esp-idf/components/esp_eth/src/esp_eth_mac_dm9051.c

857 lines
35 KiB
C
Raw Normal View History

// Copyright 2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <string.h>
#include <stdlib.h>
#include <sys/cdefs.h>
#include "driver/gpio.h"
#include "driver/spi_master.h"
#include "esp_log.h"
#include "esp_eth.h"
#include "esp_system.h"
#include "esp_intr_alloc.h"
#include "esp_heap_caps.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/semphr.h"
#include "sdkconfig.h"
static const char *TAG = "emac_dm9051";
#define MAC_CHECK(a, str, goto_tag, ret_value, ...) \
do \
{ \
if (!(a)) \
{ \
ESP_LOGE(TAG, "%s(%d): " str, __FUNCTION__, __LINE__, ##__VA_ARGS__); \
ret = ret_value; \
goto goto_tag; \
} \
} while (0)
#define RX_QUEUE_WAIT_MS (100)
#define DM9051_SPI_LOCK_TIMEOUT_MS (50)
#define DM9051_PHY_OPERATION_TIMEOUT_US (1000)
/**
* @brief Registers in DM9051
*
*/
#define DM9051_NCR (0x00) // Network Control Register
#define DM9051_NSR (0x01) // Network Status Register
#define DM9051_TCR (0x02) // Tx Control Register
#define DM9051_TSR1 (0x03) // Tx Status Register I
#define DM9051_TSR2 (0x04) // Tx Status Register II
#define DM9051_RCR (0x05) // Rx Control Register
#define DM9051_RSR (0x06) // Rx Status Register
#define DM9051_ROCR (0x07) // Receive Overflow Counter Register
#define DM9051_BPTR (0x08) // Back Pressure Threshold Register
#define DM9051_FCTR (0x09) // Flow Control Threshold Register
#define DM9051_FCR (0x0A) // Rx/Tx Flow Control Register
#define DM9051_EPCR (0x0B) // EEPROM & PHY Control Register
#define DM9051_EPAR (0x0C) // EEPROM & PHY Address Register
#define DM9051_EPDRL (0x0D) // EEPROM & PHY Data Register Low
#define DM9051_EPDRH (0x0E) // EEPROM & PHY Data Register High
#define DM9051_WCR (0x0F) // Wake Up Control Register
#define DM9051_PAR (0x10) // Physical Address Register
#define DM9051_MAR (0x16) // Multicast Address Hash Table Register
#define DM9051_GPCR (0x1E) // General Purpose Control Register
#define DM9051_GPR (0x1F) // General Purpose Register
#define DM9051_TRPAL (0x22) // Tx Memory Read Pointer Address Low Byte
#define DM9051_TRPAH (0x23) // Tx Memory Read Pointer Address High Byte
#define DM9051_RWPAL (0x24) // Rx Memory Read Pointer Address Low Byte
#define DM9051_RWPAH (0x25) // Rx Memory Read Pointer Address High Byte
#define DM9051_VIDL (0x28) // Vendor ID Low Byte
#define DM9051_VIDH (0x29) // Vendor ID High Byte
#define DM9051_PIDL (0x2A) // Product ID Low Byte
#define DM9051_PIDH (0x2B) // Product ID High Byte
#define DM9051_CHIPR (0x2C) // CHIP Revision
#define DM9051_TCR2 (0x2D) // Transmit Control Register 2
#define DM9051_ATCR (0x30) // Auto-Transmit Control Register
#define DM9051_TCSCR (0x31) // Transmit Check Sum Control Register
#define DM9051_RCSCSR (0x32) // Receive Check Sum Control Status Register
#define DM9051_SBCR (0x38) // SPI Bus Control Register
#define DM9051_INTCR (0x39) // INT Pin Control Register
#define DM9051_PPCSR (0x3D) // Pause Packet Control Status Register
#define DM9051_EEE_IN (0x3E) // IEEE 802.3az Enter Counter Register
#define DM9051_EEE_OUT (0x3F) // IEEE 802.3az Leave Counter Register
#define DM9051_ALNCR (0x4A) // SPI Byte Align Error Counter Register
#define DM9051_RLENCR (0x52) // Rx Packet Length Control Register
#define DM9051_BCASTCR (0x53) // RX Broadcast Control Register
#define DM9051_INTCKCR (0x54) // INT Pin Clock Output Control Register
#define DM9051_MPTRCR (0x55) // Memory Pointer Control Register
#define DM9051_MLEDCR (0x57) // More LED Control Register
#define DM9051_MEMSCR (0x59) // Memory Control Register
#define DM9051_TMEMR (0x5A) // Transmit Memory Size Register
#define DM9051_MBSR (0x5D) // Memory BIST Status Register
#define DM9051_MRCMDX (0x70) // Memory Data Pre-Fetch Read Command Without Address Increment Register
#define DM9051_MRCMDX1 (0x71) // Memory Read Command Without Pre-Fetch and Without Address Increment Register
#define DM9051_MRCMD (0x72) // Memory Data Read Command With Address Increment Register
#define DM9051_SDR_DLY (0x73) // SPI Data Read Delay Counter Register
#define DM9051_MRRL (0x74) // Memory Data Read Address Register Low Byte
#define DM9051_MRRH (0x75) // Memory Data Read Address Register High Byte
#define DM9051_MWCMDX (0x76) // Memory Data Write Command Without Address Increment Register
#define DM9051_MWCMD (0x78) // Memory Data Write Command With Address Increment Register
#define DM9051_MWRL (0x7A) // Memory Data Write Address Register Low Byte
#define DM9051_MWRH (0x7B) // Memory Data Write Address Register High Byte
#define DM9051_TXPLL (0x7C) // TX Packet Length Low Byte Register
#define DM9051_TXPLH (0x7D) // TX Packet Length High Byte Register
#define DM9051_ISR (0x7E) // Interrupt Status Register
#define DM9051_IMR (0x7F) // Interrupt Mask Register
/**
* @brief status and flag of DM9051 specific registers
*
*/
#define DM9051_SPI_RD (0) // Burst Read Command
#define DM9051_SPI_WR (1) // Burst Write Command
#define NCR_WAKEEN (1 << 6) // Enable Wakeup Function
#define NCR_FDX (1 << 3) // Duplex Mode of the Internal PHY
#define NCR_RST (1 << 0) // Software Reset and Auto-Clear after 10us
#define NSR_SPEED (1 << 7) // Speed of Internal PHY
#define NSR_LINKST (1 << 6) // Link Status of Internal PHY
#define NSR_WAKEST (1 << 5) // Wakeup Event Status
#define NSR_TX2END (1 << 3) // TX Packet Index II Complete Status
#define NSR_TX1END (1 << 2) // TX Packet Index I Complete Status
#define NSR_RXOV (1 << 1) // RX Memory Overflow Status
#define NSR_RXRDY (1 << 0) // RX Packet Ready
#define TCR_TXREQ (1 << 0) // TX Request. Auto-Clear after Sending Completely
#define RCR_WTDIS (1 << 6) // Watchdog Timer Disable
#define RCR_DIS_LONG (1 << 5) // Discard Long Packet
#define RCR_DIS_CRC (1 << 4) // Discard CRC Error Packet
#define RCR_ALL (1 << 3) // Receive All Multicast
#define RCR_RUNT (1 << 2) // Receive Runt Packet
#define RCR_PRMSC (1 << 1) // Promiscuous Mode
#define RCR_RXEN (1 << 0) // RX Enable
#define RSR_RF (1 << 7) // Runt Frame
#define RSR_MF (1 << 6) // Multicast Frame
#define RSR_LCS (1 << 5) // Late Collision Seen
#define RSR_RWTO (1 << 4) // Receive Watchdog Time-Out
#define RSR_PLE (1 << 3) // Physical Layer Error
#define RSR_AE (1 << 2) // Alignment Error
#define RSR_CE (1 << 1) // CRC Error
#define RSR_FOE (1 << 0) // RX Memory Overflow Error
#define FCR_FLOW_ENABLE (0x39) // Enable Flow Control
#define EPCR_REEP (1 << 5) // Reload EEPROM
#define EPCR_WEP (1 << 4) // Write EEPROM Enable
#define EPCR_EPOS (1 << 3) // EEPROM or PHY Operation Select
#define EPCR_ERPRR (1 << 2) // EEPROM Read or PHY Register Read Command
#define EPCR_ERPRW (1 << 1) // EEPROM Write or PHY Register Write Command
#define EPCR_ERRE (1 << 0) // EEPROM Access Status or PHY Access Status
#define TCR2_RLCP (1 << 6) // Retry Late Collision Packet
#define ATCR_AUTO_TX (1 << 7) // Auto-Transmit Control
#define TCSCR_UDPCSE (1 << 2) // UDP CheckSum Generation
#define TCSCR_TCPCSE (1 << 1) // TCP CheckSum Generation
#define TCSCR_IPCSE (1 << 0) // IPv4 CheckSum Generation
#define MPTRCR_RST_TX (1 << 1) // Reset TX Memory Pointer
#define MPTRCR_RST_RX (1 << 0) // Reset RX Memory Pointer
#define ISR_LNKCHGS (1 << 5) // Link Status Change
#define ISR_ROO (1 << 3) // Receive Overflow Counter Overflow
#define ISR_ROS (1 << 2) // Receive Overflow
#define ISR_PT (1 << 1) // Packet Transmitted
#define ISR_PR (1 << 0) // Packet Received
#define ISR_CLR_STATUS (ISR_LNKCHGS | ISR_ROO | ISR_ROS | ISR_PT | ISR_PR)
#define IMR_PAR (1 << 7) // Pointer Auto-Return Mode
#define IMR_LNKCHGI (1 << 5) // Enable Link Status Change Interrupt
#define IMR_ROOI (1 << 3) // Enable Receive Overflow Counter Overflow Interrupt
#define IMR_ROI (1 << 2) // Enable Receive Overflow Interrupt
#define IMR_PTI (1 << 1) // Enable Packet Transmitted Interrupt
#define IMR_PRI (1 << 0) // Enable Packet Received Interrupt
#define IMR_ALL (IMR_PAR | IMR_LNKCHGI | IMR_ROOI | IMR_ROI | IMR_PTI | IMR_PRI)
typedef struct {
uint8_t flag;
uint8_t status;
uint8_t length_low;
uint8_t length_high;
} dm9051_rx_header_t;
typedef struct {
esp_eth_mac_t parent;
esp_eth_mediator_t *eth;
spi_device_handle_t spi_hdl;
SemaphoreHandle_t spi_lock;
TaskHandle_t rx_task_hdl;
uint32_t sw_reset_timeout_ms;
uint8_t addr[6];
bool packets_remain;
} emac_dm9051_t;
static inline bool dm9051_lock(emac_dm9051_t *emac)
{
return xSemaphoreTake(emac->spi_lock, DM9051_SPI_LOCK_TIMEOUT_MS) == pdTRUE;
}
static inline bool dm9051_unlock(emac_dm9051_t *emac)
{
return xSemaphoreGive(emac->spi_lock) == pdTRUE;
}
/**
* @brief write value to dm9051 internal register
*/
static esp_err_t dm9051_register_write(emac_dm9051_t *emac, uint8_t reg_addr, uint8_t value)
{
esp_err_t ret = ESP_OK;
spi_transaction_t trans = {
.cmd = DM9051_SPI_WR,
.addr = reg_addr,
.length = 8,
.flags = SPI_TRANS_USE_TXDATA
};
trans.tx_data[0] = value;
if (dm9051_lock(emac)) {
if (spi_device_polling_transmit(emac->spi_hdl, &trans) != ESP_OK) {
ESP_LOGE(TAG, "%s(%d): spi transmit failed", __FUNCTION__, __LINE__);
ret = ESP_FAIL;
}
dm9051_unlock(emac);
} else {
ret = ESP_ERR_TIMEOUT;
}
return ret;
}
/**
* @brief read value from dm9051 internal register
*/
static esp_err_t dm9051_register_read(emac_dm9051_t *emac, uint8_t reg_addr, uint8_t *value)
{
esp_err_t ret = ESP_OK;
spi_transaction_t trans = {
.cmd = DM9051_SPI_RD,
.addr = reg_addr,
.length = 8,
.flags = SPI_TRANS_USE_TXDATA | SPI_TRANS_USE_RXDATA
};
if (dm9051_lock(emac)) {
if (spi_device_polling_transmit(emac->spi_hdl, &trans) != ESP_OK) {
ESP_LOGE(TAG, "%s(%d): spi transmit failed", __FUNCTION__, __LINE__);
ret = ESP_FAIL;
} else {
*value = trans.rx_data[0];
}
dm9051_unlock(emac);
} else {
ret = ESP_ERR_TIMEOUT;
}
return ret;
}
/**
* @brief write buffer to dm9051 internal memory
*/
static esp_err_t dm9051_memory_write(emac_dm9051_t *emac, uint8_t *buffer, uint32_t len)
{
esp_err_t ret = ESP_OK;
spi_transaction_t trans = {
.cmd = DM9051_SPI_WR,
.addr = DM9051_MWCMD,
.length = len * 8,
.tx_buffer = buffer
};
if (dm9051_lock(emac)) {
if (spi_device_polling_transmit(emac->spi_hdl, &trans) != ESP_OK) {
ESP_LOGE(TAG, "%s(%d): spi transmit failed", __FUNCTION__, __LINE__);
ret = ESP_FAIL;
}
dm9051_unlock(emac);
} else {
ret = ESP_ERR_TIMEOUT;
}
return ret;
}
/**
* @brief read buffer from dm9051 internal memory
*/
static esp_err_t dm9051_memory_read(emac_dm9051_t *emac, uint8_t *buffer, uint32_t len)
{
esp_err_t ret = ESP_OK;
spi_transaction_t trans = {
.cmd = DM9051_SPI_RD,
.addr = DM9051_MRCMD,
.length = len * 8,
.rx_buffer = buffer
};
if (dm9051_lock(emac)) {
if (spi_device_polling_transmit(emac->spi_hdl, &trans) != ESP_OK) {
ESP_LOGE(TAG, "%s(%d): spi transmit failed", __FUNCTION__, __LINE__);
ret = ESP_FAIL;
}
dm9051_unlock(emac);
} else {
ret = ESP_ERR_TIMEOUT;
}
return ret;
}
/**
* @brief read mac address from internal registers
*/
static esp_err_t dm9051_get_mac_addr(emac_dm9051_t *emac)
{
esp_err_t ret = ESP_OK;
for (int i = 0; i < 6; i++) {
MAC_CHECK(dm9051_register_read(emac, DM9051_PAR + i, &emac->addr[i]) == ESP_OK, "read PAR failed", err, ESP_FAIL);
}
return ESP_OK;
err:
return ret;
}
/**
* @brief set new mac address to internal registers
*/
static esp_err_t dm9051_set_mac_addr(emac_dm9051_t *emac)
{
esp_err_t ret = ESP_OK;
for (int i = 0; i < 6; i++) {
MAC_CHECK(dm9051_register_write(emac, DM9051_PAR + i, emac->addr[i]) == ESP_OK, "write PAR failed", err, ESP_FAIL);
}
return ESP_OK;
err:
return ret;
}
/**
* @brief clear multicast hash table
*/
static esp_err_t dm9051_clear_multicast_table(emac_dm9051_t *emac)
{
esp_err_t ret = ESP_OK;
/* rx broadcast packet control by bit7 of MAC register 1DH */
MAC_CHECK(dm9051_register_write(emac, DM9051_BCASTCR, 0x00) == ESP_OK, "write BCASTCR failed", err, ESP_FAIL);
for (int i = 0; i < 7; i++) {
MAC_CHECK(dm9051_register_write(emac, DM9051_MAR + i, 0x00) == ESP_OK, "write MAR failed", err, ESP_FAIL);
}
/* enable receive broadcast paclets */
MAC_CHECK(dm9051_register_write(emac, DM9051_MAR + 7, 0x80) == ESP_OK, "write MAR failed", err, ESP_FAIL);
return ESP_OK;
err:
return ret;
}
/**
* @brief software reset dm9051 internal register
*/
static esp_err_t dm9051_reset(emac_dm9051_t *emac)
{
esp_err_t ret = ESP_OK;
/* power on phy */
MAC_CHECK(dm9051_register_write(emac, DM9051_GPR, 0x00) == ESP_OK, "write GPR failed", err, ESP_FAIL);
/* mac and phy register won't be accesable within at least 1ms */
vTaskDelay(pdMS_TO_TICKS(10));
/* software reset */
uint8_t ncr = NCR_RST;
MAC_CHECK(dm9051_register_write(emac, DM9051_NCR, ncr) == ESP_OK, "write NCR failed", err, ESP_FAIL);
uint32_t to = 0;
for (to = 0; to < emac->sw_reset_timeout_ms / 10; to++) {
MAC_CHECK(dm9051_register_read(emac, DM9051_NCR, &ncr) == ESP_OK, "read NCR failed", err, ESP_FAIL);
if (!(ncr & NCR_RST)) {
break;
}
vTaskDelay(pdMS_TO_TICKS(10));
}
MAC_CHECK(to < emac->sw_reset_timeout_ms / 10, "reset timeout", err, ESP_ERR_TIMEOUT);
return ESP_OK;
err:
return ret;
}
/**
* @brief verify dm9051 chip ID
*/
static esp_err_t dm9051_verify_id(emac_dm9051_t *emac)
{
esp_err_t ret = ESP_OK;
uint8_t id[2];
MAC_CHECK(dm9051_register_read(emac, DM9051_VIDL, &id[0]) == ESP_OK, "read VIDL failed", err, ESP_FAIL);
MAC_CHECK(dm9051_register_read(emac, DM9051_VIDH, &id[1]) == ESP_OK, "read VIDH failed", err, ESP_FAIL);
MAC_CHECK(0x0A == id[1] && 0x46 == id[0], "wrong Vendor ID", err, ESP_ERR_INVALID_VERSION);
MAC_CHECK(dm9051_register_read(emac, DM9051_PIDL, &id[0]) == ESP_OK, "read PIDL failed", err, ESP_FAIL);
MAC_CHECK(dm9051_register_read(emac, DM9051_PIDH, &id[1]) == ESP_OK, "read PIDH failed", err, ESP_FAIL);
MAC_CHECK(0x90 == id[1] && 0x51 == id[0], "wrong Product ID", err, ESP_ERR_INVALID_VERSION);
return ESP_OK;
err:
return ret;
}
/**
* @brief default setup for dm9051 internal registers
*/
static esp_err_t dm9051_setup_default(emac_dm9051_t *emac)
{
esp_err_t ret = ESP_OK;
/* disable wakeup */
MAC_CHECK(dm9051_register_write(emac, DM9051_NCR, 0x00) == ESP_OK, "write NCR failed", err, ESP_FAIL);
MAC_CHECK(dm9051_register_write(emac, DM9051_WCR, 0x00) == ESP_OK, "write WCR failed", err, ESP_FAIL);
/* stop transmitting, enable appending pad, crc for packets */
MAC_CHECK(dm9051_register_write(emac, DM9051_TCR, 0x00) == ESP_OK, "write TCR failed", err, ESP_FAIL);
/* stop receiving, no promiscuous mode, no runt packet(size < 64bytes), not all multicast packets*/
/* discard long packet(size > 1522bytes) and crc error packet, enable watchdog */
MAC_CHECK(dm9051_register_write(emac, DM9051_RCR, RCR_DIS_LONG | RCR_DIS_CRC) == ESP_OK, "write RCR failed", err, ESP_FAIL);
/* send jam pattern (duration time = 1.15ms) when rx free space < 3k bytes */
MAC_CHECK(dm9051_register_write(emac, DM9051_BPTR, 0x3F) == ESP_OK, "write BPTR failed", err, ESP_FAIL);
/* flow control: high water threshold = 3k bytes, low water threshold = 8k bytes */
MAC_CHECK(dm9051_register_write(emac, DM9051_FCTR, 0x38) == ESP_OK, "write FCTR failed", err, ESP_FAIL);
/* enable flow control */
MAC_CHECK(dm9051_register_write(emac, DM9051_FCR, FCR_FLOW_ENABLE) == ESP_OK, "write FCR failed", err, ESP_FAIL);
/* retry late collision packet, at most two transmit command can be issued before transmit complete */
MAC_CHECK(dm9051_register_write(emac, DM9051_TCR2, TCR2_RLCP) == ESP_OK, "write TCR2 failed", err, ESP_FAIL);
/* enable auto transmit */
MAC_CHECK(dm9051_register_write(emac, DM9051_ATCR, ATCR_AUTO_TX) == ESP_OK, "write ATCR failed", err, ESP_FAIL);
/* generate checksum for UDP, TCP and IPv4 packets */
MAC_CHECK(dm9051_register_write(emac, DM9051_TCSCR, TCSCR_IPCSE | TCSCR_TCPCSE | TCSCR_UDPCSE) == ESP_OK,
"write TCSCR failed", err, ESP_FAIL);
/* disable check sum for receive packets */
MAC_CHECK(dm9051_register_write(emac, DM9051_RCSCSR, 0x00) == ESP_OK, "write RCSCSR failed", err, ESP_FAIL);
/* interrupt pin config: push-pull output, active high */
MAC_CHECK(dm9051_register_write(emac, DM9051_INTCR, 0x00) == ESP_OK, "write INTCR failed", err, ESP_FAIL);
MAC_CHECK(dm9051_register_write(emac, DM9051_INTCKCR, 0x00) == ESP_OK, "write INTCKCR failed", err, ESP_FAIL);
/* no length limitation for rx packets */
MAC_CHECK(dm9051_register_write(emac, DM9051_RLENCR, 0x00) == ESP_OK, "write RLENCR failed", err, ESP_FAIL);
/* 3K-byte for TX and 13K-byte for RX */
MAC_CHECK(dm9051_register_write(emac, DM9051_MEMSCR, 0x00) == ESP_OK, "write MEMSCR failed", err, ESP_FAIL);
/* reset tx and rx memory pointer */
MAC_CHECK(dm9051_register_write(emac, DM9051_MPTRCR, MPTRCR_RST_RX | MPTRCR_RST_TX) == ESP_OK,
"write MPTRCR failed", err, ESP_FAIL);
/* clear network status: wakeup event, tx complete */
MAC_CHECK(dm9051_register_write(emac, DM9051_NSR, NSR_WAKEST | NSR_TX2END | NSR_TX1END) == ESP_OK, "write NSR failed", err, ESP_FAIL);
/* clear interrupt status */
MAC_CHECK(dm9051_register_write(emac, DM9051_ISR, ISR_CLR_STATUS) == ESP_OK, "write ISR failed", err, ESP_FAIL);
return ESP_OK;
err:
return ret;
}
/**
* @brief start dm9051: enable interrupt and start receive
*/
static esp_err_t dm9051_start(emac_dm9051_t *emac)
{
esp_err_t ret = ESP_OK;
/* enable interrupt */
MAC_CHECK(dm9051_register_write(emac, DM9051_IMR, IMR_ALL) == ESP_OK, "write IMR failed", err, ESP_FAIL);
/* enable rx */
uint8_t rcr = 0;
MAC_CHECK(dm9051_register_read(emac, DM9051_RCR, &rcr) == ESP_OK, "read RCR failed", err, ESP_FAIL);
rcr |= RCR_RXEN;
MAC_CHECK(dm9051_register_write(emac, DM9051_RCR, rcr) == ESP_OK, "write RCR failed", err, ESP_FAIL);
return ESP_OK;
err:
return ret;
}
/**
* @brief stop dm9051: disable interrupt and stop receive
*/
static esp_err_t dm9051_stop(emac_dm9051_t *emac)
{
esp_err_t ret = ESP_OK;
/* disable interrupt */
MAC_CHECK(dm9051_register_write(emac, DM9051_IMR, 0x00) == ESP_OK, "write IMR failed", err, ESP_FAIL);
/* disable rx */
uint8_t rcr = 0;
MAC_CHECK(dm9051_register_read(emac, DM9051_RCR, &rcr) == ESP_OK, "read RCR failed", err, ESP_FAIL);
rcr &= ~RCR_RXEN;
MAC_CHECK(dm9051_register_write(emac, DM9051_RCR, rcr) == ESP_OK, "write RCR failed", err, ESP_FAIL);
return ESP_OK;
err:
return ret;
}
static void dm9051_isr_handler(void *arg)
{
emac_dm9051_t *emac = (emac_dm9051_t *)arg;
BaseType_t high_task_wakeup = pdFALSE;
/* notify dm9051 task */
vTaskNotifyGiveFromISR(emac->rx_task_hdl, &high_task_wakeup);
if (high_task_wakeup != pdFALSE) {
portYIELD_FROM_ISR();
}
}
static void emac_dm9051_task(void *arg)
{
emac_dm9051_t *emac = (emac_dm9051_t *)arg;
uint8_t status = 0;
uint8_t *buffer = NULL;
uint32_t length = 0;
while (1) {
if (ulTaskNotifyTake(pdFALSE, pdMS_TO_TICKS(RX_QUEUE_WAIT_MS))) {
/* clear interrupt status */
dm9051_register_read(emac, DM9051_ISR, &status);
dm9051_register_write(emac, DM9051_ISR, status);
/* packet received */
if (status & ISR_PR) {
do {
buffer = (uint8_t *)heap_caps_malloc(ETH_MAX_PACKET_SIZE, MALLOC_CAP_DMA);
if (emac->parent.receive(&emac->parent, buffer, &length) == ESP_OK) {
/* pass the buffer to stack (e.g. TCP/IP layer) */
if (length) {
emac->eth->stack_input(emac->eth, buffer, length);
} else {
free(buffer);
}
} else {
free(buffer);
}
} while (emac->packets_remain);
}
}
}
vTaskDelete(NULL);
}
static esp_err_t emac_dm9051_set_mediator(esp_eth_mac_t *mac, esp_eth_mediator_t *eth)
{
esp_err_t ret = ESP_OK;
MAC_CHECK(eth, "can't set mac's mediator to null", err, ESP_ERR_INVALID_ARG);
emac_dm9051_t *emac = __containerof(mac, emac_dm9051_t, parent);
emac->eth = eth;
return ESP_OK;
err:
return ret;
}
static esp_err_t emac_dm9051_write_phy_reg(esp_eth_mac_t *mac, uint32_t phy_addr, uint32_t phy_reg, uint32_t reg_value)
{
esp_err_t ret = ESP_OK;
emac_dm9051_t *emac = __containerof(mac, emac_dm9051_t, parent);
/* check if phy access is in progress */
uint8_t epcr = 0;
MAC_CHECK(dm9051_register_read(emac, DM9051_EPCR, &epcr) == ESP_OK, "read EPCR failed", err, ESP_FAIL);
MAC_CHECK(!(epcr & EPCR_ERRE), "phy is busy", err, ESP_ERR_INVALID_STATE);
MAC_CHECK(dm9051_register_write(emac, DM9051_EPAR, (uint8_t)(((phy_addr << 6) & 0xFF) | phy_reg)) == ESP_OK,
"write EPAR failed", err, ESP_FAIL);
MAC_CHECK(dm9051_register_write(emac, DM9051_EPDRL, (uint8_t)(reg_value & 0xFF)) == ESP_OK,
"write EPDRL failed", err, ESP_FAIL);
MAC_CHECK(dm9051_register_write(emac, DM9051_EPDRH, (uint8_t)((reg_value >> 8) & 0xFF)) == ESP_OK,
"write EPDRH failed", err, ESP_FAIL);
/* select PHY and select write operation */
MAC_CHECK(dm9051_register_write(emac, DM9051_EPCR, EPCR_EPOS | EPCR_ERPRW) == ESP_OK, "write EPCR failed", err, ESP_FAIL);
/* polling the busy flag */
uint32_t to = 0;
do {
ets_delay_us(100);
MAC_CHECK(dm9051_register_read(emac, DM9051_EPCR, &epcr) == ESP_OK, "read EPCR failed", err, ESP_FAIL);
to += 100;
} while ((epcr & EPCR_ERRE) && to < DM9051_PHY_OPERATION_TIMEOUT_US);
MAC_CHECK(!(epcr & EPCR_ERRE), "phy is busy", err, ESP_ERR_TIMEOUT);
return ESP_OK;
err:
return ret;
}
static esp_err_t emac_dm9051_read_phy_reg(esp_eth_mac_t *mac, uint32_t phy_addr, uint32_t phy_reg, uint32_t *reg_value)
{
esp_err_t ret = ESP_OK;
MAC_CHECK(reg_value, "can't set reg_value to null", err, ESP_ERR_INVALID_ARG);
emac_dm9051_t *emac = __containerof(mac, emac_dm9051_t, parent);
/* check if phy access is in progress */
uint8_t epcr = 0;
MAC_CHECK(dm9051_register_read(emac, DM9051_EPCR, &epcr) == ESP_OK, "read EPCR failed", err, ESP_FAIL);
MAC_CHECK(!(epcr & 0x01), "phy is busy", err, ESP_ERR_INVALID_STATE);
MAC_CHECK(dm9051_register_write(emac, DM9051_EPAR, (uint8_t)(((phy_addr << 6) & 0xFF) | phy_reg)) == ESP_OK,
"write EPAR failed", err, ESP_FAIL);
/* Select PHY and select read operation */
MAC_CHECK(dm9051_register_write(emac, DM9051_EPCR, 0x0C) == ESP_OK, "write EPCR failed", err, ESP_FAIL);
/* polling the busy flag */
uint32_t to = 0;
do {
ets_delay_us(100);
MAC_CHECK(dm9051_register_read(emac, DM9051_EPCR, &epcr) == ESP_OK, "read EPCR failed", err, ESP_FAIL);
to += 100;
} while ((epcr & EPCR_ERRE) && to < DM9051_PHY_OPERATION_TIMEOUT_US);
MAC_CHECK(!(epcr & EPCR_ERRE), "phy is busy", err, ESP_ERR_TIMEOUT);
uint8_t value_h = 0;
uint8_t value_l = 0;
MAC_CHECK(dm9051_register_read(emac, DM9051_EPDRH, &value_h) == ESP_OK, "read EPDRH failed", err, ESP_FAIL);
MAC_CHECK(dm9051_register_read(emac, DM9051_EPDRL, &value_l) == ESP_OK, "read EPDRL failed", err, ESP_FAIL);
*reg_value = (value_h << 8) | value_l;
return ESP_OK;
err:
return ret;
}
static esp_err_t emac_dm9051_set_addr(esp_eth_mac_t *mac, uint8_t *addr)
{
esp_err_t ret = ESP_OK;
MAC_CHECK(addr, "can't set mac addr to null", err, ESP_ERR_INVALID_ARG);
emac_dm9051_t *emac = __containerof(mac, emac_dm9051_t, parent);
memcpy(emac->addr, addr, 6);
MAC_CHECK(dm9051_set_mac_addr(emac) == ESP_OK, "set mac address failed", err, ESP_FAIL);
return ESP_OK;
err:
return ret;
}
static esp_err_t emac_dm9051_get_addr(esp_eth_mac_t *mac, uint8_t *addr)
{
esp_err_t ret = ESP_OK;
MAC_CHECK(addr, "can't set mac addr to null", err, ESP_ERR_INVALID_ARG);
emac_dm9051_t *emac = __containerof(mac, emac_dm9051_t, parent);
memcpy(addr, emac->addr, 6);
return ESP_OK;
err:
return ret;
}
static esp_err_t emac_dm9051_set_link(esp_eth_mac_t *mac, eth_link_t link)
{
esp_err_t ret = ESP_OK;
emac_dm9051_t *emac = __containerof(mac, emac_dm9051_t, parent);
uint8_t nsr = 0;
MAC_CHECK(dm9051_register_read(emac, DM9051_NSR, &nsr) == ESP_OK, "read NSR failed", err, ESP_FAIL);
switch (link) {
case ETH_LINK_UP:
MAC_CHECK(nsr & NSR_LINKST, "phy is not link up", err, ESP_ERR_INVALID_STATE);
MAC_CHECK(dm9051_start(emac) == ESP_OK, "dm9051 start failed", err, ESP_FAIL);
break;
case ETH_LINK_DOWN:
MAC_CHECK(!(nsr & NSR_LINKST), "phy is not link down", err, ESP_ERR_INVALID_STATE);
MAC_CHECK(dm9051_stop(emac) == ESP_OK, "dm9051 stop failed", err, ESP_FAIL);
break;
default:
MAC_CHECK(false, "unknown link status", err, ESP_ERR_INVALID_ARG);
break;
}
return ESP_OK;
err:
return ret;
}
static esp_err_t emac_dm9051_set_speed(esp_eth_mac_t *mac, eth_speed_t speed)
{
esp_err_t ret = ESP_OK;
emac_dm9051_t *emac = __containerof(mac, emac_dm9051_t, parent);
uint8_t nsr = 0;
MAC_CHECK(dm9051_register_read(emac, DM9051_NSR, &nsr) == ESP_OK, "read NSR failed", err, ESP_FAIL);
switch (speed) {
case ETH_SPEED_10M:
MAC_CHECK(nsr & NSR_SPEED, "phy speed is not at 10Mbps", err, ESP_ERR_INVALID_STATE);
break;
case ETH_SPEED_100M:
MAC_CHECK(!(nsr & NSR_SPEED), "phy speed is not at 100Mbps", err, ESP_ERR_INVALID_STATE);
break;
default:
MAC_CHECK(false, "unknown speed", err, ESP_ERR_INVALID_ARG);
break;
}
return ESP_OK;
err:
return ret;
}
static esp_err_t emac_dm9051_set_duplex(esp_eth_mac_t *mac, eth_duplex_t duplex)
{
esp_err_t ret = ESP_OK;
emac_dm9051_t *emac = __containerof(mac, emac_dm9051_t, parent);
uint8_t ncr = 0;
MAC_CHECK(dm9051_register_read(emac, DM9051_NCR, &ncr) == ESP_OK, "read NCR failed", err, ESP_FAIL);
switch (duplex) {
case ETH_DUPLEX_HALF:
MAC_CHECK(!(ncr & NCR_FDX), "phy is not at half duplex", err, ESP_ERR_INVALID_STATE);
break;
case ETH_DUPLEX_FULL:
MAC_CHECK(ncr & NCR_FDX, "phy is not at full duplex", err, ESP_ERR_INVALID_STATE);
break;
default:
MAC_CHECK(false, "unknown duplex", err, ESP_ERR_INVALID_ARG);
break;
}
return ESP_OK;
err:
return ret;
}
static esp_err_t emac_dm9051_set_promiscuous(esp_eth_mac_t *mac, bool enable)
{
esp_err_t ret = ESP_OK;
emac_dm9051_t *emac = __containerof(mac, emac_dm9051_t, parent);
uint8_t rcr = 0;
MAC_CHECK(dm9051_register_read(emac, DM9051_EPDRL, &rcr) == ESP_OK, "read RCR failed", err, ESP_FAIL);
if (enable) {
rcr |= RCR_PRMSC;
} else {
rcr &= ~RCR_PRMSC;
}
MAC_CHECK(dm9051_register_write(emac, DM9051_RCR, rcr) == ESP_OK, "write RCR failed", err, ESP_FAIL);
return ESP_OK;
err:
return ret;
}
static esp_err_t emac_dm9051_transmit(esp_eth_mac_t *mac, uint8_t *buf, uint32_t length)
{
esp_err_t ret = ESP_OK;
emac_dm9051_t *emac = __containerof(mac, emac_dm9051_t, parent);
MAC_CHECK(buf, "can't set buf to null", err, ESP_ERR_INVALID_ARG);
MAC_CHECK(length, "buf length can't be zero", err, ESP_ERR_INVALID_ARG);
/* Check if last transmit complete */
uint8_t tcr = 0;
MAC_CHECK(dm9051_register_read(emac, DM9051_TCR, &tcr) == ESP_OK, "read TCR failed", err, ESP_FAIL);
MAC_CHECK(!(tcr & TCR_TXREQ), "last transmit still in progress", err, ESP_ERR_INVALID_STATE);
/* set tx length */
MAC_CHECK(dm9051_register_write(emac, DM9051_TXPLL, length & 0xFF) == ESP_OK, "write TXPLL failed", err, ESP_FAIL);
MAC_CHECK(dm9051_register_write(emac, DM9051_TXPLH, (length >> 8) & 0xFF) == ESP_OK, "write TXPLH failed", err, ESP_FAIL);
/* copy data to tx memory */
MAC_CHECK(dm9051_memory_write(emac, buf, length) == ESP_OK, "write memory failed", err, ESP_FAIL);
/* issue tx polling command */
tcr |= TCR_TXREQ;
MAC_CHECK(dm9051_register_write(emac, DM9051_TCR, tcr) == ESP_OK, "write TCR failed", err, ESP_FAIL);
return ESP_OK;
err:
return ret;
}
static esp_err_t emac_dm9051_receive(esp_eth_mac_t *mac, uint8_t *buf, uint32_t *length)
{
esp_err_t ret = ESP_OK;
emac_dm9051_t *emac = __containerof(mac, emac_dm9051_t, parent);
MAC_CHECK(buf && length, "can't set buf and length to null", err, ESP_ERR_INVALID_ARG);
uint8_t rxbyte = 0;
uint16_t rx_len = 0;
__attribute__((aligned(4))) dm9051_rx_header_t header; // SPI driver needs the rx buffer 4 byte align
emac->packets_remain = false;
/* dummy read, get the most updated data */
MAC_CHECK(dm9051_register_read(emac, DM9051_MRCMDX, &rxbyte) == ESP_OK, "read MRCMDX failed", err, ESP_FAIL);
MAC_CHECK(dm9051_register_read(emac, DM9051_MRCMDX, &rxbyte) == ESP_OK, "read MRCMDX failed", err, ESP_FAIL);
/* rxbyte must be 0xFF, 0 or 1 */
if (rxbyte > 1) {
MAC_CHECK(dm9051_stop(emac) == ESP_OK, "stop dm9051 failed", err, ESP_FAIL);
/* reset rx fifo pointer */
MAC_CHECK(dm9051_register_write(emac, DM9051_MPTRCR, MPTRCR_RST_RX) == ESP_OK, "write MPTRCR failed", err, ESP_FAIL);
ets_delay_us(10);
MAC_CHECK(dm9051_start(emac) == ESP_OK, "start dm9051 failed", err, ESP_FAIL);
MAC_CHECK(false, "reset rx fifo pointer", err, ESP_FAIL);
} else if (rxbyte) {
MAC_CHECK(dm9051_memory_read(emac, (uint8_t *)&header, sizeof(header)) == ESP_OK, "read rx header failed", err, ESP_FAIL);
rx_len = header.length_low + (header.length_high << 8);
MAC_CHECK(dm9051_memory_read(emac, buf, rx_len) == ESP_OK, "read rx data failed", err, ESP_FAIL);
MAC_CHECK(!(header.status & 0xBF), "receive status error: %xH", err, ESP_FAIL, header.status);
*length = rx_len - 4; // substract the CRC length (4Bytes)
/* dummy read, get the most updated data */
MAC_CHECK(dm9051_register_read(emac, DM9051_MRCMDX, &rxbyte) == ESP_OK, "read MRCMDX failed", err, ESP_FAIL);
MAC_CHECK(dm9051_register_read(emac, DM9051_MRCMDX, &rxbyte) == ESP_OK, "read MRCMDX failed", err, ESP_FAIL);
emac->packets_remain = rxbyte > 0;
}
return ESP_OK;
err:
return ret;
}
static esp_err_t emac_dm9051_init(esp_eth_mac_t *mac)
{
esp_err_t ret = ESP_OK;
emac_dm9051_t *emac = __containerof(mac, emac_dm9051_t, parent);
esp_eth_mediator_t *eth = emac->eth;
/* init gpio used by spi-ethernet interrupt */
gpio_pad_select_gpio(CONFIG_ETH_DM9051_INT_GPIO);
gpio_set_direction(CONFIG_ETH_DM9051_INT_GPIO, GPIO_MODE_INPUT);
gpio_set_pull_mode(CONFIG_ETH_DM9051_INT_GPIO, GPIO_PULLDOWN_ONLY);
gpio_set_intr_type(CONFIG_ETH_DM9051_INT_GPIO, GPIO_INTR_POSEDGE);
gpio_intr_enable(CONFIG_ETH_DM9051_INT_GPIO);
gpio_isr_handler_add(CONFIG_ETH_DM9051_INT_GPIO, dm9051_isr_handler, emac);
MAC_CHECK(eth->on_state_changed(eth, ETH_STATE_LLINIT, NULL) == ESP_OK, "lowlevel init failed", err, ESP_FAIL);
/* reset dm9051 */
MAC_CHECK(dm9051_reset(emac) == ESP_OK, "reset dm9051 failed", err, ESP_FAIL);
/* verify chip id */
MAC_CHECK(dm9051_verify_id(emac) == ESP_OK, "vefiry chip ID failed", err, ESP_FAIL);
/* default setup of internal registers */
MAC_CHECK(dm9051_setup_default(emac) == ESP_OK, "dm9051 default setup failed", err, ESP_FAIL);
/* clear multicast hash table */
MAC_CHECK(dm9051_clear_multicast_table(emac) == ESP_OK, "clear multicast table failed", err, ESP_FAIL);
/* get emac address from eeprom */
MAC_CHECK(dm9051_get_mac_addr(emac) == ESP_OK, "fetch ethernet mac address failed", err, ESP_FAIL);
return ESP_OK;
err:
gpio_isr_handler_remove(CONFIG_ETH_DM9051_INT_GPIO);
gpio_reset_pin(CONFIG_ETH_DM9051_INT_GPIO);
eth->on_state_changed(eth, ETH_STATE_DEINIT, NULL);
return ret;
}
static esp_err_t emac_dm9051_deinit(esp_eth_mac_t *mac)
{
emac_dm9051_t *emac = __containerof(mac, emac_dm9051_t, parent);
esp_eth_mediator_t *eth = emac->eth;
dm9051_stop(emac);
gpio_isr_handler_remove(CONFIG_ETH_DM9051_INT_GPIO);
gpio_reset_pin(CONFIG_ETH_DM9051_INT_GPIO);
eth->on_state_changed(eth, ETH_STATE_DEINIT, NULL);
return ESP_OK;
}
static esp_err_t emac_dm9051_del(esp_eth_mac_t *mac)
{
emac_dm9051_t *emac = __containerof(mac, emac_dm9051_t, parent);
vTaskDelete(emac->rx_task_hdl);
vSemaphoreDelete(emac->spi_lock);
free(emac);
return ESP_OK;
}
esp_eth_mac_t *esp_eth_mac_new_dm9051(const eth_mac_config_t *config)
{
esp_eth_mac_t *ret = NULL;
MAC_CHECK(config, "can't set mac config to null", err, NULL);
MAC_CHECK(config->spi_hdl, "can't set spi handle to null", err, NULL);
emac_dm9051_t *emac = calloc(1, sizeof(emac_dm9051_t));
MAC_CHECK(emac, "calloc emac failed", err, NULL);
/* bind methods and attributes */
emac->sw_reset_timeout_ms = config->sw_reset_timeout_ms;
emac->spi_hdl = config->spi_hdl;
emac->parent.set_mediator = emac_dm9051_set_mediator;
emac->parent.init = emac_dm9051_init;
emac->parent.deinit = emac_dm9051_deinit;
emac->parent.del = emac_dm9051_del;
emac->parent.write_phy_reg = emac_dm9051_write_phy_reg;
emac->parent.read_phy_reg = emac_dm9051_read_phy_reg;
emac->parent.set_addr = emac_dm9051_set_addr;
emac->parent.get_addr = emac_dm9051_get_addr;
emac->parent.set_speed = emac_dm9051_set_speed;
emac->parent.set_duplex = emac_dm9051_set_duplex;
emac->parent.set_link = emac_dm9051_set_link;
emac->parent.set_promiscuous = emac_dm9051_set_promiscuous;
emac->parent.transmit = emac_dm9051_transmit;
emac->parent.receive = emac_dm9051_receive;
/* create mutex */
emac->spi_lock = xSemaphoreCreateMutex();
MAC_CHECK(emac->spi_lock, "create lock failed", err_lock, NULL);
/* create dm9051 task */
BaseType_t xReturned = xTaskCreate(emac_dm9051_task, "dm9051_tsk", config->rx_task_stack_size, emac,
config->rx_task_prio, &emac->rx_task_hdl);
MAC_CHECK(xReturned == pdPASS, "create dm9051 task failed", err_tsk, NULL);
return &(emac->parent);
err_tsk:
vSemaphoreDelete(emac->spi_lock);
err_lock:
free(emac);
err:
return ret;
}