esp-idf/components/driver/esp32h2/adc.c

718 lines
23 KiB
C
Raw Normal View History

/*
* SPDX-FileCopyrightText: 2016-2021 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <esp_types.h>
#include <stdlib.h>
#include <ctype.h>
#include <string.h>
#include "sdkconfig.h"
#include "esp_intr_alloc.h"
#include "esp_log.h"
#include "esp_pm.h"
#include "sys/lock.h"
#include "freertos/FreeRTOS.h"
#include "freertos/semphr.h"
#include "freertos/timers.h"
#include "freertos/ringbuf.h"
#include "esp32c3/rom/ets_sys.h"
#include "driver/periph_ctrl.h"
#include "driver/gpio.h"
#include "driver/adc.h"
#include "hal/adc_types.h"
#include "hal/adc_hal.h"
#include "hal/dma_types.h"
#include "esp_efuse_rtc_calib.h"
#include "esp_private/gdma.h"
#define ADC_CHECK_RET(fun_ret) ({ \
if (fun_ret != ESP_OK) { \
ESP_LOGE(ADC_TAG,"%s(%d)",__FUNCTION__,__LINE__); \
return ESP_FAIL; \
} \
})
static const char *ADC_TAG = "ADC";
#define ADC_CHECK(a, str, ret_val) ({ \
if (!(a)) { \
ESP_LOGE(ADC_TAG,"%s(%d) :%s", __FUNCTION__, __LINE__, str); \
return (ret_val); \
} \
})
#define ADC_GET_IO_NUM(periph, channel) (adc_channel_io_map[periph][channel])
#define ADC_CHANNEL_CHECK(periph, channel) ADC_CHECK(channel < SOC_ADC_CHANNEL_NUM(periph), "ADC"#periph" channel error", ESP_ERR_INVALID_ARG)
extern portMUX_TYPE rtc_spinlock; //TODO: Will be placed in the appropriate position after the rtc module is finished.
#define ADC_ENTER_CRITICAL() portENTER_CRITICAL(&rtc_spinlock)
#define ADC_EXIT_CRITICAL() portEXIT_CRITICAL(&rtc_spinlock)
/**
* 1. sar_adc1_lock: this mutex lock is to protect the SARADC1 module.
* 2. sar_adc2_lock: this mutex lock is to protect the SARADC2 module. On C3, it is controlled by the digital controller
* and PWDET controller.
* 3. adc_reg_lock: this spin lock is to protect the shared registers used by ADC1 / ADC2 single read mode.
*/
static _lock_t sar_adc1_lock;
#define SAR_ADC1_LOCK_ACQUIRE() _lock_acquire(&sar_adc1_lock)
#define SAR_ADC1_LOCK_RELEASE() _lock_release(&sar_adc1_lock)
static _lock_t sar_adc2_lock;
#define SAR_ADC2_LOCK_ACQUIRE() _lock_acquire(&sar_adc2_lock)
#define SAR_ADC2_LOCK_RELEASE() _lock_release(&sar_adc2_lock)
portMUX_TYPE adc_reg_lock = portMUX_INITIALIZER_UNLOCKED;
#define ADC_REG_LOCK_ENTER() portENTER_CRITICAL(&adc_reg_lock)
#define ADC_REG_LOCK_EXIT() portEXIT_CRITICAL(&adc_reg_lock)
#define INTERNAL_BUF_NUM 5
#define IN_SUC_EOF_BIT GDMA_LL_EVENT_RX_SUC_EOF
/*---------------------------------------------------------------
Digital Controller Context
---------------------------------------------------------------*/
typedef struct adc_digi_context_t {
uint8_t *rx_dma_buf; //dma buffer
adc_hal_context_t hal; //hal context
gdma_channel_handle_t rx_dma_channel; //dma rx channel handle
RingbufHandle_t ringbuf_hdl; //RX ringbuffer handler
intptr_t rx_eof_desc_addr; //eof descriptor address of RX channel
bool ringbuf_overflow_flag; //1: ringbuffer overflow
bool driver_start_flag; //1: driver is started; 0: driver is stoped
bool use_adc1; //1: ADC unit1 will be used; 0: ADC unit1 won't be used.
bool use_adc2; //1: ADC unit2 will be used; 0: ADC unit2 won't be used. This determines whether to acquire sar_adc2_mutex lock or not.
adc_atten_t adc1_atten; //Attenuation for ADC1. On this chip each ADC can only support one attenuation.
adc_atten_t adc2_atten; //Attenuation for ADC2. On this chip each ADC can only support one attenuation.
adc_digi_config_t digi_controller_config; //Digital Controller Configuration
esp_pm_lock_handle_t pm_lock; //For power management
} adc_digi_context_t;
static adc_digi_context_t *s_adc_digi_ctx = NULL;
static uint32_t adc_get_calibration_offset(adc_ll_num_t adc_n, adc_channel_t chan, adc_atten_t atten);
/*---------------------------------------------------------------
ADC Continuous Read Mode (via DMA)
---------------------------------------------------------------*/
static IRAM_ATTR bool adc_dma_in_suc_eof_callback(gdma_channel_handle_t dma_chan, gdma_event_data_t *event_data, void *user_data);
static int8_t adc_digi_get_io_num(uint8_t adc_unit, uint8_t adc_channel)
{
return adc_channel_io_map[adc_unit][adc_channel];
}
static esp_err_t adc_digi_gpio_init(adc_unit_t adc_unit, uint16_t channel_mask)
{
esp_err_t ret = ESP_OK;
uint64_t gpio_mask = 0;
uint32_t n = 0;
int8_t io = 0;
while (channel_mask) {
if (channel_mask & 0x1) {
io = adc_digi_get_io_num(adc_unit, n);
if (io < 0) {
return ESP_ERR_INVALID_ARG;
}
gpio_mask |= BIT64(io);
}
channel_mask = channel_mask >> 1;
n++;
}
gpio_config_t cfg = {
.pin_bit_mask = gpio_mask,
.mode = GPIO_MODE_DISABLE,
};
ret = gpio_config(&cfg);
return ret;
}
esp_err_t adc_digi_initialize(const adc_digi_init_config_t *init_config)
{
esp_err_t ret = ESP_OK;
s_adc_digi_ctx = calloc(1, sizeof(adc_digi_context_t));
if (s_adc_digi_ctx == NULL) {
ret = ESP_ERR_NO_MEM;
goto cleanup;
}
//ringbuffer
s_adc_digi_ctx->ringbuf_hdl = xRingbufferCreate(init_config->max_store_buf_size, RINGBUF_TYPE_BYTEBUF);
if (!s_adc_digi_ctx->ringbuf_hdl) {
ret = ESP_ERR_NO_MEM;
goto cleanup;
}
//malloc internal buffer used by DMA
s_adc_digi_ctx->rx_dma_buf = heap_caps_calloc(1, init_config->conv_num_each_intr * INTERNAL_BUF_NUM, MALLOC_CAP_INTERNAL);
if (!s_adc_digi_ctx->rx_dma_buf) {
ret = ESP_ERR_NO_MEM;
goto cleanup;
}
//malloc dma descriptor
s_adc_digi_ctx->hal.rx_desc = heap_caps_calloc(1, (sizeof(dma_descriptor_t)) * INTERNAL_BUF_NUM, MALLOC_CAP_DMA);
if (!s_adc_digi_ctx->hal.rx_desc) {
ret = ESP_ERR_NO_MEM;
goto cleanup;
}
//malloc pattern table
s_adc_digi_ctx->digi_controller_config.adc_pattern = calloc(1, SOC_ADC_PATT_LEN_MAX * sizeof(adc_digi_pattern_table_t));
if (!s_adc_digi_ctx->digi_controller_config.adc_pattern) {
ret = ESP_ERR_NO_MEM;
goto cleanup;
}
#if CONFIG_PM_ENABLE
ret = esp_pm_lock_create(ESP_PM_APB_FREQ_MAX, 0, "adc_dma", &s_adc_digi_ctx->pm_lock);
if (ret != ESP_OK) {
goto cleanup;
}
#endif //CONFIG_PM_ENABLE
//init gpio pins
if (init_config->adc1_chan_mask) {
ret = adc_digi_gpio_init(ADC_NUM_1, init_config->adc1_chan_mask);
if (ret != ESP_OK) {
goto cleanup;
}
}
if (init_config->adc2_chan_mask) {
ret = adc_digi_gpio_init(ADC_NUM_2, init_config->adc2_chan_mask);
if (ret != ESP_OK) {
goto cleanup;
}
}
//alloc rx gdma channel
gdma_channel_alloc_config_t rx_alloc_config = {
.direction = GDMA_CHANNEL_DIRECTION_RX,
};
ret = gdma_new_channel(&rx_alloc_config, &s_adc_digi_ctx->rx_dma_channel);
if (ret != ESP_OK) {
goto cleanup;
}
gdma_connect(s_adc_digi_ctx->rx_dma_channel, GDMA_MAKE_TRIGGER(GDMA_TRIG_PERIPH_ADC, 0));
gdma_strategy_config_t strategy_config = {
.auto_update_desc = true,
.owner_check = true
};
gdma_apply_strategy(s_adc_digi_ctx->rx_dma_channel, &strategy_config);
gdma_rx_event_callbacks_t cbs = {
.on_recv_eof = adc_dma_in_suc_eof_callback
};
gdma_register_rx_event_callbacks(s_adc_digi_ctx->rx_dma_channel, &cbs, s_adc_digi_ctx);
int dma_chan;
gdma_get_channel_id(s_adc_digi_ctx->rx_dma_channel, &dma_chan);
adc_hal_config_t config = {
.desc_max_num = INTERNAL_BUF_NUM,
.dma_chan = dma_chan,
.eof_num = init_config->conv_num_each_intr / ADC_HAL_DATA_LEN_PER_CONV
};
adc_hal_context_config(&s_adc_digi_ctx->hal, &config);
//enable SARADC module clock
periph_module_enable(PERIPH_SARADC_MODULE);
adc_hal_calibration_init(ADC_NUM_1);
adc_hal_calibration_init(ADC_NUM_2);
return ret;
cleanup:
adc_digi_deinitialize();
return ret;
}
static IRAM_ATTR bool adc_dma_intr(adc_digi_context_t *adc_digi_ctx);
static IRAM_ATTR bool adc_dma_in_suc_eof_callback(gdma_channel_handle_t dma_chan, gdma_event_data_t *event_data, void *user_data)
{
assert(event_data);
adc_digi_context_t *adc_digi_ctx = (adc_digi_context_t *)user_data;
adc_digi_ctx->rx_eof_desc_addr = event_data->rx_eof_desc_addr;
return adc_dma_intr(adc_digi_ctx);
}
static IRAM_ATTR bool adc_dma_intr(adc_digi_context_t *adc_digi_ctx)
{
portBASE_TYPE taskAwoken = 0;
BaseType_t ret;
adc_hal_dma_desc_status_t status = false;
dma_descriptor_t *current_desc = NULL;
while (1) {
status = adc_hal_get_reading_result(&adc_digi_ctx->hal, adc_digi_ctx->rx_eof_desc_addr, &current_desc);
if (status != ADC_HAL_DMA_DESC_VALID) {
break;
}
ret = xRingbufferSendFromISR(adc_digi_ctx->ringbuf_hdl, current_desc->buffer, current_desc->dw0.length, &taskAwoken);
if (ret == pdFALSE) {
//ringbuffer overflow
adc_digi_ctx->ringbuf_overflow_flag = 1;
}
}
if (status == ADC_HAL_DMA_DESC_NULL) {
//start next turns of dma operation
adc_hal_digi_rxdma_start(&adc_digi_ctx->hal, adc_digi_ctx->rx_dma_buf);
}
return (taskAwoken == pdTRUE);
}
esp_err_t adc_digi_start(void)
{
if (s_adc_digi_ctx->driver_start_flag != 0) {
ESP_LOGE(ADC_TAG, "The driver is already started");
return ESP_ERR_INVALID_STATE;
}
adc_power_acquire();
//reset flags
s_adc_digi_ctx->ringbuf_overflow_flag = 0;
s_adc_digi_ctx->driver_start_flag = 1;
if (s_adc_digi_ctx->use_adc1) {
SAR_ADC1_LOCK_ACQUIRE();
}
if (s_adc_digi_ctx->use_adc2) {
SAR_ADC2_LOCK_ACQUIRE();
}
#if CONFIG_PM_ENABLE
// Lock APB frequency while ADC driver is in use
esp_pm_lock_acquire(s_adc_digi_ctx->pm_lock);
#endif
adc_arbiter_t config = ADC_ARBITER_CONFIG_DEFAULT();
if (s_adc_digi_ctx->use_adc1) {
uint32_t cal_val = adc_get_calibration_offset(ADC_NUM_1, ADC_CHANNEL_MAX, s_adc_digi_ctx->adc1_atten);
adc_hal_set_calibration_param(ADC_NUM_1, cal_val);
}
if (s_adc_digi_ctx->use_adc2) {
uint32_t cal_val = adc_get_calibration_offset(ADC_NUM_2, ADC_CHANNEL_MAX, s_adc_digi_ctx->adc2_atten);
adc_hal_set_calibration_param(ADC_NUM_2, cal_val);
}
adc_hal_init();
adc_hal_arbiter_config(&config);
adc_hal_digi_init(&s_adc_digi_ctx->hal);
adc_hal_digi_controller_config(&s_adc_digi_ctx->digi_controller_config);
//reset ADC and DMA
adc_hal_fifo_reset(&s_adc_digi_ctx->hal);
//start DMA
adc_hal_digi_rxdma_start(&s_adc_digi_ctx->hal, s_adc_digi_ctx->rx_dma_buf);
//start ADC
adc_hal_digi_start(&s_adc_digi_ctx->hal);
return ESP_OK;
}
esp_err_t adc_digi_stop(void)
{
if (s_adc_digi_ctx->driver_start_flag != 1) {
ESP_LOGE(ADC_TAG, "The driver is already stopped");
return ESP_ERR_INVALID_STATE;
}
s_adc_digi_ctx->driver_start_flag = 0;
//disable the in suc eof intrrupt
adc_hal_digi_dis_intr(&s_adc_digi_ctx->hal, IN_SUC_EOF_BIT);
//clear the in suc eof interrupt
adc_hal_digi_clr_intr(&s_adc_digi_ctx->hal, IN_SUC_EOF_BIT);
//stop ADC
adc_hal_digi_stop(&s_adc_digi_ctx->hal);
//stop DMA
adc_hal_digi_rxdma_stop(&s_adc_digi_ctx->hal);
adc_hal_digi_deinit();
#if CONFIG_PM_ENABLE
if (s_adc_digi_ctx->pm_lock) {
esp_pm_lock_release(s_adc_digi_ctx->pm_lock);
}
#endif //CONFIG_PM_ENABLE
if (s_adc_digi_ctx->use_adc1) {
SAR_ADC1_LOCK_RELEASE();
}
if (s_adc_digi_ctx->use_adc2) {
SAR_ADC2_LOCK_RELEASE();
}
adc_power_release();
return ESP_OK;
}
esp_err_t adc_digi_read_bytes(uint8_t *buf, uint32_t length_max, uint32_t *out_length, uint32_t timeout_ms)
{
TickType_t ticks_to_wait;
esp_err_t ret = ESP_OK;
uint8_t *data = NULL;
size_t size = 0;
ticks_to_wait = timeout_ms / portTICK_RATE_MS;
if (timeout_ms == ADC_MAX_DELAY) {
ticks_to_wait = portMAX_DELAY;
}
data = xRingbufferReceiveUpTo(s_adc_digi_ctx->ringbuf_hdl, &size, ticks_to_wait, length_max);
if (!data) {
ESP_LOGV(ADC_TAG, "No data, increase timeout or reduce conv_num_each_intr");
ret = ESP_ERR_TIMEOUT;
*out_length = 0;
return ret;
}
memcpy(buf, data, size);
vRingbufferReturnItem(s_adc_digi_ctx->ringbuf_hdl, data);
assert((size % 4) == 0);
*out_length = size;
if (s_adc_digi_ctx->ringbuf_overflow_flag) {
ret = ESP_ERR_INVALID_STATE;
}
return ret;
}
esp_err_t adc_digi_deinitialize(void)
{
if (!s_adc_digi_ctx) {
return ESP_ERR_INVALID_STATE;
}
if (s_adc_digi_ctx->driver_start_flag != 0) {
ESP_LOGE(ADC_TAG, "The driver is not stopped");
return ESP_ERR_INVALID_STATE;
}
if (s_adc_digi_ctx->ringbuf_hdl) {
vRingbufferDelete(s_adc_digi_ctx->ringbuf_hdl);
s_adc_digi_ctx->ringbuf_hdl = NULL;
}
#if CONFIG_PM_ENABLE
if (s_adc_digi_ctx->pm_lock) {
esp_pm_lock_delete(s_adc_digi_ctx->pm_lock);
}
#endif //CONFIG_PM_ENABLE
free(s_adc_digi_ctx->rx_dma_buf);
free(s_adc_digi_ctx->hal.rx_desc);
free(s_adc_digi_ctx->digi_controller_config.adc_pattern);
gdma_disconnect(s_adc_digi_ctx->rx_dma_channel);
gdma_del_channel(s_adc_digi_ctx->rx_dma_channel);
free(s_adc_digi_ctx);
s_adc_digi_ctx = NULL;
periph_module_disable(PERIPH_SARADC_MODULE);
return ESP_OK;
}
/*---------------------------------------------------------------
ADC Single Read Mode
---------------------------------------------------------------*/
static adc_atten_t s_atten1_single[ADC1_CHANNEL_MAX]; //Array saving attenuate of each channel of ADC1, used by single read API
static adc_atten_t s_atten2_single[ADC2_CHANNEL_MAX]; //Array saving attenuate of each channel of ADC2, used by single read API
esp_err_t adc_vref_to_gpio(adc_unit_t adc_unit, gpio_num_t gpio)
{
esp_err_t ret;
uint32_t channel = ADC2_CHANNEL_MAX;
if (adc_unit == ADC_UNIT_2) {
for (int i = 0; i < ADC2_CHANNEL_MAX; i++) {
if (gpio == ADC_GET_IO_NUM(ADC_NUM_2, i)) {
channel = i;
break;
}
}
if (channel == ADC2_CHANNEL_MAX) {
return ESP_ERR_INVALID_ARG;
}
}
adc_power_acquire();
if (adc_unit & ADC_UNIT_1) {
ADC_ENTER_CRITICAL();
adc_hal_vref_output(ADC_NUM_1, channel, true);
ADC_EXIT_CRITICAL()
} else if (adc_unit & ADC_UNIT_2) {
ADC_ENTER_CRITICAL();
adc_hal_vref_output(ADC_NUM_2, channel, true);
ADC_EXIT_CRITICAL()
}
ret = adc_digi_gpio_init(ADC_NUM_2, BIT(channel));
return ret;
}
esp_err_t adc1_config_width(adc_bits_width_t width_bit)
{
//On ESP32C3, the data width is always 12-bits.
if (width_bit != ADC_WIDTH_BIT_12) {
return ESP_ERR_INVALID_ARG;
}
return ESP_OK;
}
esp_err_t adc1_config_channel_atten(adc1_channel_t channel, adc_atten_t atten)
{
ADC_CHANNEL_CHECK(ADC_NUM_1, channel);
ADC_CHECK(atten < ADC_ATTEN_MAX, "ADC Atten Err", ESP_ERR_INVALID_ARG);
esp_err_t ret = ESP_OK;
s_atten1_single[channel] = atten;
ret = adc_digi_gpio_init(ADC_NUM_1, BIT(channel));
adc_hal_calibration_init(ADC_NUM_1);
return ret;
}
int adc1_get_raw(adc1_channel_t channel)
{
int raw_out = 0;
periph_module_enable(PERIPH_SARADC_MODULE);
adc_power_acquire();
SAR_ADC1_LOCK_ACQUIRE();
adc_atten_t atten = s_atten1_single[channel];
uint32_t cal_val = adc_get_calibration_offset(ADC_NUM_1, channel, atten);
adc_hal_set_calibration_param(ADC_NUM_1, cal_val);
ADC_REG_LOCK_ENTER();
adc_hal_set_atten(ADC_NUM_2, channel, atten);
adc_hal_convert(ADC_NUM_1, channel, &raw_out);
ADC_REG_LOCK_EXIT();
SAR_ADC1_LOCK_RELEASE();
adc_power_release();
periph_module_disable(PERIPH_SARADC_MODULE);
return raw_out;
}
esp_err_t adc2_config_channel_atten(adc2_channel_t channel, adc_atten_t atten)
{
ADC_CHANNEL_CHECK(ADC_NUM_2, channel);
ADC_CHECK(atten <= ADC_ATTEN_11db, "ADC2 Atten Err", ESP_ERR_INVALID_ARG);
esp_err_t ret = ESP_OK;
s_atten2_single[channel] = atten;
ret = adc_digi_gpio_init(ADC_NUM_2, BIT(channel));
adc_hal_calibration_init(ADC_NUM_2);
return ret;
}
esp_err_t adc2_get_raw(adc2_channel_t channel, adc_bits_width_t width_bit, int *raw_out)
{
//On ESP32C3, the data width is always 12-bits.
if (width_bit != ADC_WIDTH_BIT_12) {
return ESP_ERR_INVALID_ARG;
}
esp_err_t ret = ESP_OK;
periph_module_enable(PERIPH_SARADC_MODULE);
adc_power_acquire();
SAR_ADC2_LOCK_ACQUIRE();
adc_atten_t atten = s_atten2_single[channel];
uint32_t cal_val = adc_get_calibration_offset(ADC_NUM_2, channel, atten);
adc_hal_set_calibration_param(ADC_NUM_2, cal_val);
ADC_REG_LOCK_ENTER();
adc_hal_set_atten(ADC_NUM_2, channel, atten);
ret = adc_hal_convert(ADC_NUM_2, channel, raw_out);
ADC_REG_LOCK_EXIT();
SAR_ADC2_LOCK_RELEASE();
adc_power_release();
periph_module_disable(PERIPH_SARADC_MODULE);
return ret;
}
/*---------------------------------------------------------------
Digital controller setting
---------------------------------------------------------------*/
esp_err_t adc_digi_controller_config(const adc_digi_config_t *config)
{
if (!s_adc_digi_ctx) {
return ESP_ERR_INVALID_STATE;
}
ADC_CHECK(config->sample_freq_hz <= SOC_ADC_SAMPLE_FREQ_THRES_HIGH && config->sample_freq_hz >= SOC_ADC_SAMPLE_FREQ_THRES_LOW, "ADC sampling frequency out of range", ESP_ERR_INVALID_ARG);
s_adc_digi_ctx->digi_controller_config.conv_limit_en = config->conv_limit_en;
s_adc_digi_ctx->digi_controller_config.conv_limit_num = config->conv_limit_num;
s_adc_digi_ctx->digi_controller_config.adc_pattern_len = config->adc_pattern_len;
s_adc_digi_ctx->digi_controller_config.sample_freq_hz = config->sample_freq_hz;
memcpy(s_adc_digi_ctx->digi_controller_config.adc_pattern, config->adc_pattern, config->adc_pattern_len * sizeof(adc_digi_pattern_table_t));
const int atten_uninitialised = 999;
s_adc_digi_ctx->adc1_atten = atten_uninitialised;
s_adc_digi_ctx->adc2_atten = atten_uninitialised;
s_adc_digi_ctx->use_adc1 = 0;
s_adc_digi_ctx->use_adc2 = 0;
for (int i = 0; i < config->adc_pattern_len; i++) {
const adc_digi_pattern_table_t *pat = &config->adc_pattern[i];
if (pat->unit == ADC_NUM_1) {
s_adc_digi_ctx->use_adc1 = 1;
if (s_adc_digi_ctx->adc1_atten == atten_uninitialised) {
s_adc_digi_ctx->adc1_atten = pat->atten;
} else if (s_adc_digi_ctx->adc1_atten != pat->atten) {
return ESP_ERR_INVALID_ARG;
}
} else if (pat->unit == ADC_NUM_2) {
//See whether ADC2 will be used or not. If yes, the ``sar_adc2_mutex`` should be acquired in the continuous read driver
s_adc_digi_ctx->use_adc2 = 1;
if (s_adc_digi_ctx->adc2_atten == atten_uninitialised) {
s_adc_digi_ctx->adc2_atten = pat->atten;
} else if (s_adc_digi_ctx->adc2_atten != pat->atten) {
return ESP_ERR_INVALID_ARG;
}
}
}
return ESP_OK;
}
/*************************************/
/* Digital controller filter setting */
/*************************************/
esp_err_t adc_digi_filter_reset(adc_digi_filter_idx_t idx)
{
ADC_ENTER_CRITICAL();
adc_hal_digi_filter_reset(idx);
ADC_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t adc_digi_filter_set_config(adc_digi_filter_idx_t idx, adc_digi_filter_t *config)
{
ADC_ENTER_CRITICAL();
adc_hal_digi_filter_set_factor(idx, config);
ADC_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t adc_digi_filter_get_config(adc_digi_filter_idx_t idx, adc_digi_filter_t *config)
{
ADC_ENTER_CRITICAL();
adc_hal_digi_filter_get_factor(idx, config);
ADC_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t adc_digi_filter_enable(adc_digi_filter_idx_t idx, bool enable)
{
ADC_ENTER_CRITICAL();
adc_hal_digi_filter_enable(idx, enable);
ADC_EXIT_CRITICAL();
return ESP_OK;
}
/**************************************/
/* Digital controller monitor setting */
/**************************************/
esp_err_t adc_digi_monitor_set_config(adc_digi_monitor_idx_t idx, adc_digi_monitor_t *config)
{
ADC_ENTER_CRITICAL();
adc_hal_digi_monitor_config(idx, config);
ADC_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t adc_digi_monitor_enable(adc_digi_monitor_idx_t idx, bool enable)
{
ADC_ENTER_CRITICAL();
adc_hal_digi_monitor_enable(idx, enable);
ADC_EXIT_CRITICAL();
return ESP_OK;
}
/*---------------------------------------------------------------
RTC controller setting
---------------------------------------------------------------*/
static uint16_t s_adc_cali_param[ADC_UNIT_MAX][ADC_ATTEN_MAX] = {};
//NOTE: according to calibration version, different types of lock may be taken during the process:
// 1. Semaphore when reading efuse
// 2. Lock (Spinlock, or Mutex) if we actually do ADC calibration in the future
//This function shoudn't be called inside critical section or ISR
static uint32_t adc_get_calibration_offset(adc_ll_num_t adc_n, adc_channel_t channel, adc_atten_t atten)
{
const bool no_cal = false;
if (s_adc_cali_param[adc_n][atten]) {
return (uint32_t)s_adc_cali_param[adc_n][atten];
}
if (no_cal) {
return 0; //indicating failure
}
// check if we can fetch the values from eFuse.
int version = esp_efuse_rtc_calib_get_ver();
uint32_t init_code = 0;
if (version == 1) {
//for calibration v1, both ADC units use the same init code (calibrated by ADC1)
init_code = esp_efuse_rtc_calib_get_init_code(version, atten);
ESP_LOGD(ADC_TAG, "Calib(V%d) ADC0, 1 atten=%d: %04X", version, atten, init_code);
s_adc_cali_param[0][atten] = init_code;
s_adc_cali_param[1][atten] = init_code;
} else {
adc_power_acquire();
ADC_ENTER_CRITICAL();
const bool internal_gnd = true;
init_code = adc_hal_self_calibration(adc_n, channel, atten, internal_gnd);
ADC_EXIT_CRITICAL();
adc_power_release();
ESP_LOGD(ADC_TAG, "Calib(V%d) ADC%d atten=%d: %04X", version, adc_n, atten, init_code);
s_adc_cali_param[adc_n][atten] = init_code;
}
return init_code;
}
// Internal function to calibrate PWDET for WiFi
esp_err_t adc_cal_offset(adc_ll_num_t adc_n, adc_channel_t channel, adc_atten_t atten)
{
adc_hal_calibration_init(adc_n);
uint32_t cal_val = adc_get_calibration_offset(adc_n, channel, atten);
ADC_ENTER_CRITICAL();
adc_hal_set_calibration_param(adc_n, cal_val);
ADC_EXIT_CRITICAL();
return ESP_OK;
}