There are several :ref:`memory regions<memory-layout>` where code and data can be placed. Code and read-only data are placed by default in flash, writable data in RAM, etc. However, it is sometimes necessary to change these default placements.
For example, it may be necessary to place critical code in RAM for performance reasons or to place code in RTC memory for use in a wake stub or the ULP coprocessor.
..only:: not SOC_ULP_SUPPORTED
For example, it may be necessary to place critical code in RAM for performance reasons or to place code in RTC memory for use in a wake stub.
With the linker script generation mechanism, it is possible to specify these placements at the component level within ESP-IDF. The component presents information on how it would like to place its symbols, objects or the entire archive. During build, the information presented by the components are collected, parsed and processed; and the placement rules generated is used to link the app.
- a component named ``my_component`` that is archived as library ``libmy_component.a`` during build
- three source files archived under the library, ``my_src1.c``, ``my_src2.c`` and ``my_src3.c`` which are compiled as ``my_src1.o``, ``my_src2.o`` and ``my_src3.o``, respectively
- under ``my_src1.o``, the function ``my_function1`` is defined; under ``my_src2.o``, the function ``my_function2`` is defined
Before anything else, a linker fragment file needs to be created. A linker fragment file is simply a text file with a ``.lf`` extension upon which the desired placements will be written. After creating the file, it is then necessary to present it to the build system. The instructions for the build systems supported by ESP-IDF are as follows:
In the component's ``component.mk`` file, set the variable ``COMPONENT_ADD_LDFRAGMENTS`` to the path of the created linker fragment file. The path can either be an absolute path or a relative path from the component directory.
In the component's ``CMakeLists.txt`` file, specify argument ``LDFRAGMENTS`` in the ``idf_component_register`` call. The value of ``LDFRAGMENTS`` can either be an absolute path or a relative path from the component directory to the created linker fragment file.
Suppose the entirety of ``my_src1.o`` is performance-critical, so it is desirable to place it in RAM. On the other hand, the entirety of ``my_src2.o`` contains symbols needed coming out of deep sleep, so it needs to be put under RTC memory.
What happens to ``my_src3.o``? Since it is not specified, default placements are used for ``my_src3.o``. More on default placements :ref:`here<ldgen-default-placements>`.
Continuing our example, suppose that among functions defined under ``object1.o``, only ``my_function1`` is performance-critical; and under ``object2.o``, only ``my_function2`` needs to execute after the chip comes out of deep sleep. This could be accomplished by writing:
The default placements are used for the rest of the functions in ``my_src1.o`` and ``my_src2.o`` and the entire ``object3.o``. Something similar can be achieved for placing data by writing the variable name instead of the function name, like so::
There are :ref:`limitations<ldgen-symbol-granularity-placements>` in placing code/data at symbol granularity. In order to ensure proper placements, an alternative would be to group relevant code and data into source files, and :ref:`use object-granularity placements<ldgen-placing-object-files>`.
Suppose that the entire component library should only have special placement when a certain condition is true; for example, when ``CONFIG_PERFORMANCE_MODE == y``. This could be written as:
For a more complex config-dependent placement, suppose the following requirements: when ``CONFIG_PERFORMANCE_LEVEL == 1``, only ``object1.o`` is put in RAM; when ``CONFIG_PERFORMANCE_LEVEL == 2``, ``object1.o`` and ``object2.o``; and when ``CONFIG_PERFORMANCE_LEVEL == 3`` all object files under the archive are to be put into RAM. When these three are false however, put entire library in RTC memory. This scenario is a bit contrived, but, it can be written as:
Up until this point, the term 'default placements' has been mentioned as fallback placements when the placement rules ``rtc`` and ``noflash`` are not specified. It is important to note that the tokens ``noflash`` or ``rtc`` are not merely keywords, but are actually entities called fragments, specifically :ref:`schemes<ldgen-scheme-fragment>`.
In the same manner as ``rtc`` and ``noflash`` are schemes, there exists a ``default`` scheme which defines what the default placement rules should be. As the name suggests, it is where code and data are usually placed, i.e. code/constants is placed in flash, variables placed in RAM, etc. More on the default scheme :ref:`here<ldgen-default-scheme>`.
For an example of an ESP-IDF component using the linker script generation mechanism, see :component_file:`freertos/CMakeLists.txt`. ``freertos`` uses this to place its object files to the instruction RAM for performance reasons.
This marks the end of the quick start guide. The following text discusses the internals of the mechanism in a little bit more detail. The following sections should be helpful in creating custom placements or modifying default behavior.
Linking is the last step in the process of turning C/C++ source files into an executable. It is performed by the toolchain's linker, and accepts linker scripts which specify code/data placements, among other things. With the linker script generation mechanism, this process is no different, except that the linker script passed to the linker is dynamically generated from: (1) the collected :ref:`linker fragment files<ldgen-linker-fragment-files>` and (2) :ref:`linker script template<ldgen-linker-script-template>`.
As mentioned in the quick start guide, fragment files are simple text files with the ``.lf`` extension containing the desired placements. This is a simplified description of what fragment files contain, however. What fragment files actually contain are 'fragments'. Fragments are entities which contain pieces of information which, when put together, form placement rules that tell where to place sections of object files in the output binary. There are three types of fragments: :ref:`sections<ldgen-sections-fragment>`, :ref:`scheme<ldgen-scheme-fragment>` and :ref:`mapping<ldgen-mapping-fragment>`.
Condition checking enable the linker script generation to be configuration-aware. Depending on whether expressions involving configuration values are true or not, a particular set of values for a key can be used. The evaluation uses ``eval_string`` from kconfiglib package and adheres to its required syntax and limitations. Supported operators are as follows:
Condition checking behaves as you would expect an ``if...elseif/elif...else`` block in other languages. Condition-checking is possible for both key values and entire fragments. The two sample fragments below are equivalent:
Comment in linker fragment files begin with ``#``. Like in other languages, comment are used to provide helpful descriptions and documentation and are ignored during processing.
- indentation is enforced and improperly indented fragment files generate a parse exception; this was not enforced in the old version but previous documentation and examples demonstrates properly indented grammar
Linker script generator should be able to parse ESP-IDF v3.x linker fragment files that are indented properly (as demonstrated by the ESP-IDF v3.x version of this document). Backward compatibility with the previous mapping fragment grammar (optional name and the old grammar for conditionals) has also been retained but with a deprecation warning. Users should switch to the newer grammar discussed in this document as support for the old grammar is planned to be removed in the future.
Sections fragments defines a list of object file sections that the GCC compiler emits. It may be a default section (e.g. ``.text``, ``.data``) or it may be user defined section through the ``__attribute__`` keyword.
The use of an optional '+' indicates the inclusion of the section in the list, as well as sections that start with it. This is the preferred method over listing both explicitly.
There exists a special scheme with the name ``default``. This scheme is special because catch-all placement rules are generated from its entries. This means that, if one of its entries is ``text -> flash_text``, the placement rule will be generated for the target ``flash_text``.
Aside from the entity and scheme, flags can also be specified in an entry. The following flags are supported (note: <> = argument name, [] = optional):
before and/or after (depending whether ``pre``, ``post`` or both are specified) the input section description generated from the mapping fragment entry. If neither 'pre' or 'post' is specified, the alignment command is generated before the input section description. Order sensitive.
Emits ``SORT_BY_NAME``, ``SORT_BY_ALIGNMENT``, ``SORT_BY_INIT_PRIORITY`` or ``SORT`` in the input section description.
Possible values for ``sort_by_first`` and ``sort_by_second`` are: ``name``, ``alignment``, ``init_priority``.
If both ``sort_by_first`` and ``sort_by_second`` are not specified, the input sections are sorted by name. If both are specified, then the nested sorting follows the same rules discussed in https://sourceware.org/binutils/docs/ld/Input-Section-Wildcards.html.
Prevent the linker from discarding the placement by surrounding the input section description with KEEP command. See https://sourceware.org/binutils/docs/ld/Input-Section-Keep.html for more details.
Generate symbols before and after the placement. The generated symbols follow the naming ``_<name>_start`` and ``_<name>_end``. For example, if ``name`` == sym1,
When adding flags, the specific ``section -> target`` in the scheme needs to be specified. For multiple ``section -> target``, use a comma as a separator. For example,
Note that ALIGN and SURROUND, as mentioned in the flag descriptions, are order sensitive. Therefore, if for the same mapping fragment these two are switched, the following is generated instead:
Symbol granularity placements is possible due to compiler flags ``-ffunction-sections`` and ``-ffdata-sections``. ESP-IDF compiles with these flags by default.
If the user opts to remove these flags, then the symbol-granularity placements will not work. Furthermore, even with the presence of these flags, there are still other limitations to keep in mind due to the dependence on the compiler's emitted output sections.
For example, with ``-ffunction-sections``, separate sections are emitted for each function; with section names predictably constructed i.e. ``.text.{func_name}`` and ``.literal.{func_name}``. This is not the case for string literals within the function, as they go to pooled or generated section names.
With ``-fdata-sections``, for global scope data the compiler predictably emits either ``.data.{var_name}``, ``.rodata.{var_name}`` or ``.bss.{var_name}``; and so ``Type I`` mapping entry works for these.
However, this is not the case for static data declared in function scope, as the generated section name is a result of mangling the variable name with some other information.
The linker script template is the skeleton in which the generated placement rules are put into. It is an otherwise ordinary linker script, with a specific marker syntax that indicates where the generated placement rules are placed.
The example below is an excerpt from a possible linker script template. It defines an output section ``.iram0.text``, and inside is a marker referencing the target ``iram0_text``.
Rule generated from the entry ``* (noflash)`` of the ``freertos`` mapping fragment. All ``text`` sections of all object files under the archive ``libfreertos.a`` will be collected under the target ``iram0_text`` (as per the ``noflash`` scheme) and placed wherever in the template ``iram0_text`` is referenced by a marker.
Rule generated from the default scheme entry ``iram -> iram0_text``. Since the default scheme specifies an ``iram -> iram0_text`` entry, it too is placed wherever ``iram0_text`` is referenced by a marker. Since it is a rule generated from the default scheme, it comes first among all other rules collected under the same target name.
The linker script template currently used is :component_file:`esp_system/ld/{IDF_TARGET_PATH_NAME}/sections.ld.in`; the generated output script ``sections.ld`` is put under its build directory.