2021-06-09 22:22:35 -04:00
/*
* SPDX - FileCopyrightText : 2016 - 2021 Espressif Systems ( Shanghai ) CO LTD
*
* SPDX - License - Identifier : Apache - 2.0
*/
# include <esp_types.h>
# include <stdlib.h>
# include <ctype.h>
# include <string.h>
# include "sdkconfig.h"
# include "esp_intr_alloc.h"
# include "esp_log.h"
# include "esp_pm.h"
# include "sys/lock.h"
# include "freertos/FreeRTOS.h"
# include "freertos/semphr.h"
# include "freertos/timers.h"
# include "freertos/ringbuf.h"
2021-06-09 22:28:23 -04:00
# include "esp32h2/rom/ets_sys.h"
2021-10-25 05:13:46 -04:00
# include "esp_private/periph_ctrl.h"
2021-06-09 22:22:35 -04:00
# include "driver/gpio.h"
# include "driver/adc.h"
# include "hal/adc_types.h"
# include "hal/adc_hal.h"
# include "hal/dma_types.h"
# include "esp_efuse_rtc_calib.h"
# include "esp_private/gdma.h"
# define ADC_CHECK_RET(fun_ret) ({ \
if ( fun_ret ! = ESP_OK ) { \
ESP_LOGE ( ADC_TAG , " %s(%d) " , __FUNCTION__ , __LINE__ ) ; \
return ESP_FAIL ; \
} \
} )
static const char * ADC_TAG = " ADC " ;
# define ADC_CHECK(a, str, ret_val) ({ \
if ( ! ( a ) ) { \
ESP_LOGE ( ADC_TAG , " %s(%d) :%s " , __FUNCTION__ , __LINE__ , str ) ; \
return ( ret_val ) ; \
} \
} )
# define ADC_GET_IO_NUM(periph, channel) (adc_channel_io_map[periph][channel])
# define ADC_CHANNEL_CHECK(periph, channel) ADC_CHECK(channel < SOC_ADC_CHANNEL_NUM(periph), "ADC"#periph" channel error", ESP_ERR_INVALID_ARG)
extern portMUX_TYPE rtc_spinlock ; //TODO: Will be placed in the appropriate position after the rtc module is finished.
# define ADC_ENTER_CRITICAL() portENTER_CRITICAL(&rtc_spinlock)
# define ADC_EXIT_CRITICAL() portEXIT_CRITICAL(&rtc_spinlock)
/**
* 1. sar_adc1_lock : this mutex lock is to protect the SARADC1 module .
2021-06-09 22:28:23 -04:00
* 2. sar_adc2_lock : this mutex lock is to protect the SARADC2 module . On H2 , it is controlled by the digital controller
2021-06-09 22:22:35 -04:00
* and PWDET controller .
* 3. adc_reg_lock : this spin lock is to protect the shared registers used by ADC1 / ADC2 single read mode .
*/
static _lock_t sar_adc1_lock ;
# define SAR_ADC1_LOCK_ACQUIRE() _lock_acquire(&sar_adc1_lock)
# define SAR_ADC1_LOCK_RELEASE() _lock_release(&sar_adc1_lock)
static _lock_t sar_adc2_lock ;
# define SAR_ADC2_LOCK_ACQUIRE() _lock_acquire(&sar_adc2_lock)
# define SAR_ADC2_LOCK_RELEASE() _lock_release(&sar_adc2_lock)
portMUX_TYPE adc_reg_lock = portMUX_INITIALIZER_UNLOCKED ;
# define ADC_REG_LOCK_ENTER() portENTER_CRITICAL(&adc_reg_lock)
# define ADC_REG_LOCK_EXIT() portEXIT_CRITICAL(&adc_reg_lock)
# define INTERNAL_BUF_NUM 5
# define IN_SUC_EOF_BIT GDMA_LL_EVENT_RX_SUC_EOF
/*---------------------------------------------------------------
Digital Controller Context
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
typedef struct adc_digi_context_t {
uint8_t * rx_dma_buf ; //dma buffer
adc_hal_context_t hal ; //hal context
gdma_channel_handle_t rx_dma_channel ; //dma rx channel handle
RingbufHandle_t ringbuf_hdl ; //RX ringbuffer handler
intptr_t rx_eof_desc_addr ; //eof descriptor address of RX channel
bool ringbuf_overflow_flag ; //1: ringbuffer overflow
bool driver_start_flag ; //1: driver is started; 0: driver is stoped
bool use_adc1 ; //1: ADC unit1 will be used; 0: ADC unit1 won't be used.
bool use_adc2 ; //1: ADC unit2 will be used; 0: ADC unit2 won't be used. This determines whether to acquire sar_adc2_mutex lock or not.
adc_atten_t adc1_atten ; //Attenuation for ADC1. On this chip each ADC can only support one attenuation.
adc_atten_t adc2_atten ; //Attenuation for ADC2. On this chip each ADC can only support one attenuation.
adc_digi_config_t digi_controller_config ; //Digital Controller Configuration
esp_pm_lock_handle_t pm_lock ; //For power management
} adc_digi_context_t ;
static adc_digi_context_t * s_adc_digi_ctx = NULL ;
static uint32_t adc_get_calibration_offset ( adc_ll_num_t adc_n , adc_channel_t chan , adc_atten_t atten ) ;
/*---------------------------------------------------------------
ADC Continuous Read Mode ( via DMA )
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
static IRAM_ATTR bool adc_dma_in_suc_eof_callback ( gdma_channel_handle_t dma_chan , gdma_event_data_t * event_data , void * user_data ) ;
static int8_t adc_digi_get_io_num ( uint8_t adc_unit , uint8_t adc_channel )
{
return adc_channel_io_map [ adc_unit ] [ adc_channel ] ;
}
static esp_err_t adc_digi_gpio_init ( adc_unit_t adc_unit , uint16_t channel_mask )
{
esp_err_t ret = ESP_OK ;
uint64_t gpio_mask = 0 ;
uint32_t n = 0 ;
int8_t io = 0 ;
while ( channel_mask ) {
if ( channel_mask & 0x1 ) {
io = adc_digi_get_io_num ( adc_unit , n ) ;
if ( io < 0 ) {
return ESP_ERR_INVALID_ARG ;
}
gpio_mask | = BIT64 ( io ) ;
}
channel_mask = channel_mask > > 1 ;
n + + ;
}
gpio_config_t cfg = {
. pin_bit_mask = gpio_mask ,
. mode = GPIO_MODE_DISABLE ,
} ;
ret = gpio_config ( & cfg ) ;
return ret ;
}
esp_err_t adc_digi_initialize ( const adc_digi_init_config_t * init_config )
{
esp_err_t ret = ESP_OK ;
s_adc_digi_ctx = calloc ( 1 , sizeof ( adc_digi_context_t ) ) ;
if ( s_adc_digi_ctx = = NULL ) {
ret = ESP_ERR_NO_MEM ;
goto cleanup ;
}
//ringbuffer
s_adc_digi_ctx - > ringbuf_hdl = xRingbufferCreate ( init_config - > max_store_buf_size , RINGBUF_TYPE_BYTEBUF ) ;
if ( ! s_adc_digi_ctx - > ringbuf_hdl ) {
ret = ESP_ERR_NO_MEM ;
goto cleanup ;
}
//malloc internal buffer used by DMA
s_adc_digi_ctx - > rx_dma_buf = heap_caps_calloc ( 1 , init_config - > conv_num_each_intr * INTERNAL_BUF_NUM , MALLOC_CAP_INTERNAL ) ;
if ( ! s_adc_digi_ctx - > rx_dma_buf ) {
ret = ESP_ERR_NO_MEM ;
goto cleanup ;
}
//malloc dma descriptor
s_adc_digi_ctx - > hal . rx_desc = heap_caps_calloc ( 1 , ( sizeof ( dma_descriptor_t ) ) * INTERNAL_BUF_NUM , MALLOC_CAP_DMA ) ;
if ( ! s_adc_digi_ctx - > hal . rx_desc ) {
ret = ESP_ERR_NO_MEM ;
goto cleanup ;
}
//malloc pattern table
s_adc_digi_ctx - > digi_controller_config . adc_pattern = calloc ( 1 , SOC_ADC_PATT_LEN_MAX * sizeof ( adc_digi_pattern_table_t ) ) ;
if ( ! s_adc_digi_ctx - > digi_controller_config . adc_pattern ) {
ret = ESP_ERR_NO_MEM ;
goto cleanup ;
}
# if CONFIG_PM_ENABLE
ret = esp_pm_lock_create ( ESP_PM_APB_FREQ_MAX , 0 , " adc_dma " , & s_adc_digi_ctx - > pm_lock ) ;
if ( ret ! = ESP_OK ) {
goto cleanup ;
}
# endif //CONFIG_PM_ENABLE
//init gpio pins
if ( init_config - > adc1_chan_mask ) {
ret = adc_digi_gpio_init ( ADC_NUM_1 , init_config - > adc1_chan_mask ) ;
if ( ret ! = ESP_OK ) {
goto cleanup ;
}
}
if ( init_config - > adc2_chan_mask ) {
ret = adc_digi_gpio_init ( ADC_NUM_2 , init_config - > adc2_chan_mask ) ;
if ( ret ! = ESP_OK ) {
goto cleanup ;
}
}
//alloc rx gdma channel
gdma_channel_alloc_config_t rx_alloc_config = {
. direction = GDMA_CHANNEL_DIRECTION_RX ,
} ;
ret = gdma_new_channel ( & rx_alloc_config , & s_adc_digi_ctx - > rx_dma_channel ) ;
if ( ret ! = ESP_OK ) {
goto cleanup ;
}
gdma_connect ( s_adc_digi_ctx - > rx_dma_channel , GDMA_MAKE_TRIGGER ( GDMA_TRIG_PERIPH_ADC , 0 ) ) ;
gdma_strategy_config_t strategy_config = {
. auto_update_desc = true ,
. owner_check = true
} ;
gdma_apply_strategy ( s_adc_digi_ctx - > rx_dma_channel , & strategy_config ) ;
gdma_rx_event_callbacks_t cbs = {
. on_recv_eof = adc_dma_in_suc_eof_callback
} ;
gdma_register_rx_event_callbacks ( s_adc_digi_ctx - > rx_dma_channel , & cbs , s_adc_digi_ctx ) ;
int dma_chan ;
gdma_get_channel_id ( s_adc_digi_ctx - > rx_dma_channel , & dma_chan ) ;
adc_hal_config_t config = {
. desc_max_num = INTERNAL_BUF_NUM ,
. dma_chan = dma_chan ,
. eof_num = init_config - > conv_num_each_intr / ADC_HAL_DATA_LEN_PER_CONV
} ;
adc_hal_context_config ( & s_adc_digi_ctx - > hal , & config ) ;
//enable SARADC module clock
periph_module_enable ( PERIPH_SARADC_MODULE ) ;
adc_hal_calibration_init ( ADC_NUM_1 ) ;
adc_hal_calibration_init ( ADC_NUM_2 ) ;
return ret ;
cleanup :
adc_digi_deinitialize ( ) ;
return ret ;
}
static IRAM_ATTR bool adc_dma_intr ( adc_digi_context_t * adc_digi_ctx ) ;
static IRAM_ATTR bool adc_dma_in_suc_eof_callback ( gdma_channel_handle_t dma_chan , gdma_event_data_t * event_data , void * user_data )
{
assert ( event_data ) ;
adc_digi_context_t * adc_digi_ctx = ( adc_digi_context_t * ) user_data ;
adc_digi_ctx - > rx_eof_desc_addr = event_data - > rx_eof_desc_addr ;
return adc_dma_intr ( adc_digi_ctx ) ;
}
static IRAM_ATTR bool adc_dma_intr ( adc_digi_context_t * adc_digi_ctx )
{
portBASE_TYPE taskAwoken = 0 ;
BaseType_t ret ;
adc_hal_dma_desc_status_t status = false ;
dma_descriptor_t * current_desc = NULL ;
while ( 1 ) {
status = adc_hal_get_reading_result ( & adc_digi_ctx - > hal , adc_digi_ctx - > rx_eof_desc_addr , & current_desc ) ;
if ( status ! = ADC_HAL_DMA_DESC_VALID ) {
break ;
}
ret = xRingbufferSendFromISR ( adc_digi_ctx - > ringbuf_hdl , current_desc - > buffer , current_desc - > dw0 . length , & taskAwoken ) ;
if ( ret = = pdFALSE ) {
//ringbuffer overflow
adc_digi_ctx - > ringbuf_overflow_flag = 1 ;
}
}
if ( status = = ADC_HAL_DMA_DESC_NULL ) {
//start next turns of dma operation
adc_hal_digi_rxdma_start ( & adc_digi_ctx - > hal , adc_digi_ctx - > rx_dma_buf ) ;
}
return ( taskAwoken = = pdTRUE ) ;
}
esp_err_t adc_digi_start ( void )
{
if ( s_adc_digi_ctx - > driver_start_flag ! = 0 ) {
ESP_LOGE ( ADC_TAG , " The driver is already started " ) ;
return ESP_ERR_INVALID_STATE ;
}
adc_power_acquire ( ) ;
//reset flags
s_adc_digi_ctx - > ringbuf_overflow_flag = 0 ;
s_adc_digi_ctx - > driver_start_flag = 1 ;
if ( s_adc_digi_ctx - > use_adc1 ) {
SAR_ADC1_LOCK_ACQUIRE ( ) ;
}
if ( s_adc_digi_ctx - > use_adc2 ) {
SAR_ADC2_LOCK_ACQUIRE ( ) ;
}
# if CONFIG_PM_ENABLE
// Lock APB frequency while ADC driver is in use
esp_pm_lock_acquire ( s_adc_digi_ctx - > pm_lock ) ;
# endif
adc_arbiter_t config = ADC_ARBITER_CONFIG_DEFAULT ( ) ;
if ( s_adc_digi_ctx - > use_adc1 ) {
uint32_t cal_val = adc_get_calibration_offset ( ADC_NUM_1 , ADC_CHANNEL_MAX , s_adc_digi_ctx - > adc1_atten ) ;
adc_hal_set_calibration_param ( ADC_NUM_1 , cal_val ) ;
}
if ( s_adc_digi_ctx - > use_adc2 ) {
uint32_t cal_val = adc_get_calibration_offset ( ADC_NUM_2 , ADC_CHANNEL_MAX , s_adc_digi_ctx - > adc2_atten ) ;
adc_hal_set_calibration_param ( ADC_NUM_2 , cal_val ) ;
}
adc_hal_init ( ) ;
adc_hal_arbiter_config ( & config ) ;
adc_hal_digi_init ( & s_adc_digi_ctx - > hal ) ;
adc_hal_digi_controller_config ( & s_adc_digi_ctx - > digi_controller_config ) ;
//reset ADC and DMA
adc_hal_fifo_reset ( & s_adc_digi_ctx - > hal ) ;
//start DMA
adc_hal_digi_rxdma_start ( & s_adc_digi_ctx - > hal , s_adc_digi_ctx - > rx_dma_buf ) ;
//start ADC
adc_hal_digi_start ( & s_adc_digi_ctx - > hal ) ;
return ESP_OK ;
}
esp_err_t adc_digi_stop ( void )
{
if ( s_adc_digi_ctx - > driver_start_flag ! = 1 ) {
ESP_LOGE ( ADC_TAG , " The driver is already stopped " ) ;
return ESP_ERR_INVALID_STATE ;
}
s_adc_digi_ctx - > driver_start_flag = 0 ;
//disable the in suc eof intrrupt
adc_hal_digi_dis_intr ( & s_adc_digi_ctx - > hal , IN_SUC_EOF_BIT ) ;
//clear the in suc eof interrupt
adc_hal_digi_clr_intr ( & s_adc_digi_ctx - > hal , IN_SUC_EOF_BIT ) ;
//stop ADC
adc_hal_digi_stop ( & s_adc_digi_ctx - > hal ) ;
//stop DMA
adc_hal_digi_rxdma_stop ( & s_adc_digi_ctx - > hal ) ;
adc_hal_digi_deinit ( ) ;
# if CONFIG_PM_ENABLE
if ( s_adc_digi_ctx - > pm_lock ) {
esp_pm_lock_release ( s_adc_digi_ctx - > pm_lock ) ;
}
# endif //CONFIG_PM_ENABLE
if ( s_adc_digi_ctx - > use_adc1 ) {
SAR_ADC1_LOCK_RELEASE ( ) ;
}
if ( s_adc_digi_ctx - > use_adc2 ) {
SAR_ADC2_LOCK_RELEASE ( ) ;
}
adc_power_release ( ) ;
return ESP_OK ;
}
esp_err_t adc_digi_read_bytes ( uint8_t * buf , uint32_t length_max , uint32_t * out_length , uint32_t timeout_ms )
{
TickType_t ticks_to_wait ;
esp_err_t ret = ESP_OK ;
uint8_t * data = NULL ;
size_t size = 0 ;
ticks_to_wait = timeout_ms / portTICK_RATE_MS ;
if ( timeout_ms = = ADC_MAX_DELAY ) {
ticks_to_wait = portMAX_DELAY ;
}
data = xRingbufferReceiveUpTo ( s_adc_digi_ctx - > ringbuf_hdl , & size , ticks_to_wait , length_max ) ;
if ( ! data ) {
ESP_LOGV ( ADC_TAG , " No data, increase timeout or reduce conv_num_each_intr " ) ;
ret = ESP_ERR_TIMEOUT ;
* out_length = 0 ;
return ret ;
}
memcpy ( buf , data , size ) ;
vRingbufferReturnItem ( s_adc_digi_ctx - > ringbuf_hdl , data ) ;
assert ( ( size % 4 ) = = 0 ) ;
* out_length = size ;
if ( s_adc_digi_ctx - > ringbuf_overflow_flag ) {
ret = ESP_ERR_INVALID_STATE ;
}
return ret ;
}
esp_err_t adc_digi_deinitialize ( void )
{
if ( ! s_adc_digi_ctx ) {
return ESP_ERR_INVALID_STATE ;
}
if ( s_adc_digi_ctx - > driver_start_flag ! = 0 ) {
ESP_LOGE ( ADC_TAG , " The driver is not stopped " ) ;
return ESP_ERR_INVALID_STATE ;
}
if ( s_adc_digi_ctx - > ringbuf_hdl ) {
vRingbufferDelete ( s_adc_digi_ctx - > ringbuf_hdl ) ;
s_adc_digi_ctx - > ringbuf_hdl = NULL ;
}
# if CONFIG_PM_ENABLE
if ( s_adc_digi_ctx - > pm_lock ) {
esp_pm_lock_delete ( s_adc_digi_ctx - > pm_lock ) ;
}
# endif //CONFIG_PM_ENABLE
free ( s_adc_digi_ctx - > rx_dma_buf ) ;
free ( s_adc_digi_ctx - > hal . rx_desc ) ;
free ( s_adc_digi_ctx - > digi_controller_config . adc_pattern ) ;
gdma_disconnect ( s_adc_digi_ctx - > rx_dma_channel ) ;
gdma_del_channel ( s_adc_digi_ctx - > rx_dma_channel ) ;
free ( s_adc_digi_ctx ) ;
s_adc_digi_ctx = NULL ;
periph_module_disable ( PERIPH_SARADC_MODULE ) ;
return ESP_OK ;
}
/*---------------------------------------------------------------
ADC Single Read Mode
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
static adc_atten_t s_atten1_single [ ADC1_CHANNEL_MAX ] ; //Array saving attenuate of each channel of ADC1, used by single read API
static adc_atten_t s_atten2_single [ ADC2_CHANNEL_MAX ] ; //Array saving attenuate of each channel of ADC2, used by single read API
esp_err_t adc_vref_to_gpio ( adc_unit_t adc_unit , gpio_num_t gpio )
{
esp_err_t ret ;
uint32_t channel = ADC2_CHANNEL_MAX ;
if ( adc_unit = = ADC_UNIT_2 ) {
for ( int i = 0 ; i < ADC2_CHANNEL_MAX ; i + + ) {
if ( gpio = = ADC_GET_IO_NUM ( ADC_NUM_2 , i ) ) {
channel = i ;
break ;
}
}
if ( channel = = ADC2_CHANNEL_MAX ) {
return ESP_ERR_INVALID_ARG ;
}
}
adc_power_acquire ( ) ;
if ( adc_unit & ADC_UNIT_1 ) {
ADC_ENTER_CRITICAL ( ) ;
adc_hal_vref_output ( ADC_NUM_1 , channel , true ) ;
ADC_EXIT_CRITICAL ( )
} else if ( adc_unit & ADC_UNIT_2 ) {
ADC_ENTER_CRITICAL ( ) ;
adc_hal_vref_output ( ADC_NUM_2 , channel , true ) ;
ADC_EXIT_CRITICAL ( )
}
ret = adc_digi_gpio_init ( ADC_NUM_2 , BIT ( channel ) ) ;
return ret ;
}
esp_err_t adc1_config_width ( adc_bits_width_t width_bit )
{
2021-06-09 22:28:23 -04:00
//On ESP32H2, the data width is always 12-bits.
2021-06-09 22:22:35 -04:00
if ( width_bit ! = ADC_WIDTH_BIT_12 ) {
return ESP_ERR_INVALID_ARG ;
}
return ESP_OK ;
}
esp_err_t adc1_config_channel_atten ( adc1_channel_t channel , adc_atten_t atten )
{
ADC_CHANNEL_CHECK ( ADC_NUM_1 , channel ) ;
ADC_CHECK ( atten < ADC_ATTEN_MAX , " ADC Atten Err " , ESP_ERR_INVALID_ARG ) ;
esp_err_t ret = ESP_OK ;
s_atten1_single [ channel ] = atten ;
ret = adc_digi_gpio_init ( ADC_NUM_1 , BIT ( channel ) ) ;
adc_hal_calibration_init ( ADC_NUM_1 ) ;
return ret ;
}
int adc1_get_raw ( adc1_channel_t channel )
{
int raw_out = 0 ;
periph_module_enable ( PERIPH_SARADC_MODULE ) ;
adc_power_acquire ( ) ;
SAR_ADC1_LOCK_ACQUIRE ( ) ;
adc_atten_t atten = s_atten1_single [ channel ] ;
uint32_t cal_val = adc_get_calibration_offset ( ADC_NUM_1 , channel , atten ) ;
adc_hal_set_calibration_param ( ADC_NUM_1 , cal_val ) ;
ADC_REG_LOCK_ENTER ( ) ;
adc_hal_set_atten ( ADC_NUM_2 , channel , atten ) ;
adc_hal_convert ( ADC_NUM_1 , channel , & raw_out ) ;
ADC_REG_LOCK_EXIT ( ) ;
SAR_ADC1_LOCK_RELEASE ( ) ;
adc_power_release ( ) ;
periph_module_disable ( PERIPH_SARADC_MODULE ) ;
return raw_out ;
}
esp_err_t adc2_config_channel_atten ( adc2_channel_t channel , adc_atten_t atten )
{
ADC_CHANNEL_CHECK ( ADC_NUM_2 , channel ) ;
ADC_CHECK ( atten < = ADC_ATTEN_11db , " ADC2 Atten Err " , ESP_ERR_INVALID_ARG ) ;
esp_err_t ret = ESP_OK ;
s_atten2_single [ channel ] = atten ;
ret = adc_digi_gpio_init ( ADC_NUM_2 , BIT ( channel ) ) ;
adc_hal_calibration_init ( ADC_NUM_2 ) ;
return ret ;
}
esp_err_t adc2_get_raw ( adc2_channel_t channel , adc_bits_width_t width_bit , int * raw_out )
{
2021-06-09 22:28:23 -04:00
//On ESP32H2, the data width is always 12-bits.
2021-06-09 22:22:35 -04:00
if ( width_bit ! = ADC_WIDTH_BIT_12 ) {
return ESP_ERR_INVALID_ARG ;
}
esp_err_t ret = ESP_OK ;
periph_module_enable ( PERIPH_SARADC_MODULE ) ;
adc_power_acquire ( ) ;
SAR_ADC2_LOCK_ACQUIRE ( ) ;
adc_atten_t atten = s_atten2_single [ channel ] ;
uint32_t cal_val = adc_get_calibration_offset ( ADC_NUM_2 , channel , atten ) ;
adc_hal_set_calibration_param ( ADC_NUM_2 , cal_val ) ;
ADC_REG_LOCK_ENTER ( ) ;
adc_hal_set_atten ( ADC_NUM_2 , channel , atten ) ;
ret = adc_hal_convert ( ADC_NUM_2 , channel , raw_out ) ;
ADC_REG_LOCK_EXIT ( ) ;
SAR_ADC2_LOCK_RELEASE ( ) ;
adc_power_release ( ) ;
periph_module_disable ( PERIPH_SARADC_MODULE ) ;
return ret ;
}
/*---------------------------------------------------------------
Digital controller setting
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
esp_err_t adc_digi_controller_config ( const adc_digi_config_t * config )
{
if ( ! s_adc_digi_ctx ) {
return ESP_ERR_INVALID_STATE ;
}
ADC_CHECK ( config - > sample_freq_hz < = SOC_ADC_SAMPLE_FREQ_THRES_HIGH & & config - > sample_freq_hz > = SOC_ADC_SAMPLE_FREQ_THRES_LOW , " ADC sampling frequency out of range " , ESP_ERR_INVALID_ARG ) ;
s_adc_digi_ctx - > digi_controller_config . conv_limit_en = config - > conv_limit_en ;
s_adc_digi_ctx - > digi_controller_config . conv_limit_num = config - > conv_limit_num ;
s_adc_digi_ctx - > digi_controller_config . adc_pattern_len = config - > adc_pattern_len ;
s_adc_digi_ctx - > digi_controller_config . sample_freq_hz = config - > sample_freq_hz ;
memcpy ( s_adc_digi_ctx - > digi_controller_config . adc_pattern , config - > adc_pattern , config - > adc_pattern_len * sizeof ( adc_digi_pattern_table_t ) ) ;
const int atten_uninitialised = 999 ;
s_adc_digi_ctx - > adc1_atten = atten_uninitialised ;
s_adc_digi_ctx - > adc2_atten = atten_uninitialised ;
s_adc_digi_ctx - > use_adc1 = 0 ;
s_adc_digi_ctx - > use_adc2 = 0 ;
for ( int i = 0 ; i < config - > adc_pattern_len ; i + + ) {
const adc_digi_pattern_table_t * pat = & config - > adc_pattern [ i ] ;
if ( pat - > unit = = ADC_NUM_1 ) {
s_adc_digi_ctx - > use_adc1 = 1 ;
if ( s_adc_digi_ctx - > adc1_atten = = atten_uninitialised ) {
s_adc_digi_ctx - > adc1_atten = pat - > atten ;
} else if ( s_adc_digi_ctx - > adc1_atten ! = pat - > atten ) {
return ESP_ERR_INVALID_ARG ;
}
} else if ( pat - > unit = = ADC_NUM_2 ) {
//See whether ADC2 will be used or not. If yes, the ``sar_adc2_mutex`` should be acquired in the continuous read driver
s_adc_digi_ctx - > use_adc2 = 1 ;
if ( s_adc_digi_ctx - > adc2_atten = = atten_uninitialised ) {
s_adc_digi_ctx - > adc2_atten = pat - > atten ;
} else if ( s_adc_digi_ctx - > adc2_atten ! = pat - > atten ) {
return ESP_ERR_INVALID_ARG ;
}
}
}
return ESP_OK ;
}
/*************************************/
/* Digital controller filter setting */
/*************************************/
esp_err_t adc_digi_filter_reset ( adc_digi_filter_idx_t idx )
{
ADC_ENTER_CRITICAL ( ) ;
adc_hal_digi_filter_reset ( idx ) ;
ADC_EXIT_CRITICAL ( ) ;
return ESP_OK ;
}
esp_err_t adc_digi_filter_set_config ( adc_digi_filter_idx_t idx , adc_digi_filter_t * config )
{
ADC_ENTER_CRITICAL ( ) ;
adc_hal_digi_filter_set_factor ( idx , config ) ;
ADC_EXIT_CRITICAL ( ) ;
return ESP_OK ;
}
esp_err_t adc_digi_filter_get_config ( adc_digi_filter_idx_t idx , adc_digi_filter_t * config )
{
ADC_ENTER_CRITICAL ( ) ;
adc_hal_digi_filter_get_factor ( idx , config ) ;
ADC_EXIT_CRITICAL ( ) ;
return ESP_OK ;
}
esp_err_t adc_digi_filter_enable ( adc_digi_filter_idx_t idx , bool enable )
{
ADC_ENTER_CRITICAL ( ) ;
adc_hal_digi_filter_enable ( idx , enable ) ;
ADC_EXIT_CRITICAL ( ) ;
return ESP_OK ;
}
/**************************************/
/* Digital controller monitor setting */
/**************************************/
esp_err_t adc_digi_monitor_set_config ( adc_digi_monitor_idx_t idx , adc_digi_monitor_t * config )
{
ADC_ENTER_CRITICAL ( ) ;
adc_hal_digi_monitor_config ( idx , config ) ;
ADC_EXIT_CRITICAL ( ) ;
return ESP_OK ;
}
esp_err_t adc_digi_monitor_enable ( adc_digi_monitor_idx_t idx , bool enable )
{
ADC_ENTER_CRITICAL ( ) ;
adc_hal_digi_monitor_enable ( idx , enable ) ;
ADC_EXIT_CRITICAL ( ) ;
return ESP_OK ;
}
/*---------------------------------------------------------------
RTC controller setting
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
static uint16_t s_adc_cali_param [ ADC_UNIT_MAX ] [ ADC_ATTEN_MAX ] = { } ;
//NOTE: according to calibration version, different types of lock may be taken during the process:
// 1. Semaphore when reading efuse
// 2. Lock (Spinlock, or Mutex) if we actually do ADC calibration in the future
//This function shoudn't be called inside critical section or ISR
static uint32_t adc_get_calibration_offset ( adc_ll_num_t adc_n , adc_channel_t channel , adc_atten_t atten )
{
const bool no_cal = false ;
if ( s_adc_cali_param [ adc_n ] [ atten ] ) {
return ( uint32_t ) s_adc_cali_param [ adc_n ] [ atten ] ;
}
if ( no_cal ) {
return 0 ; //indicating failure
}
// check if we can fetch the values from eFuse.
int version = esp_efuse_rtc_calib_get_ver ( ) ;
uint32_t init_code = 0 ;
if ( version = = 1 ) {
//for calibration v1, both ADC units use the same init code (calibrated by ADC1)
init_code = esp_efuse_rtc_calib_get_init_code ( version , atten ) ;
ESP_LOGD ( ADC_TAG , " Calib(V%d) ADC0, 1 atten=%d: %04X " , version , atten , init_code ) ;
s_adc_cali_param [ 0 ] [ atten ] = init_code ;
s_adc_cali_param [ 1 ] [ atten ] = init_code ;
} else {
adc_power_acquire ( ) ;
ADC_ENTER_CRITICAL ( ) ;
const bool internal_gnd = true ;
init_code = adc_hal_self_calibration ( adc_n , channel , atten , internal_gnd ) ;
ADC_EXIT_CRITICAL ( ) ;
adc_power_release ( ) ;
ESP_LOGD ( ADC_TAG , " Calib(V%d) ADC%d atten=%d: %04X " , version , adc_n , atten , init_code ) ;
s_adc_cali_param [ adc_n ] [ atten ] = init_code ;
}
return init_code ;
}
// Internal function to calibrate PWDET for WiFi
esp_err_t adc_cal_offset ( adc_ll_num_t adc_n , adc_channel_t channel , adc_atten_t atten )
{
adc_hal_calibration_init ( adc_n ) ;
uint32_t cal_val = adc_get_calibration_offset ( adc_n , channel , atten ) ;
ADC_ENTER_CRITICAL ( ) ;
adc_hal_set_calibration_param ( adc_n , cal_val ) ;
ADC_EXIT_CRITICAL ( ) ;
return ESP_OK ;
}