_blocks[num_block].start; addr_wr_block <= range_write_addr_blocks[num_block].end; addr_wr_block += 4) {
// if (REG_READ(addr_wr_block) != 0) {
// need_burn_block = true;
// break;
// }
// }
// if (!need_burn_block) {
// continue;
// }
// if (error) {
// // It is done for a use case: BLOCK2 (Flash encryption key) could have an error (incorrect written data)
// // in this case we can not burn any data into BLOCK0 because it might set read/write protections of BLOCK2.
// ESP_LOGE(TAG, "BLOCK%d can not be burned because a previous block got an error, skipped.", num_block);
// continue;
// }
// efuse_hal_clear_program_registers();
// if (esp_efuse_get_coding_scheme(num_block) == EFUSE_CODING_SCHEME_RS) {
// uint8_t block_rs[12];
// efuse_hal_rs_calculate((void *)range_write_addr_blocks[num_block].start, block_rs);
// hal_memcpy((void *)EFUSE_PGM_CHECK_VALUE0_REG, block_rs, sizeof(block_rs));
// }
// unsigned r_data_len = (range_read_addr_blocks[num_block].end - range_read_addr_blocks[num_block].start) + sizeof(uint32_t);
// unsigned data_len = (range_write_addr_blocks[num_block].end - range_write_addr_blocks[num_block].start) + sizeof(uint32_t);
// memcpy((void *)EFUSE_PGM_DATA0_REG, (void *)range_write_addr_blocks[num_block].start, data_len);
// uint32_t backup_write_data[8 + 3]; // 8 words are data and 3 words are RS coding data
// hal_memcpy(backup_write_data, (void *)EFUSE_PGM_DATA0_REG, sizeof(backup_write_data));
// int repeat_burn_op = 1;
// bool correct_written_data;
// bool coding_error_before = efuse_hal_is_coding_error_in_block(num_block);
// if (coding_error_before) {
// ESP_LOGW(TAG, "BLOCK%d already has a coding error", num_block);
// }
// bool coding_error_occurred;
// do {
// ESP_LOGI(TAG, "BURN BLOCK%d", num_block);
// efuse_hal_program(num_block); // BURN a block
// bool coding_error_after;
// for (unsigned i = 0; i < 5; i++) {
// efuse_hal_read();
// coding_error_after = efuse_hal_is_coding_error_in_block(num_block);
// if (coding_error_after == true) {
// break;
// }
// }
// coding_error_occurred = (coding_error_before != coding_error_after) && coding_error_before == false;
// if (coding_error_occurred) {
// ESP_LOGW(TAG, "BLOCK%d got a coding error", num_block);
// }
// correct_written_data = esp_efuse_utility_is_correct_written_data(num_block, r_data_len);
// if (!correct_written_data || coding_error_occurred) {
// ESP_LOGW(TAG, "BLOCK%d: next retry to fix an error [%d/3]...", num_block, repeat_burn_op);
// hal_memcpy((void *)EFUSE_PGM_DATA0_REG, (void *)backup_write_data, sizeof(backup_write_data));
// }
// } while ((!correct_written_data || coding_error_occurred) && repeat_burn_op++ < 3);
// if (coding_error_occurred) {
// ESP_LOGW(TAG, "Coding error was not fixed");
// if (num_block == 0) {
// ESP_LOGE(TAG, "BLOCK0 got a coding error, which might be critical for security");
// error = ESP_FAIL;
// }
// }
// if (!correct_written_data) {
// ESP_LOGE(TAG, "Written data are incorrect");
// error = ESP_FAIL;
// }
// }
}
#endif // CONFIG_EFUSE_VIRTUAL
// esp_efuse_utility_reset();
return error;
}
// After esp_efuse_write.. functions EFUSE_BLKx_WDATAx_REG were filled is not coded values.
// This function reads EFUSE_BLKx_WDATAx_REG registers, and checks possible to write these data with RS coding scheme.
// The RS coding scheme does not require data changes for the encoded data. esp32s2 has special registers for this.
// They will be filled during the burn operation.
esp_err_t esp_efuse_utility_apply_new_coding_scheme()
{
// TODO: [ESP32C5] IDF-8674
abort();
// // start with EFUSE_BLK1. EFUSE_BLK0 - always uses EFUSE_CODING_SCHEME_NONE.
// for (int num_block = EFUSE_BLK1; num_block < EFUSE_BLK_MAX; num_block++) {
// if (esp_efuse_get_coding_scheme(num_block) == EFUSE_CODING_SCHEME_RS) {
// for (uint32_t addr_wr_block = range_write_addr_blocks[num_block].start; addr_wr_block <= range_write_addr_blocks[num_block].end; addr_wr_block += 4) {
// if (REG_READ(addr_wr_block)) {
// int num_reg = 0;
// for (uint32_t addr_rd_block = range_read_addr_blocks[num_block].start; addr_rd_block <= range_read_addr_blocks[num_block].end; addr_rd_block += 4, ++num_reg) {
// if (esp_efuse_utility_read_reg(num_block, num_reg)) {
// ESP_LOGE(TAG, "Bits are not empty. Write operation is forbidden.");
// return ESP_ERR_CODING;
// }
// }
// break;
// }
// }
// }
// }
return ESP_OK;
}