esp-idf/components/esp32s2/sleep_modes.c

686 lines
24 KiB
C
Raw Normal View History

2019-05-10 11:34:06 +08:00
// Copyright 2015-2017 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stddef.h>
#include <sys/lock.h>
#include <sys/param.h>
#include "esp_attr.h"
#include "esp_sleep.h"
#include "esp_private/esp_timer_private.h"
2019-05-10 11:34:06 +08:00
#include "esp_log.h"
2020-01-17 11:47:08 +08:00
#include "esp32s2/clk.h"
2019-05-10 11:34:06 +08:00
#include "esp_newlib.h"
#include "esp_spi_flash.h"
2020-01-17 11:47:08 +08:00
#include "esp32s2/rom/cache.h"
#include "esp32s2/rom/rtc.h"
#include "esp32s2/rom/uart.h"
#include "esp32s2/rom/ets_sys.h"
2019-05-10 11:34:06 +08:00
#include "soc/cpu.h"
#include "soc/rtc.h"
#include "soc/spi_periph.h"
2019-05-10 11:34:06 +08:00
#include "soc/dport_reg.h"
2019-12-26 15:25:24 +08:00
#include "soc/extmem_reg.h"
#include "soc/soc_memory_layout.h"
#include "soc/uart_caps.h"
#include "hal/wdt_hal.h"
2019-05-10 11:34:06 +08:00
#include "driver/rtc_io.h"
#include "driver/uart.h"
2019-05-10 11:34:06 +08:00
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "sdkconfig.h"
// If light sleep time is less than that, don't power down flash
#define FLASH_PD_MIN_SLEEP_TIME_US 2000
// Time from VDD_SDIO power up to first flash read in ROM code
#define VDD_SDIO_POWERUP_TO_FLASH_READ_US 700
// Extra time it takes to enter and exit light sleep and deep sleep
// For deep sleep, this is until the wake stub runs (not the app).
#ifdef CONFIG_ESP32S2_RTC_CLK_SRC_EXT_CRYS
#define LIGHT_SLEEP_TIME_OVERHEAD_US (650 + 30 * 240 / CONFIG_ESP32S2_DEFAULT_CPU_FREQ_MHZ)
#define DEEP_SLEEP_TIME_OVERHEAD_US (650 + 100 * 240 / CONFIG_ESP32S2_DEFAULT_CPU_FREQ_MHZ)
2019-05-10 11:34:06 +08:00
#else
#define LIGHT_SLEEP_TIME_OVERHEAD_US (250 + 30 * 240 / CONFIG_ESP32S2_DEFAULT_CPU_FREQ_MHZ)
#define DEEP_SLEEP_TIME_OVERHEAD_US (250 + 100 * 240 / CONFIG_ESP32S2_DEFAULT_CPU_FREQ_MHZ)
#endif // CONFIG_ESP32S2_RTC_CLK_SRC_EXT_CRYS
2019-05-10 11:34:06 +08:00
// Minimal amount of time we can sleep for
#define LIGHT_SLEEP_MIN_TIME_US 200
#define CHECK_SOURCE(source, value, mask) ((s_config.wakeup_triggers & mask) && \
(source == value))
/**
* Internal structure which holds all requested deep sleep parameters
*/
typedef struct {
esp_sleep_pd_option_t pd_options[ESP_PD_DOMAIN_MAX];
uint64_t sleep_duration;
uint32_t wakeup_triggers : 11;
uint32_t ext1_trigger_mode : 1;
uint32_t ext1_rtc_gpio_mask : 18;
uint32_t ext0_trigger_level : 1;
uint32_t ext0_rtc_gpio_num : 5;
uint32_t sleep_time_adjustment;
uint64_t rtc_ticks_at_sleep_start;
} sleep_config_t;
static sleep_config_t s_config = {
.pd_options = { ESP_PD_OPTION_AUTO, ESP_PD_OPTION_AUTO, ESP_PD_OPTION_AUTO },
.wakeup_triggers = 0
};
/* Internal variable used to track if light sleep wakeup sources are to be
expected when determining wakeup cause. */
static bool s_light_sleep_wakeup = false;
2019-05-10 11:34:06 +08:00
/* Updating RTC_MEMORY_CRC_REG register via set_rtc_memory_crc()
is not thread-safe. */
static _lock_t lock_rtc_memory_crc;
static const char* TAG = "sleep";
2019-08-12 12:06:07 +10:00
static uint32_t get_power_down_flags(void);
static void ext0_wakeup_prepare(void);
static void ext1_wakeup_prepare(void);
static void timer_wakeup_prepare(void);
static void touch_wakeup_prepare(void);
2019-05-10 11:34:06 +08:00
/* Wake from deep sleep stub
See esp_deepsleep.h esp_wake_deep_sleep() comments for details.
*/
esp_deep_sleep_wake_stub_fn_t esp_get_deep_sleep_wake_stub(void)
{
_lock_acquire(&lock_rtc_memory_crc);
uint32_t stored_crc = REG_READ(RTC_MEMORY_CRC_REG);
set_rtc_memory_crc();
uint32_t calc_crc = REG_READ(RTC_MEMORY_CRC_REG);
REG_WRITE(RTC_MEMORY_CRC_REG, stored_crc);
_lock_release(&lock_rtc_memory_crc);
if (stored_crc != calc_crc) {
2019-05-10 11:34:06 +08:00
return NULL;
}
esp_deep_sleep_wake_stub_fn_t stub_ptr = (esp_deep_sleep_wake_stub_fn_t) REG_READ(RTC_ENTRY_ADDR_REG);
if (!esp_ptr_executable(stub_ptr)) {
return NULL;
}
return stub_ptr;
2019-05-10 11:34:06 +08:00
}
void esp_set_deep_sleep_wake_stub(esp_deep_sleep_wake_stub_fn_t new_stub)
{
_lock_acquire(&lock_rtc_memory_crc);
REG_WRITE(RTC_ENTRY_ADDR_REG, (uint32_t)new_stub);
set_rtc_memory_crc();
_lock_release(&lock_rtc_memory_crc);
}
void RTC_IRAM_ATTR esp_default_wake_deep_sleep(void) {
/* Clear MMU for CPU 0 */
2019-12-26 15:25:24 +08:00
REG_SET_BIT(EXTMEM_CACHE_DBG_INT_ENA_REG, EXTMEM_CACHE_DBG_EN);
2019-05-10 11:34:06 +08:00
}
void __attribute__((weak, alias("esp_default_wake_deep_sleep"))) esp_wake_deep_sleep(void);
void esp_deep_sleep(uint64_t time_in_us)
{
esp_sleep_enable_timer_wakeup(time_in_us);
esp_deep_sleep_start();
}
static void IRAM_ATTR flush_uarts(void)
{
for (int i = 0; i < SOC_UART_NUM; ++i) {
uart_tx_wait_idle(i);
}
}
2019-08-12 12:06:07 +10:00
static void IRAM_ATTR suspend_uarts(void)
2019-05-10 11:34:06 +08:00
{
for (int i = 0; i < SOC_UART_NUM; ++i) {
2019-05-10 11:34:06 +08:00
uart_tx_wait_idle(i);
/* Note: Set `UART_FORCE_XOFF` can't stop new Tx request. */
2019-05-10 11:34:06 +08:00
}
}
2019-08-12 12:06:07 +10:00
static void IRAM_ATTR resume_uarts(void)
2019-05-10 11:34:06 +08:00
{
/* Note: Set `UART_FORCE_XOFF` can't stop new Tx request. */
2019-05-10 11:34:06 +08:00
}
static uint32_t IRAM_ATTR esp_sleep_start(uint32_t pd_flags)
{
// Stop UART output so that output is not lost due to APB frequency change.
// For light sleep, suspend UART output — it will resume after wakeup.
// For deep sleep, wait for the contents of UART FIFO to be sent.
if (pd_flags & RTC_SLEEP_PD_DIG) {
flush_uarts();
} else {
suspend_uarts();
}
2019-05-10 11:34:06 +08:00
// Save current frequency and switch to XTAL
// Save current frequency and switch to XTAL
rtc_cpu_freq_config_t cpu_freq_config;
rtc_clk_cpu_freq_get_config(&cpu_freq_config);
rtc_clk_cpu_freq_set_xtal();
2019-05-10 11:34:06 +08:00
// Configure pins for external wakeup
if (s_config.wakeup_triggers & RTC_EXT0_TRIG_EN) {
ext0_wakeup_prepare();
}
if (s_config.wakeup_triggers & RTC_EXT1_TRIG_EN) {
ext1_wakeup_prepare();
}
// Enable ULP wakeup
if (s_config.wakeup_triggers & RTC_ULP_TRIG_EN) {
2020-01-17 11:47:08 +08:00
// no-op for esp32s2
2019-05-10 11:34:06 +08:00
}
// Enable Touch wakeup
if (s_config.wakeup_triggers & RTC_TOUCH_TRIG_EN) {
touch_wakeup_prepare();
}
2019-05-10 11:34:06 +08:00
// Enter sleep
rtc_sleep_config_t config = RTC_SLEEP_CONFIG_DEFAULT(pd_flags);
rtc_sleep_init(config);
// Configure timer wakeup
if ((s_config.wakeup_triggers & RTC_TIMER_TRIG_EN) &&
s_config.sleep_duration > 0) {
timer_wakeup_prepare();
}
2019-12-27 17:08:28 +08:00
uint32_t result = rtc_sleep_start(s_config.wakeup_triggers, 0, 1);
2019-05-10 11:34:06 +08:00
// Restore CPU frequency
rtc_clk_cpu_freq_set_config(&cpu_freq_config);
2019-05-10 11:34:06 +08:00
// re-enable UART output
resume_uarts();
return result;
}
2019-08-12 12:06:07 +10:00
void IRAM_ATTR esp_deep_sleep_start(void)
2019-05-10 11:34:06 +08:00
{
// record current RTC time
s_config.rtc_ticks_at_sleep_start = rtc_time_get();
esp_sync_counters_rtc_and_frc();
// Configure wake stub
if (esp_get_deep_sleep_wake_stub() == NULL) {
esp_set_deep_sleep_wake_stub(esp_wake_deep_sleep);
}
// Decide which power domains can be powered down
uint32_t pd_flags = get_power_down_flags();
// Correct the sleep time
s_config.sleep_time_adjustment = DEEP_SLEEP_TIME_OVERHEAD_US;
// Enter sleep
esp_sleep_start(RTC_SLEEP_PD_DIG | RTC_SLEEP_PD_VDDSDIO | pd_flags);
// Because RTC is in a slower clock domain than the CPU, it
// can take several CPU cycles for the sleep mode to start.
while (1) {
;
}
}
/**
* Helper function which handles entry to and exit from light sleep
* Placed into IRAM as flash may need some time to be powered on.
*/
static esp_err_t esp_light_sleep_inner(uint32_t pd_flags,
uint32_t flash_enable_time_us,
rtc_vddsdio_config_t vddsdio_config) IRAM_ATTR __attribute__((noinline));
static esp_err_t esp_light_sleep_inner(uint32_t pd_flags,
uint32_t flash_enable_time_us,
rtc_vddsdio_config_t vddsdio_config)
{
// Enter sleep
esp_err_t err = esp_sleep_start(pd_flags);
// If VDDSDIO regulator was controlled by RTC registers before sleep,
// restore the configuration.
if (vddsdio_config.force) {
rtc_vddsdio_set_config(vddsdio_config);
}
// If SPI flash was powered down, wait for it to become ready
if (pd_flags & RTC_SLEEP_PD_VDDSDIO) {
// Wait for the flash chip to start up
ets_delay_us(flash_enable_time_us);
}
return err;
}
2019-08-12 12:06:07 +10:00
esp_err_t esp_light_sleep_start(void)
2019-05-10 11:34:06 +08:00
{
static portMUX_TYPE light_sleep_lock = portMUX_INITIALIZER_UNLOCKED;
portENTER_CRITICAL(&light_sleep_lock);
/* We will be calling esp_timer_private_advance inside DPORT access critical
2019-05-10 11:34:06 +08:00
* section. Make sure the code on the other CPU is not holding esp_timer
* lock, otherwise there will be deadlock.
*/
esp_timer_private_lock();
2019-05-10 11:34:06 +08:00
s_config.rtc_ticks_at_sleep_start = rtc_time_get();
uint64_t frc_time_at_start = esp_timer_get_time();
DPORT_STALL_OTHER_CPU_START();
// Decide which power domains can be powered down
uint32_t pd_flags = get_power_down_flags();
// Amount of time to subtract from actual sleep time.
// This is spent on entering and leaving light sleep.
s_config.sleep_time_adjustment = LIGHT_SLEEP_TIME_OVERHEAD_US;
// Decide if VDD_SDIO needs to be powered down;
// If it needs to be powered down, adjust sleep time.
const uint32_t flash_enable_time_us = VDD_SDIO_POWERUP_TO_FLASH_READ_US;
2019-05-10 11:34:06 +08:00
#ifndef CONFIG_SPIRAM
2019-05-10 11:34:06 +08:00
const uint32_t vddsdio_pd_sleep_duration = MAX(FLASH_PD_MIN_SLEEP_TIME_US,
flash_enable_time_us + LIGHT_SLEEP_TIME_OVERHEAD_US + LIGHT_SLEEP_MIN_TIME_US);
if (s_config.sleep_duration > vddsdio_pd_sleep_duration) {
pd_flags |= RTC_SLEEP_PD_VDDSDIO;
s_config.sleep_time_adjustment += flash_enable_time_us;
}
#endif //CONFIG_SPIRAM
2019-05-10 11:34:06 +08:00
rtc_vddsdio_config_t vddsdio_config = rtc_vddsdio_get_config();
// Safety net: enable WDT in case exit from light sleep fails
wdt_hal_context_t rtc_wdt_ctx = {.inst = WDT_RWDT, .rwdt_dev = &RTCCNTL};
bool wdt_was_enabled = wdt_hal_is_enabled(&rtc_wdt_ctx); // If WDT was enabled in the user code, then do not change it here.
2019-08-14 22:54:07 +08:00
if (!wdt_was_enabled) {
wdt_hal_init(&rtc_wdt_ctx, WDT_RWDT, 0, false);
uint32_t stage_timeout_ticks = (uint32_t)(1000ULL * rtc_clk_slow_freq_get_hz() / 1000ULL);
wdt_hal_write_protect_disable(&rtc_wdt_ctx);
wdt_hal_config_stage(&rtc_wdt_ctx, WDT_STAGE0, stage_timeout_ticks, WDT_STAGE_ACTION_RESET_RTC);
wdt_hal_enable(&rtc_wdt_ctx);
wdt_hal_write_protect_enable(&rtc_wdt_ctx);
2019-08-14 22:54:07 +08:00
}
2019-05-10 11:34:06 +08:00
// Enter sleep, then wait for flash to be ready on wakeup
esp_err_t err = esp_light_sleep_inner(pd_flags,
flash_enable_time_us, vddsdio_config);
s_light_sleep_wakeup = true;
2019-05-10 11:34:06 +08:00
// FRC1 has been clock gated for the duration of the sleep, correct for that.
uint64_t rtc_ticks_at_end = rtc_time_get();
uint64_t frc_time_at_end = esp_timer_get_time();
uint64_t rtc_time_diff = rtc_time_slowclk_to_us(rtc_ticks_at_end - s_config.rtc_ticks_at_sleep_start,
esp_clk_slowclk_cal_get());
uint64_t frc_time_diff = frc_time_at_end - frc_time_at_start;
int64_t time_diff = rtc_time_diff - frc_time_diff;
/* Small negative values (up to 1 RTC_SLOW clock period) are possible,
* for very small values of sleep_duration. Ignore those to keep esp_timer
* monotonic.
*/
if (time_diff > 0) {
esp_timer_private_advance(time_diff);
2019-05-10 11:34:06 +08:00
}
esp_set_time_from_rtc();
esp_timer_private_unlock();
2019-05-10 11:34:06 +08:00
DPORT_STALL_OTHER_CPU_END();
2019-08-14 22:54:07 +08:00
if (!wdt_was_enabled) {
wdt_hal_write_protect_disable(&rtc_wdt_ctx);
wdt_hal_disable(&rtc_wdt_ctx);
wdt_hal_write_protect_enable(&rtc_wdt_ctx);
2019-08-14 22:54:07 +08:00
}
2019-05-10 11:34:06 +08:00
portEXIT_CRITICAL(&light_sleep_lock);
return err;
}
esp_err_t esp_sleep_disable_wakeup_source(esp_sleep_source_t source)
{
// For most of sources it is enough to set trigger mask in local
// configuration structure. The actual RTC wake up options
// will be updated by esp_sleep_start().
if (source == ESP_SLEEP_WAKEUP_ALL) {
s_config.wakeup_triggers = 0;
} else if (CHECK_SOURCE(source, ESP_SLEEP_WAKEUP_TIMER, RTC_TIMER_TRIG_EN)) {
2019-05-10 11:34:06 +08:00
s_config.wakeup_triggers &= ~RTC_TIMER_TRIG_EN;
s_config.sleep_duration = 0;
} else if (CHECK_SOURCE(source, ESP_SLEEP_WAKEUP_EXT0, RTC_EXT0_TRIG_EN)) {
2019-05-10 11:34:06 +08:00
s_config.ext0_rtc_gpio_num = 0;
s_config.ext0_trigger_level = 0;
s_config.wakeup_triggers &= ~RTC_EXT0_TRIG_EN;
} else if (CHECK_SOURCE(source, ESP_SLEEP_WAKEUP_EXT1, RTC_EXT1_TRIG_EN)) {
2019-05-10 11:34:06 +08:00
s_config.ext1_rtc_gpio_mask = 0;
s_config.ext1_trigger_mode = 0;
s_config.wakeup_triggers &= ~RTC_EXT1_TRIG_EN;
} else if (CHECK_SOURCE(source, ESP_SLEEP_WAKEUP_TOUCHPAD, RTC_TOUCH_TRIG_EN)) {
2019-05-10 11:34:06 +08:00
s_config.wakeup_triggers &= ~RTC_TOUCH_TRIG_EN;
} else if (CHECK_SOURCE(source, ESP_SLEEP_WAKEUP_GPIO, RTC_GPIO_TRIG_EN)) {
s_config.wakeup_triggers &= ~RTC_GPIO_TRIG_EN;
} else if (CHECK_SOURCE(source, ESP_SLEEP_WAKEUP_UART, (RTC_UART0_TRIG_EN | RTC_UART1_TRIG_EN))) {
s_config.wakeup_triggers &= ~(RTC_UART0_TRIG_EN | RTC_UART1_TRIG_EN);
}
#ifdef CONFIG_ESP32S2_ULP_COPROC_ENABLED
else if (CHECK_SOURCE(source, ESP_SLEEP_WAKEUP_ULP, RTC_ULP_TRIG_EN)) {
s_config.wakeup_triggers &= ~RTC_ULP_TRIG_EN;
2019-05-10 11:34:06 +08:00
}
#endif
2019-05-10 11:34:06 +08:00
else {
ESP_LOGE(TAG, "Incorrect wakeup source (%d) to disable.", (int) source);
return ESP_ERR_INVALID_STATE;
}
return ESP_OK;
}
2019-08-12 12:06:07 +10:00
esp_err_t esp_sleep_enable_ulp_wakeup(void)
2019-05-10 11:34:06 +08:00
{
return ESP_ERR_NOT_SUPPORTED;
2019-05-10 11:34:06 +08:00
}
esp_err_t esp_sleep_enable_timer_wakeup(uint64_t time_in_us)
{
s_config.wakeup_triggers |= RTC_TIMER_TRIG_EN;
s_config.sleep_duration = time_in_us;
return ESP_OK;
}
2019-08-12 12:06:07 +10:00
static void timer_wakeup_prepare(void)
2019-05-10 11:34:06 +08:00
{
uint32_t period = esp_clk_slowclk_cal_get();
int64_t sleep_duration = (int64_t) s_config.sleep_duration - (int64_t) s_config.sleep_time_adjustment;
if (sleep_duration < 0) {
sleep_duration = 0;
}
int64_t rtc_count_delta = rtc_time_us_to_slowclk(sleep_duration, period);
rtc_sleep_set_wakeup_time(s_config.rtc_ticks_at_sleep_start + rtc_count_delta);
SET_PERI_REG_MASK(RTC_CNTL_INT_CLR_REG, RTC_CNTL_MAIN_TIMER_INT_CLR_M);
SET_PERI_REG_MASK(RTC_CNTL_SLP_TIMER1_REG, RTC_CNTL_MAIN_TIMER_ALARM_EN_M);
2019-05-10 11:34:06 +08:00
}
/* In deep sleep mode, only the sleep channel is supported, and other touch channels should be turned off. */
static void touch_wakeup_prepare(void)
{
touch_pad_sleep_channel_t slp_config;
touch_pad_fsm_stop();
touch_pad_clear_channel_mask(SOC_TOUCH_SENSOR_BIT_MASK_MAX);
touch_pad_sleep_channel_get_info(&slp_config);
touch_pad_set_channel_mask(BIT(slp_config.touch_num));
touch_pad_fsm_start();
}
2019-08-12 12:06:07 +10:00
esp_err_t esp_sleep_enable_touchpad_wakeup(void)
2019-05-10 11:34:06 +08:00
{
if (s_config.wakeup_triggers & (RTC_EXT0_TRIG_EN)) {
ESP_LOGE(TAG, "Conflicting wake-up trigger: ext0");
return ESP_ERR_INVALID_STATE;
}
s_config.wakeup_triggers |= RTC_TOUCH_TRIG_EN;
return ESP_OK;
}
2019-08-12 12:06:07 +10:00
touch_pad_t esp_sleep_get_touchpad_wakeup_status(void)
2019-05-10 11:34:06 +08:00
{
if (esp_sleep_get_wakeup_cause() != ESP_SLEEP_WAKEUP_TOUCHPAD) {
return TOUCH_PAD_MAX;
}
2019-06-20 16:13:47 +08:00
touch_pad_t pad_num;
2019-12-27 17:08:28 +08:00
esp_err_t ret = touch_pad_get_wakeup_status(&pad_num); //TODO 723diff commit id:fda9ada1b
2019-06-20 16:13:47 +08:00
assert(ret == ESP_OK && "wakeup reason is RTC_TOUCH_TRIG_EN but SENS_TOUCH_MEAS_EN is zero");
return pad_num;
2019-05-10 11:34:06 +08:00
}
esp_err_t esp_sleep_enable_ext0_wakeup(gpio_num_t gpio_num, int level)
{
if (level < 0 || level > 1) {
return ESP_ERR_INVALID_ARG;
}
if (!RTC_GPIO_IS_VALID_GPIO(gpio_num)) {
return ESP_ERR_INVALID_ARG;
}
if (s_config.wakeup_triggers & (RTC_TOUCH_TRIG_EN | RTC_ULP_TRIG_EN)) {
ESP_LOGE(TAG, "Conflicting wake-up triggers: touch / ULP");
return ESP_ERR_INVALID_STATE;
}
2019-07-25 23:11:31 +08:00
s_config.ext0_rtc_gpio_num = rtc_io_number_get(gpio_num);
2019-05-10 11:34:06 +08:00
s_config.ext0_trigger_level = level;
s_config.wakeup_triggers |= RTC_EXT0_TRIG_EN;
return ESP_OK;
}
2019-08-12 12:06:07 +10:00
static void ext0_wakeup_prepare(void)
2019-05-10 11:34:06 +08:00
{
int rtc_gpio_num = s_config.ext0_rtc_gpio_num;
// Set GPIO to be used for wakeup
REG_SET_FIELD(RTC_IO_EXT_WAKEUP0_REG, RTC_IO_EXT_WAKEUP0_SEL, rtc_gpio_num);
// Set level which will trigger wakeup
SET_PERI_REG_BITS(RTC_CNTL_EXT_WAKEUP_CONF_REG, 0x1,
s_config.ext0_trigger_level, RTC_CNTL_EXT_WAKEUP0_LV_S);
2019-07-25 23:11:31 +08:00
// Find GPIO descriptor in the rtc_io_desc table and configure the pad
const rtc_io_desc_t* desc = &rtc_io_desc[rtc_gpio_num];
REG_SET_BIT(desc->reg, desc->mux);
SET_PERI_REG_BITS(desc->reg, 0x3, 0, desc->func);
REG_SET_BIT(desc->reg, desc->ie);
2019-05-10 11:34:06 +08:00
}
esp_err_t esp_sleep_enable_ext1_wakeup(uint64_t mask, esp_sleep_ext1_wakeup_mode_t mode)
{
if (mode > ESP_EXT1_WAKEUP_ANY_HIGH) {
return ESP_ERR_INVALID_ARG;
}
// Translate bit map of GPIO numbers into the bit map of RTC IO numbers
uint32_t rtc_gpio_mask = 0;
for (int gpio = 0; mask; ++gpio, mask >>= 1) {
if ((mask & 1) == 0) {
continue;
}
if (!RTC_GPIO_IS_VALID_GPIO(gpio)) {
ESP_LOGE(TAG, "Not an RTC IO: GPIO%d", gpio);
return ESP_ERR_INVALID_ARG;
}
2019-07-25 23:11:31 +08:00
rtc_gpio_mask |= BIT(rtc_io_number_get(gpio));
2019-05-10 11:34:06 +08:00
}
s_config.ext1_rtc_gpio_mask = rtc_gpio_mask;
s_config.ext1_trigger_mode = mode;
s_config.wakeup_triggers |= RTC_EXT1_TRIG_EN;
return ESP_OK;
}
2019-08-12 12:06:07 +10:00
static void ext1_wakeup_prepare(void)
2019-05-10 11:34:06 +08:00
{
// Configure all RTC IOs selected as ext1 wakeup inputs
uint32_t rtc_gpio_mask = s_config.ext1_rtc_gpio_mask;
for (int gpio = 0; gpio < GPIO_PIN_COUNT && rtc_gpio_mask != 0; ++gpio) {
2019-07-25 23:11:31 +08:00
int rtc_pin = rtc_io_number_get(gpio);
if ((rtc_gpio_mask & BIT(rtc_pin)) == 0) {
2019-05-10 11:34:06 +08:00
continue;
}
2019-07-25 23:11:31 +08:00
const rtc_io_desc_t* desc = &rtc_io_desc[rtc_pin];
2019-05-10 11:34:06 +08:00
// Route pad to RTC
2019-07-25 23:11:31 +08:00
REG_SET_BIT(desc->reg, desc->mux);
SET_PERI_REG_BITS(desc->reg, 0x3, 0, desc->func);
2019-05-10 11:34:06 +08:00
// set input enable in sleep mode
2019-07-25 23:11:31 +08:00
REG_SET_BIT(desc->reg, desc->ie);
2019-05-10 11:34:06 +08:00
// Pad configuration depends on RTC_PERIPH state in sleep mode
if (s_config.pd_options[ESP_PD_DOMAIN_RTC_PERIPH] != ESP_PD_OPTION_ON) {
// RTC_PERIPH will be powered down, so RTC_IO_ registers will
// loose their state. Lock pad configuration.
// Pullups/pulldowns also need to be disabled.
2019-07-25 23:11:31 +08:00
REG_CLR_BIT(desc->reg, desc->pulldown);
REG_CLR_BIT(desc->reg, desc->pullup);
REG_SET_BIT(RTC_CNTL_PAD_HOLD_REG, desc->hold_force);
2019-05-10 11:34:06 +08:00
}
// Keep track of pins which are processed to bail out early
2019-07-25 23:11:31 +08:00
rtc_gpio_mask &= ~BIT(rtc_pin);
2019-05-10 11:34:06 +08:00
}
// Clear state from previous wakeup
REG_SET_BIT(RTC_CNTL_EXT_WAKEUP1_REG, RTC_CNTL_EXT_WAKEUP1_STATUS_CLR);
// Set pins to be used for wakeup
REG_SET_FIELD(RTC_CNTL_EXT_WAKEUP1_REG, RTC_CNTL_EXT_WAKEUP1_SEL, s_config.ext1_rtc_gpio_mask);
// Set logic function (any low, all high)
SET_PERI_REG_BITS(RTC_CNTL_EXT_WAKEUP_CONF_REG, 0x1,
s_config.ext1_trigger_mode, RTC_CNTL_EXT_WAKEUP1_LV_S);
}
2019-08-12 12:06:07 +10:00
uint64_t esp_sleep_get_ext1_wakeup_status(void)
2019-05-10 11:34:06 +08:00
{
if (esp_sleep_get_wakeup_cause() != ESP_SLEEP_WAKEUP_EXT1) {
return 0;
}
uint32_t status = REG_GET_FIELD(RTC_CNTL_EXT_WAKEUP1_STATUS_REG, RTC_CNTL_EXT_WAKEUP1_STATUS);
// Translate bit map of RTC IO numbers into the bit map of GPIO numbers
uint64_t gpio_mask = 0;
for (int gpio = 0; gpio < GPIO_PIN_COUNT; ++gpio) {
if (!RTC_GPIO_IS_VALID_GPIO(gpio)) {
continue;
}
2019-07-25 23:11:31 +08:00
int rtc_pin = rtc_io_number_get(gpio);
2019-05-10 11:34:06 +08:00
if ((status & BIT(rtc_pin)) == 0) {
continue;
}
gpio_mask |= 1ULL << gpio;
}
return gpio_mask;
}
esp_err_t esp_sleep_enable_gpio_wakeup(void)
{
if (s_config.wakeup_triggers & (RTC_TOUCH_TRIG_EN | RTC_ULP_TRIG_EN)) {
ESP_LOGE(TAG, "Conflicting wake-up triggers: touch / ULP");
return ESP_ERR_INVALID_STATE;
}
s_config.wakeup_triggers |= RTC_GPIO_TRIG_EN;
return ESP_OK;
}
esp_err_t esp_sleep_enable_uart_wakeup(int uart_num)
{
if (uart_num == UART_NUM_0) {
s_config.wakeup_triggers |= RTC_UART0_TRIG_EN;
} else if (uart_num == UART_NUM_1) {
s_config.wakeup_triggers |= RTC_UART1_TRIG_EN;
} else {
return ESP_ERR_INVALID_ARG;
}
return ESP_OK;
}
2019-08-12 12:06:07 +10:00
esp_sleep_wakeup_cause_t esp_sleep_get_wakeup_cause(void)
2019-05-10 11:34:06 +08:00
{
if (rtc_get_reset_reason(0) != DEEPSLEEP_RESET && !s_light_sleep_wakeup) {
2019-05-10 11:34:06 +08:00
return ESP_SLEEP_WAKEUP_UNDEFINED;
}
uint32_t wakeup_cause = REG_GET_FIELD(RTC_CNTL_SLP_WAKEUP_CAUSE_REG, RTC_CNTL_WAKEUP_CAUSE);
2019-05-10 11:34:06 +08:00
if (wakeup_cause & RTC_EXT0_TRIG_EN) {
return ESP_SLEEP_WAKEUP_EXT0;
} else if (wakeup_cause & RTC_EXT1_TRIG_EN) {
return ESP_SLEEP_WAKEUP_EXT1;
} else if (wakeup_cause & RTC_TIMER_TRIG_EN) {
return ESP_SLEEP_WAKEUP_TIMER;
} else if (wakeup_cause & RTC_TOUCH_TRIG_EN) {
return ESP_SLEEP_WAKEUP_TOUCHPAD;
} else if (wakeup_cause & RTC_ULP_TRIG_EN) {
return ESP_SLEEP_WAKEUP_ULP;
} else if (wakeup_cause & RTC_GPIO_TRIG_EN) {
return ESP_SLEEP_WAKEUP_GPIO;
} else if (wakeup_cause & (RTC_UART0_TRIG_EN | RTC_UART1_TRIG_EN)) {
return ESP_SLEEP_WAKEUP_UART;
2019-05-10 11:34:06 +08:00
} else {
return ESP_SLEEP_WAKEUP_UNDEFINED;
}
}
esp_err_t esp_sleep_pd_config(esp_sleep_pd_domain_t domain,
esp_sleep_pd_option_t option)
{
if (domain >= ESP_PD_DOMAIN_MAX || option > ESP_PD_OPTION_AUTO) {
return ESP_ERR_INVALID_ARG;
}
s_config.pd_options[domain] = option;
return ESP_OK;
}
2019-08-12 12:06:07 +10:00
static uint32_t get_power_down_flags(void)
2019-05-10 11:34:06 +08:00
{
// Where needed, convert AUTO options to ON. Later interpret AUTO as OFF.
// RTC_SLOW_MEM is needed for the ULP, so keep RTC_SLOW_MEM powered up if ULP
// is used and RTC_SLOW_MEM is Auto.
// If there is any data placed into .rtc.data or .rtc.bss segments, and
// RTC_SLOW_MEM is Auto, keep it powered up as well.
2020-01-17 11:47:08 +08:00
// Labels are defined in the linker script, see esp32s2.ld.
extern int _rtc_slow_length;
2019-05-10 11:34:06 +08:00
if ((s_config.pd_options[ESP_PD_DOMAIN_RTC_SLOW_MEM] == ESP_PD_OPTION_AUTO) &&
((size_t) &_rtc_slow_length > 0 ||
(s_config.wakeup_triggers & RTC_ULP_TRIG_EN))) {
2019-05-10 11:34:06 +08:00
s_config.pd_options[ESP_PD_DOMAIN_RTC_SLOW_MEM] = ESP_PD_OPTION_ON;
}
// RTC_FAST_MEM is needed for deep sleep stub.
// If RTC_FAST_MEM is Auto, keep it powered on, so that deep sleep stub
// can run.
// In the new chip revision, deep sleep stub will be optional,
// and this can be changed.
if (s_config.pd_options[ESP_PD_DOMAIN_RTC_FAST_MEM] == ESP_PD_OPTION_AUTO) {
s_config.pd_options[ESP_PD_DOMAIN_RTC_FAST_MEM] = ESP_PD_OPTION_ON;
}
// RTC_PERIPH is needed for EXT0 wakeup and GPIO wakeup.
// If RTC_PERIPH is auto, and EXT0/GPIO aren't enabled, power down RTC_PERIPH.
2019-05-10 11:34:06 +08:00
if (s_config.pd_options[ESP_PD_DOMAIN_RTC_PERIPH] == ESP_PD_OPTION_AUTO) {
if (s_config.wakeup_triggers & (RTC_EXT0_TRIG_EN | RTC_GPIO_TRIG_EN)) {
2019-05-10 11:34:06 +08:00
s_config.pd_options[ESP_PD_DOMAIN_RTC_PERIPH] = ESP_PD_OPTION_ON;
} else if (s_config.wakeup_triggers & (RTC_TOUCH_TRIG_EN | RTC_ULP_TRIG_EN)) {
// In both rev. 0 and rev. 1 of ESP32, forcing power up of RTC_PERIPH
// prevents ULP timer and touch FSMs from working correctly.
s_config.pd_options[ESP_PD_DOMAIN_RTC_PERIPH] = ESP_PD_OPTION_OFF;
}
}
if (s_config.pd_options[ESP_PD_DOMAIN_XTAL] == ESP_PD_OPTION_AUTO) {
s_config.pd_options[ESP_PD_DOMAIN_XTAL] = ESP_PD_OPTION_OFF;
}
const char* option_str[] = {"OFF", "ON", "AUTO(OFF)" /* Auto works as OFF */};
ESP_LOGD(TAG, "RTC_PERIPH: %s, RTC_SLOW_MEM: %s, RTC_FAST_MEM: %s",
option_str[s_config.pd_options[ESP_PD_DOMAIN_RTC_PERIPH]],
option_str[s_config.pd_options[ESP_PD_DOMAIN_RTC_SLOW_MEM]],
option_str[s_config.pd_options[ESP_PD_DOMAIN_RTC_FAST_MEM]]);
// Prepare flags based on the selected options
uint32_t pd_flags = 0;
if (s_config.pd_options[ESP_PD_DOMAIN_RTC_FAST_MEM] != ESP_PD_OPTION_ON) {
pd_flags |= RTC_SLEEP_PD_RTC_FAST_MEM;
}
if (s_config.pd_options[ESP_PD_DOMAIN_RTC_SLOW_MEM] != ESP_PD_OPTION_ON) {
pd_flags |= RTC_SLEEP_PD_RTC_SLOW_MEM;
}
if (s_config.pd_options[ESP_PD_DOMAIN_RTC_PERIPH] != ESP_PD_OPTION_ON) {
pd_flags |= RTC_SLEEP_PD_RTC_PERIPH;
}
// if (s_config.pd_options[ESP_PD_DOMAIN_XTAL] != ESP_PD_OPTION_ON) {
// pd_flags |= RTC_SLEEP_PD_XTAL;
// }
return pd_flags;
}