// Copyright 2019 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include "driver/gpio.h" #include "driver/spi_master.h" #include "esp_log.h" #include "esp_eth.h" #include "esp_system.h" #include "esp_intr_alloc.h" #include "esp_heap_caps.h" #include "freertos/FreeRTOS.h" #include "freertos/task.h" #include "freertos/semphr.h" #include "sdkconfig.h" static const char *TAG = "emac_dm9051"; #define MAC_CHECK(a, str, goto_tag, ret_value, ...) \ do \ { \ if (!(a)) \ { \ ESP_LOGE(TAG, "%s(%d): " str, __FUNCTION__, __LINE__, ##__VA_ARGS__); \ ret = ret_value; \ goto goto_tag; \ } \ } while (0) #define RX_QUEUE_WAIT_MS (100) #define DM9051_SPI_LOCK_TIMEOUT_MS (50) #define DM9051_PHY_OPERATION_TIMEOUT_US (1000) /** * @brief Registers in DM9051 * */ #define DM9051_NCR (0x00) // Network Control Register #define DM9051_NSR (0x01) // Network Status Register #define DM9051_TCR (0x02) // Tx Control Register #define DM9051_TSR1 (0x03) // Tx Status Register I #define DM9051_TSR2 (0x04) // Tx Status Register II #define DM9051_RCR (0x05) // Rx Control Register #define DM9051_RSR (0x06) // Rx Status Register #define DM9051_ROCR (0x07) // Receive Overflow Counter Register #define DM9051_BPTR (0x08) // Back Pressure Threshold Register #define DM9051_FCTR (0x09) // Flow Control Threshold Register #define DM9051_FCR (0x0A) // Rx/Tx Flow Control Register #define DM9051_EPCR (0x0B) // EEPROM & PHY Control Register #define DM9051_EPAR (0x0C) // EEPROM & PHY Address Register #define DM9051_EPDRL (0x0D) // EEPROM & PHY Data Register Low #define DM9051_EPDRH (0x0E) // EEPROM & PHY Data Register High #define DM9051_WCR (0x0F) // Wake Up Control Register #define DM9051_PAR (0x10) // Physical Address Register #define DM9051_MAR (0x16) // Multicast Address Hash Table Register #define DM9051_GPCR (0x1E) // General Purpose Control Register #define DM9051_GPR (0x1F) // General Purpose Register #define DM9051_TRPAL (0x22) // Tx Memory Read Pointer Address Low Byte #define DM9051_TRPAH (0x23) // Tx Memory Read Pointer Address High Byte #define DM9051_RWPAL (0x24) // Rx Memory Read Pointer Address Low Byte #define DM9051_RWPAH (0x25) // Rx Memory Read Pointer Address High Byte #define DM9051_VIDL (0x28) // Vendor ID Low Byte #define DM9051_VIDH (0x29) // Vendor ID High Byte #define DM9051_PIDL (0x2A) // Product ID Low Byte #define DM9051_PIDH (0x2B) // Product ID High Byte #define DM9051_CHIPR (0x2C) // CHIP Revision #define DM9051_TCR2 (0x2D) // Transmit Control Register 2 #define DM9051_ATCR (0x30) // Auto-Transmit Control Register #define DM9051_TCSCR (0x31) // Transmit Check Sum Control Register #define DM9051_RCSCSR (0x32) // Receive Check Sum Control Status Register #define DM9051_SBCR (0x38) // SPI Bus Control Register #define DM9051_INTCR (0x39) // INT Pin Control Register #define DM9051_PPCSR (0x3D) // Pause Packet Control Status Register #define DM9051_EEE_IN (0x3E) // IEEE 802.3az Enter Counter Register #define DM9051_EEE_OUT (0x3F) // IEEE 802.3az Leave Counter Register #define DM9051_ALNCR (0x4A) // SPI Byte Align Error Counter Register #define DM9051_RLENCR (0x52) // Rx Packet Length Control Register #define DM9051_BCASTCR (0x53) // RX Broadcast Control Register #define DM9051_INTCKCR (0x54) // INT Pin Clock Output Control Register #define DM9051_MPTRCR (0x55) // Memory Pointer Control Register #define DM9051_MLEDCR (0x57) // More LED Control Register #define DM9051_MEMSCR (0x59) // Memory Control Register #define DM9051_TMEMR (0x5A) // Transmit Memory Size Register #define DM9051_MBSR (0x5D) // Memory BIST Status Register #define DM9051_MRCMDX (0x70) // Memory Data Pre-Fetch Read Command Without Address Increment Register #define DM9051_MRCMDX1 (0x71) // Memory Read Command Without Pre-Fetch and Without Address Increment Register #define DM9051_MRCMD (0x72) // Memory Data Read Command With Address Increment Register #define DM9051_SDR_DLY (0x73) // SPI Data Read Delay Counter Register #define DM9051_MRRL (0x74) // Memory Data Read Address Register Low Byte #define DM9051_MRRH (0x75) // Memory Data Read Address Register High Byte #define DM9051_MWCMDX (0x76) // Memory Data Write Command Without Address Increment Register #define DM9051_MWCMD (0x78) // Memory Data Write Command With Address Increment Register #define DM9051_MWRL (0x7A) // Memory Data Write Address Register Low Byte #define DM9051_MWRH (0x7B) // Memory Data Write Address Register High Byte #define DM9051_TXPLL (0x7C) // TX Packet Length Low Byte Register #define DM9051_TXPLH (0x7D) // TX Packet Length High Byte Register #define DM9051_ISR (0x7E) // Interrupt Status Register #define DM9051_IMR (0x7F) // Interrupt Mask Register /** * @brief status and flag of DM9051 specific registers * */ #define DM9051_SPI_RD (0) // Burst Read Command #define DM9051_SPI_WR (1) // Burst Write Command #define NCR_WAKEEN (1 << 6) // Enable Wakeup Function #define NCR_FDX (1 << 3) // Duplex Mode of the Internal PHY #define NCR_RST (1 << 0) // Software Reset and Auto-Clear after 10us #define NSR_SPEED (1 << 7) // Speed of Internal PHY #define NSR_LINKST (1 << 6) // Link Status of Internal PHY #define NSR_WAKEST (1 << 5) // Wakeup Event Status #define NSR_TX2END (1 << 3) // TX Packet Index II Complete Status #define NSR_TX1END (1 << 2) // TX Packet Index I Complete Status #define NSR_RXOV (1 << 1) // RX Memory Overflow Status #define NSR_RXRDY (1 << 0) // RX Packet Ready #define TCR_TXREQ (1 << 0) // TX Request. Auto-Clear after Sending Completely #define RCR_WTDIS (1 << 6) // Watchdog Timer Disable #define RCR_DIS_LONG (1 << 5) // Discard Long Packet #define RCR_DIS_CRC (1 << 4) // Discard CRC Error Packet #define RCR_ALL (1 << 3) // Receive All Multicast #define RCR_RUNT (1 << 2) // Receive Runt Packet #define RCR_PRMSC (1 << 1) // Promiscuous Mode #define RCR_RXEN (1 << 0) // RX Enable #define RSR_RF (1 << 7) // Runt Frame #define RSR_MF (1 << 6) // Multicast Frame #define RSR_LCS (1 << 5) // Late Collision Seen #define RSR_RWTO (1 << 4) // Receive Watchdog Time-Out #define RSR_PLE (1 << 3) // Physical Layer Error #define RSR_AE (1 << 2) // Alignment Error #define RSR_CE (1 << 1) // CRC Error #define RSR_FOE (1 << 0) // RX Memory Overflow Error #define FCR_FLOW_ENABLE (0x39) // Enable Flow Control #define EPCR_REEP (1 << 5) // Reload EEPROM #define EPCR_WEP (1 << 4) // Write EEPROM Enable #define EPCR_EPOS (1 << 3) // EEPROM or PHY Operation Select #define EPCR_ERPRR (1 << 2) // EEPROM Read or PHY Register Read Command #define EPCR_ERPRW (1 << 1) // EEPROM Write or PHY Register Write Command #define EPCR_ERRE (1 << 0) // EEPROM Access Status or PHY Access Status #define TCR2_RLCP (1 << 6) // Retry Late Collision Packet #define ATCR_AUTO_TX (1 << 7) // Auto-Transmit Control #define TCSCR_UDPCSE (1 << 2) // UDP CheckSum Generation #define TCSCR_TCPCSE (1 << 1) // TCP CheckSum Generation #define TCSCR_IPCSE (1 << 0) // IPv4 CheckSum Generation #define MPTRCR_RST_TX (1 << 1) // Reset TX Memory Pointer #define MPTRCR_RST_RX (1 << 0) // Reset RX Memory Pointer #define ISR_LNKCHGS (1 << 5) // Link Status Change #define ISR_ROO (1 << 3) // Receive Overflow Counter Overflow #define ISR_ROS (1 << 2) // Receive Overflow #define ISR_PT (1 << 1) // Packet Transmitted #define ISR_PR (1 << 0) // Packet Received #define ISR_CLR_STATUS (ISR_LNKCHGS | ISR_ROO | ISR_ROS | ISR_PT | ISR_PR) #define IMR_PAR (1 << 7) // Pointer Auto-Return Mode #define IMR_LNKCHGI (1 << 5) // Enable Link Status Change Interrupt #define IMR_ROOI (1 << 3) // Enable Receive Overflow Counter Overflow Interrupt #define IMR_ROI (1 << 2) // Enable Receive Overflow Interrupt #define IMR_PTI (1 << 1) // Enable Packet Transmitted Interrupt #define IMR_PRI (1 << 0) // Enable Packet Received Interrupt #define IMR_ALL (IMR_PAR | IMR_LNKCHGI | IMR_ROOI | IMR_ROI | IMR_PTI | IMR_PRI) typedef struct { uint8_t flag; uint8_t status; uint8_t length_low; uint8_t length_high; } dm9051_rx_header_t; typedef struct { esp_eth_mac_t parent; esp_eth_mediator_t *eth; spi_device_handle_t spi_hdl; SemaphoreHandle_t spi_lock; TaskHandle_t rx_task_hdl; uint32_t sw_reset_timeout_ms; uint8_t addr[6]; bool packets_remain; } emac_dm9051_t; static inline bool dm9051_lock(emac_dm9051_t *emac) { return xSemaphoreTake(emac->spi_lock, DM9051_SPI_LOCK_TIMEOUT_MS) == pdTRUE; } static inline bool dm9051_unlock(emac_dm9051_t *emac) { return xSemaphoreGive(emac->spi_lock) == pdTRUE; } /** * @brief write value to dm9051 internal register */ static esp_err_t dm9051_register_write(emac_dm9051_t *emac, uint8_t reg_addr, uint8_t value) { esp_err_t ret = ESP_OK; spi_transaction_t trans = { .cmd = DM9051_SPI_WR, .addr = reg_addr, .length = 8, .flags = SPI_TRANS_USE_TXDATA }; trans.tx_data[0] = value; if (dm9051_lock(emac)) { if (spi_device_polling_transmit(emac->spi_hdl, &trans) != ESP_OK) { ESP_LOGE(TAG, "%s(%d): spi transmit failed", __FUNCTION__, __LINE__); ret = ESP_FAIL; } dm9051_unlock(emac); } else { ret = ESP_ERR_TIMEOUT; } return ret; } /** * @brief read value from dm9051 internal register */ static esp_err_t dm9051_register_read(emac_dm9051_t *emac, uint8_t reg_addr, uint8_t *value) { esp_err_t ret = ESP_OK; spi_transaction_t trans = { .cmd = DM9051_SPI_RD, .addr = reg_addr, .length = 8, .flags = SPI_TRANS_USE_TXDATA | SPI_TRANS_USE_RXDATA }; if (dm9051_lock(emac)) { if (spi_device_polling_transmit(emac->spi_hdl, &trans) != ESP_OK) { ESP_LOGE(TAG, "%s(%d): spi transmit failed", __FUNCTION__, __LINE__); ret = ESP_FAIL; } else { *value = trans.rx_data[0]; } dm9051_unlock(emac); } else { ret = ESP_ERR_TIMEOUT; } return ret; } /** * @brief write buffer to dm9051 internal memory */ static esp_err_t dm9051_memory_write(emac_dm9051_t *emac, uint8_t *buffer, uint32_t len) { esp_err_t ret = ESP_OK; spi_transaction_t trans = { .cmd = DM9051_SPI_WR, .addr = DM9051_MWCMD, .length = len * 8, .tx_buffer = buffer }; if (dm9051_lock(emac)) { if (spi_device_polling_transmit(emac->spi_hdl, &trans) != ESP_OK) { ESP_LOGE(TAG, "%s(%d): spi transmit failed", __FUNCTION__, __LINE__); ret = ESP_FAIL; } dm9051_unlock(emac); } else { ret = ESP_ERR_TIMEOUT; } return ret; } /** * @brief read buffer from dm9051 internal memory */ static esp_err_t dm9051_memory_read(emac_dm9051_t *emac, uint8_t *buffer, uint32_t len) { esp_err_t ret = ESP_OK; spi_transaction_t trans = { .cmd = DM9051_SPI_RD, .addr = DM9051_MRCMD, .length = len * 8, .rx_buffer = buffer }; if (dm9051_lock(emac)) { if (spi_device_polling_transmit(emac->spi_hdl, &trans) != ESP_OK) { ESP_LOGE(TAG, "%s(%d): spi transmit failed", __FUNCTION__, __LINE__); ret = ESP_FAIL; } dm9051_unlock(emac); } else { ret = ESP_ERR_TIMEOUT; } return ret; } /** * @brief read mac address from internal registers */ static esp_err_t dm9051_get_mac_addr(emac_dm9051_t *emac) { esp_err_t ret = ESP_OK; for (int i = 0; i < 6; i++) { MAC_CHECK(dm9051_register_read(emac, DM9051_PAR + i, &emac->addr[i]) == ESP_OK, "read PAR failed", err, ESP_FAIL); } return ESP_OK; err: return ret; } /** * @brief set new mac address to internal registers */ static esp_err_t dm9051_set_mac_addr(emac_dm9051_t *emac) { esp_err_t ret = ESP_OK; for (int i = 0; i < 6; i++) { MAC_CHECK(dm9051_register_write(emac, DM9051_PAR + i, emac->addr[i]) == ESP_OK, "write PAR failed", err, ESP_FAIL); } return ESP_OK; err: return ret; } /** * @brief clear multicast hash table */ static esp_err_t dm9051_clear_multicast_table(emac_dm9051_t *emac) { esp_err_t ret = ESP_OK; /* rx broadcast packet control by bit7 of MAC register 1DH */ MAC_CHECK(dm9051_register_write(emac, DM9051_BCASTCR, 0x00) == ESP_OK, "write BCASTCR failed", err, ESP_FAIL); for (int i = 0; i < 7; i++) { MAC_CHECK(dm9051_register_write(emac, DM9051_MAR + i, 0x00) == ESP_OK, "write MAR failed", err, ESP_FAIL); } /* enable receive broadcast paclets */ MAC_CHECK(dm9051_register_write(emac, DM9051_MAR + 7, 0x80) == ESP_OK, "write MAR failed", err, ESP_FAIL); return ESP_OK; err: return ret; } /** * @brief software reset dm9051 internal register */ static esp_err_t dm9051_reset(emac_dm9051_t *emac) { esp_err_t ret = ESP_OK; /* power on phy */ MAC_CHECK(dm9051_register_write(emac, DM9051_GPR, 0x00) == ESP_OK, "write GPR failed", err, ESP_FAIL); /* mac and phy register won't be accesable within at least 1ms */ vTaskDelay(pdMS_TO_TICKS(10)); /* software reset */ uint8_t ncr = NCR_RST; MAC_CHECK(dm9051_register_write(emac, DM9051_NCR, ncr) == ESP_OK, "write NCR failed", err, ESP_FAIL); uint32_t to = 0; for (to = 0; to < emac->sw_reset_timeout_ms / 10; to++) { MAC_CHECK(dm9051_register_read(emac, DM9051_NCR, &ncr) == ESP_OK, "read NCR failed", err, ESP_FAIL); if (!(ncr & NCR_RST)) { break; } vTaskDelay(pdMS_TO_TICKS(10)); } MAC_CHECK(to < emac->sw_reset_timeout_ms / 10, "reset timeout", err, ESP_ERR_TIMEOUT); return ESP_OK; err: return ret; } /** * @brief verify dm9051 chip ID */ static esp_err_t dm9051_verify_id(emac_dm9051_t *emac) { esp_err_t ret = ESP_OK; uint8_t id[2]; MAC_CHECK(dm9051_register_read(emac, DM9051_VIDL, &id[0]) == ESP_OK, "read VIDL failed", err, ESP_FAIL); MAC_CHECK(dm9051_register_read(emac, DM9051_VIDH, &id[1]) == ESP_OK, "read VIDH failed", err, ESP_FAIL); MAC_CHECK(0x0A == id[1] && 0x46 == id[0], "wrong Vendor ID", err, ESP_ERR_INVALID_VERSION); MAC_CHECK(dm9051_register_read(emac, DM9051_PIDL, &id[0]) == ESP_OK, "read PIDL failed", err, ESP_FAIL); MAC_CHECK(dm9051_register_read(emac, DM9051_PIDH, &id[1]) == ESP_OK, "read PIDH failed", err, ESP_FAIL); MAC_CHECK(0x90 == id[1] && 0x51 == id[0], "wrong Product ID", err, ESP_ERR_INVALID_VERSION); return ESP_OK; err: return ret; } /** * @brief default setup for dm9051 internal registers */ static esp_err_t dm9051_setup_default(emac_dm9051_t *emac) { esp_err_t ret = ESP_OK; /* disable wakeup */ MAC_CHECK(dm9051_register_write(emac, DM9051_NCR, 0x00) == ESP_OK, "write NCR failed", err, ESP_FAIL); MAC_CHECK(dm9051_register_write(emac, DM9051_WCR, 0x00) == ESP_OK, "write WCR failed", err, ESP_FAIL); /* stop transmitting, enable appending pad, crc for packets */ MAC_CHECK(dm9051_register_write(emac, DM9051_TCR, 0x00) == ESP_OK, "write TCR failed", err, ESP_FAIL); /* stop receiving, no promiscuous mode, no runt packet(size < 64bytes), not all multicast packets*/ /* discard long packet(size > 1522bytes) and crc error packet, enable watchdog */ MAC_CHECK(dm9051_register_write(emac, DM9051_RCR, RCR_DIS_LONG | RCR_DIS_CRC) == ESP_OK, "write RCR failed", err, ESP_FAIL); /* send jam pattern (duration time = 1.15ms) when rx free space < 3k bytes */ MAC_CHECK(dm9051_register_write(emac, DM9051_BPTR, 0x3F) == ESP_OK, "write BPTR failed", err, ESP_FAIL); /* flow control: high water threshold = 3k bytes, low water threshold = 8k bytes */ MAC_CHECK(dm9051_register_write(emac, DM9051_FCTR, 0x38) == ESP_OK, "write FCTR failed", err, ESP_FAIL); /* enable flow control */ MAC_CHECK(dm9051_register_write(emac, DM9051_FCR, FCR_FLOW_ENABLE) == ESP_OK, "write FCR failed", err, ESP_FAIL); /* retry late collision packet, at most two transmit command can be issued before transmit complete */ MAC_CHECK(dm9051_register_write(emac, DM9051_TCR2, TCR2_RLCP) == ESP_OK, "write TCR2 failed", err, ESP_FAIL); /* enable auto transmit */ MAC_CHECK(dm9051_register_write(emac, DM9051_ATCR, ATCR_AUTO_TX) == ESP_OK, "write ATCR failed", err, ESP_FAIL); /* generate checksum for UDP, TCP and IPv4 packets */ MAC_CHECK(dm9051_register_write(emac, DM9051_TCSCR, TCSCR_IPCSE | TCSCR_TCPCSE | TCSCR_UDPCSE) == ESP_OK, "write TCSCR failed", err, ESP_FAIL); /* disable check sum for receive packets */ MAC_CHECK(dm9051_register_write(emac, DM9051_RCSCSR, 0x00) == ESP_OK, "write RCSCSR failed", err, ESP_FAIL); /* interrupt pin config: push-pull output, active high */ MAC_CHECK(dm9051_register_write(emac, DM9051_INTCR, 0x00) == ESP_OK, "write INTCR failed", err, ESP_FAIL); MAC_CHECK(dm9051_register_write(emac, DM9051_INTCKCR, 0x00) == ESP_OK, "write INTCKCR failed", err, ESP_FAIL); /* no length limitation for rx packets */ MAC_CHECK(dm9051_register_write(emac, DM9051_RLENCR, 0x00) == ESP_OK, "write RLENCR failed", err, ESP_FAIL); /* 3K-byte for TX and 13K-byte for RX */ MAC_CHECK(dm9051_register_write(emac, DM9051_MEMSCR, 0x00) == ESP_OK, "write MEMSCR failed", err, ESP_FAIL); /* reset tx and rx memory pointer */ MAC_CHECK(dm9051_register_write(emac, DM9051_MPTRCR, MPTRCR_RST_RX | MPTRCR_RST_TX) == ESP_OK, "write MPTRCR failed", err, ESP_FAIL); /* clear network status: wakeup event, tx complete */ MAC_CHECK(dm9051_register_write(emac, DM9051_NSR, NSR_WAKEST | NSR_TX2END | NSR_TX1END) == ESP_OK, "write NSR failed", err, ESP_FAIL); /* clear interrupt status */ MAC_CHECK(dm9051_register_write(emac, DM9051_ISR, ISR_CLR_STATUS) == ESP_OK, "write ISR failed", err, ESP_FAIL); return ESP_OK; err: return ret; } /** * @brief start dm9051: enable interrupt and start receive */ static esp_err_t dm9051_start(emac_dm9051_t *emac) { esp_err_t ret = ESP_OK; /* enable interrupt */ MAC_CHECK(dm9051_register_write(emac, DM9051_IMR, IMR_ALL) == ESP_OK, "write IMR failed", err, ESP_FAIL); /* enable rx */ uint8_t rcr = 0; MAC_CHECK(dm9051_register_read(emac, DM9051_RCR, &rcr) == ESP_OK, "read RCR failed", err, ESP_FAIL); rcr |= RCR_RXEN; MAC_CHECK(dm9051_register_write(emac, DM9051_RCR, rcr) == ESP_OK, "write RCR failed", err, ESP_FAIL); return ESP_OK; err: return ret; } /** * @brief stop dm9051: disable interrupt and stop receive */ static esp_err_t dm9051_stop(emac_dm9051_t *emac) { esp_err_t ret = ESP_OK; /* disable interrupt */ MAC_CHECK(dm9051_register_write(emac, DM9051_IMR, 0x00) == ESP_OK, "write IMR failed", err, ESP_FAIL); /* disable rx */ uint8_t rcr = 0; MAC_CHECK(dm9051_register_read(emac, DM9051_RCR, &rcr) == ESP_OK, "read RCR failed", err, ESP_FAIL); rcr &= ~RCR_RXEN; MAC_CHECK(dm9051_register_write(emac, DM9051_RCR, rcr) == ESP_OK, "write RCR failed", err, ESP_FAIL); return ESP_OK; err: return ret; } static void dm9051_isr_handler(void *arg) { emac_dm9051_t *emac = (emac_dm9051_t *)arg; BaseType_t high_task_wakeup = pdFALSE; /* notify dm9051 task */ vTaskNotifyGiveFromISR(emac->rx_task_hdl, &high_task_wakeup); if (high_task_wakeup != pdFALSE) { portYIELD_FROM_ISR(); } } static void emac_dm9051_task(void *arg) { emac_dm9051_t *emac = (emac_dm9051_t *)arg; uint8_t status = 0; uint8_t *buffer = NULL; uint32_t length = 0; while (1) { if (ulTaskNotifyTake(pdFALSE, pdMS_TO_TICKS(RX_QUEUE_WAIT_MS))) { /* clear interrupt status */ dm9051_register_read(emac, DM9051_ISR, &status); dm9051_register_write(emac, DM9051_ISR, status); /* packet received */ if (status & ISR_PR) { do { buffer = (uint8_t *)heap_caps_malloc(ETH_MAX_PACKET_SIZE, MALLOC_CAP_DMA); if (emac->parent.receive(&emac->parent, buffer, &length) == ESP_OK) { /* pass the buffer to stack (e.g. TCP/IP layer) */ if (length) { emac->eth->stack_input(emac->eth, buffer, length); } else { free(buffer); } } else { free(buffer); } } while (emac->packets_remain); } } } vTaskDelete(NULL); } static esp_err_t emac_dm9051_set_mediator(esp_eth_mac_t *mac, esp_eth_mediator_t *eth) { esp_err_t ret = ESP_OK; MAC_CHECK(eth, "can't set mac's mediator to null", err, ESP_ERR_INVALID_ARG); emac_dm9051_t *emac = __containerof(mac, emac_dm9051_t, parent); emac->eth = eth; return ESP_OK; err: return ret; } static esp_err_t emac_dm9051_write_phy_reg(esp_eth_mac_t *mac, uint32_t phy_addr, uint32_t phy_reg, uint32_t reg_value) { esp_err_t ret = ESP_OK; emac_dm9051_t *emac = __containerof(mac, emac_dm9051_t, parent); /* check if phy access is in progress */ uint8_t epcr = 0; MAC_CHECK(dm9051_register_read(emac, DM9051_EPCR, &epcr) == ESP_OK, "read EPCR failed", err, ESP_FAIL); MAC_CHECK(!(epcr & EPCR_ERRE), "phy is busy", err, ESP_ERR_INVALID_STATE); MAC_CHECK(dm9051_register_write(emac, DM9051_EPAR, (uint8_t)(((phy_addr << 6) & 0xFF) | phy_reg)) == ESP_OK, "write EPAR failed", err, ESP_FAIL); MAC_CHECK(dm9051_register_write(emac, DM9051_EPDRL, (uint8_t)(reg_value & 0xFF)) == ESP_OK, "write EPDRL failed", err, ESP_FAIL); MAC_CHECK(dm9051_register_write(emac, DM9051_EPDRH, (uint8_t)((reg_value >> 8) & 0xFF)) == ESP_OK, "write EPDRH failed", err, ESP_FAIL); /* select PHY and select write operation */ MAC_CHECK(dm9051_register_write(emac, DM9051_EPCR, EPCR_EPOS | EPCR_ERPRW) == ESP_OK, "write EPCR failed", err, ESP_FAIL); /* polling the busy flag */ uint32_t to = 0; do { ets_delay_us(100); MAC_CHECK(dm9051_register_read(emac, DM9051_EPCR, &epcr) == ESP_OK, "read EPCR failed", err, ESP_FAIL); to += 100; } while ((epcr & EPCR_ERRE) && to < DM9051_PHY_OPERATION_TIMEOUT_US); MAC_CHECK(!(epcr & EPCR_ERRE), "phy is busy", err, ESP_ERR_TIMEOUT); return ESP_OK; err: return ret; } static esp_err_t emac_dm9051_read_phy_reg(esp_eth_mac_t *mac, uint32_t phy_addr, uint32_t phy_reg, uint32_t *reg_value) { esp_err_t ret = ESP_OK; MAC_CHECK(reg_value, "can't set reg_value to null", err, ESP_ERR_INVALID_ARG); emac_dm9051_t *emac = __containerof(mac, emac_dm9051_t, parent); /* check if phy access is in progress */ uint8_t epcr = 0; MAC_CHECK(dm9051_register_read(emac, DM9051_EPCR, &epcr) == ESP_OK, "read EPCR failed", err, ESP_FAIL); MAC_CHECK(!(epcr & 0x01), "phy is busy", err, ESP_ERR_INVALID_STATE); MAC_CHECK(dm9051_register_write(emac, DM9051_EPAR, (uint8_t)(((phy_addr << 6) & 0xFF) | phy_reg)) == ESP_OK, "write EPAR failed", err, ESP_FAIL); /* Select PHY and select read operation */ MAC_CHECK(dm9051_register_write(emac, DM9051_EPCR, 0x0C) == ESP_OK, "write EPCR failed", err, ESP_FAIL); /* polling the busy flag */ uint32_t to = 0; do { ets_delay_us(100); MAC_CHECK(dm9051_register_read(emac, DM9051_EPCR, &epcr) == ESP_OK, "read EPCR failed", err, ESP_FAIL); to += 100; } while ((epcr & EPCR_ERRE) && to < DM9051_PHY_OPERATION_TIMEOUT_US); MAC_CHECK(!(epcr & EPCR_ERRE), "phy is busy", err, ESP_ERR_TIMEOUT); uint8_t value_h = 0; uint8_t value_l = 0; MAC_CHECK(dm9051_register_read(emac, DM9051_EPDRH, &value_h) == ESP_OK, "read EPDRH failed", err, ESP_FAIL); MAC_CHECK(dm9051_register_read(emac, DM9051_EPDRL, &value_l) == ESP_OK, "read EPDRL failed", err, ESP_FAIL); *reg_value = (value_h << 8) | value_l; return ESP_OK; err: return ret; } static esp_err_t emac_dm9051_set_addr(esp_eth_mac_t *mac, uint8_t *addr) { esp_err_t ret = ESP_OK; MAC_CHECK(addr, "can't set mac addr to null", err, ESP_ERR_INVALID_ARG); emac_dm9051_t *emac = __containerof(mac, emac_dm9051_t, parent); memcpy(emac->addr, addr, 6); MAC_CHECK(dm9051_set_mac_addr(emac) == ESP_OK, "set mac address failed", err, ESP_FAIL); return ESP_OK; err: return ret; } static esp_err_t emac_dm9051_get_addr(esp_eth_mac_t *mac, uint8_t *addr) { esp_err_t ret = ESP_OK; MAC_CHECK(addr, "can't set mac addr to null", err, ESP_ERR_INVALID_ARG); emac_dm9051_t *emac = __containerof(mac, emac_dm9051_t, parent); memcpy(addr, emac->addr, 6); return ESP_OK; err: return ret; } static esp_err_t emac_dm9051_set_link(esp_eth_mac_t *mac, eth_link_t link) { esp_err_t ret = ESP_OK; emac_dm9051_t *emac = __containerof(mac, emac_dm9051_t, parent); uint8_t nsr = 0; MAC_CHECK(dm9051_register_read(emac, DM9051_NSR, &nsr) == ESP_OK, "read NSR failed", err, ESP_FAIL); switch (link) { case ETH_LINK_UP: MAC_CHECK(nsr & NSR_LINKST, "phy is not link up", err, ESP_ERR_INVALID_STATE); MAC_CHECK(dm9051_start(emac) == ESP_OK, "dm9051 start failed", err, ESP_FAIL); break; case ETH_LINK_DOWN: MAC_CHECK(!(nsr & NSR_LINKST), "phy is not link down", err, ESP_ERR_INVALID_STATE); MAC_CHECK(dm9051_stop(emac) == ESP_OK, "dm9051 stop failed", err, ESP_FAIL); break; default: MAC_CHECK(false, "unknown link status", err, ESP_ERR_INVALID_ARG); break; } return ESP_OK; err: return ret; } static esp_err_t emac_dm9051_set_speed(esp_eth_mac_t *mac, eth_speed_t speed) { esp_err_t ret = ESP_OK; emac_dm9051_t *emac = __containerof(mac, emac_dm9051_t, parent); uint8_t nsr = 0; MAC_CHECK(dm9051_register_read(emac, DM9051_NSR, &nsr) == ESP_OK, "read NSR failed", err, ESP_FAIL); switch (speed) { case ETH_SPEED_10M: MAC_CHECK(nsr & NSR_SPEED, "phy speed is not at 10Mbps", err, ESP_ERR_INVALID_STATE); break; case ETH_SPEED_100M: MAC_CHECK(!(nsr & NSR_SPEED), "phy speed is not at 100Mbps", err, ESP_ERR_INVALID_STATE); break; default: MAC_CHECK(false, "unknown speed", err, ESP_ERR_INVALID_ARG); break; } return ESP_OK; err: return ret; } static esp_err_t emac_dm9051_set_duplex(esp_eth_mac_t *mac, eth_duplex_t duplex) { esp_err_t ret = ESP_OK; emac_dm9051_t *emac = __containerof(mac, emac_dm9051_t, parent); uint8_t ncr = 0; MAC_CHECK(dm9051_register_read(emac, DM9051_NCR, &ncr) == ESP_OK, "read NCR failed", err, ESP_FAIL); switch (duplex) { case ETH_DUPLEX_HALF: MAC_CHECK(!(ncr & NCR_FDX), "phy is not at half duplex", err, ESP_ERR_INVALID_STATE); break; case ETH_DUPLEX_FULL: MAC_CHECK(ncr & NCR_FDX, "phy is not at full duplex", err, ESP_ERR_INVALID_STATE); break; default: MAC_CHECK(false, "unknown duplex", err, ESP_ERR_INVALID_ARG); break; } return ESP_OK; err: return ret; } static esp_err_t emac_dm9051_set_promiscuous(esp_eth_mac_t *mac, bool enable) { esp_err_t ret = ESP_OK; emac_dm9051_t *emac = __containerof(mac, emac_dm9051_t, parent); uint8_t rcr = 0; MAC_CHECK(dm9051_register_read(emac, DM9051_EPDRL, &rcr) == ESP_OK, "read RCR failed", err, ESP_FAIL); if (enable) { rcr |= RCR_PRMSC; } else { rcr &= ~RCR_PRMSC; } MAC_CHECK(dm9051_register_write(emac, DM9051_RCR, rcr) == ESP_OK, "write RCR failed", err, ESP_FAIL); return ESP_OK; err: return ret; } static esp_err_t emac_dm9051_transmit(esp_eth_mac_t *mac, uint8_t *buf, uint32_t length) { esp_err_t ret = ESP_OK; emac_dm9051_t *emac = __containerof(mac, emac_dm9051_t, parent); MAC_CHECK(buf, "can't set buf to null", err, ESP_ERR_INVALID_ARG); MAC_CHECK(length, "buf length can't be zero", err, ESP_ERR_INVALID_ARG); /* Check if last transmit complete */ uint8_t tcr = 0; MAC_CHECK(dm9051_register_read(emac, DM9051_TCR, &tcr) == ESP_OK, "read TCR failed", err, ESP_FAIL); MAC_CHECK(!(tcr & TCR_TXREQ), "last transmit still in progress", err, ESP_ERR_INVALID_STATE); /* set tx length */ MAC_CHECK(dm9051_register_write(emac, DM9051_TXPLL, length & 0xFF) == ESP_OK, "write TXPLL failed", err, ESP_FAIL); MAC_CHECK(dm9051_register_write(emac, DM9051_TXPLH, (length >> 8) & 0xFF) == ESP_OK, "write TXPLH failed", err, ESP_FAIL); /* copy data to tx memory */ MAC_CHECK(dm9051_memory_write(emac, buf, length) == ESP_OK, "write memory failed", err, ESP_FAIL); /* issue tx polling command */ tcr |= TCR_TXREQ; MAC_CHECK(dm9051_register_write(emac, DM9051_TCR, tcr) == ESP_OK, "write TCR failed", err, ESP_FAIL); return ESP_OK; err: return ret; } static esp_err_t emac_dm9051_receive(esp_eth_mac_t *mac, uint8_t *buf, uint32_t *length) { esp_err_t ret = ESP_OK; emac_dm9051_t *emac = __containerof(mac, emac_dm9051_t, parent); MAC_CHECK(buf && length, "can't set buf and length to null", err, ESP_ERR_INVALID_ARG); uint8_t rxbyte = 0; uint16_t rx_len = 0; __attribute__((aligned(4))) dm9051_rx_header_t header; // SPI driver needs the rx buffer 4 byte align emac->packets_remain = false; /* dummy read, get the most updated data */ MAC_CHECK(dm9051_register_read(emac, DM9051_MRCMDX, &rxbyte) == ESP_OK, "read MRCMDX failed", err, ESP_FAIL); MAC_CHECK(dm9051_register_read(emac, DM9051_MRCMDX, &rxbyte) == ESP_OK, "read MRCMDX failed", err, ESP_FAIL); /* rxbyte must be 0xFF, 0 or 1 */ if (rxbyte > 1) { MAC_CHECK(dm9051_stop(emac) == ESP_OK, "stop dm9051 failed", err, ESP_FAIL); /* reset rx fifo pointer */ MAC_CHECK(dm9051_register_write(emac, DM9051_MPTRCR, MPTRCR_RST_RX) == ESP_OK, "write MPTRCR failed", err, ESP_FAIL); ets_delay_us(10); MAC_CHECK(dm9051_start(emac) == ESP_OK, "start dm9051 failed", err, ESP_FAIL); MAC_CHECK(false, "reset rx fifo pointer", err, ESP_FAIL); } else if (rxbyte) { MAC_CHECK(dm9051_memory_read(emac, (uint8_t *)&header, sizeof(header)) == ESP_OK, "read rx header failed", err, ESP_FAIL); rx_len = header.length_low + (header.length_high << 8); MAC_CHECK(dm9051_memory_read(emac, buf, rx_len) == ESP_OK, "read rx data failed", err, ESP_FAIL); MAC_CHECK(!(header.status & 0xBF), "receive status error: %xH", err, ESP_FAIL, header.status); *length = rx_len - 4; // substract the CRC length (4Bytes) /* dummy read, get the most updated data */ MAC_CHECK(dm9051_register_read(emac, DM9051_MRCMDX, &rxbyte) == ESP_OK, "read MRCMDX failed", err, ESP_FAIL); MAC_CHECK(dm9051_register_read(emac, DM9051_MRCMDX, &rxbyte) == ESP_OK, "read MRCMDX failed", err, ESP_FAIL); emac->packets_remain = rxbyte > 0; } return ESP_OK; err: return ret; } static esp_err_t emac_dm9051_init(esp_eth_mac_t *mac) { esp_err_t ret = ESP_OK; emac_dm9051_t *emac = __containerof(mac, emac_dm9051_t, parent); esp_eth_mediator_t *eth = emac->eth; /* init gpio used by spi-ethernet interrupt */ gpio_pad_select_gpio(CONFIG_ETH_DM9051_INT_GPIO); gpio_set_direction(CONFIG_ETH_DM9051_INT_GPIO, GPIO_MODE_INPUT); gpio_set_pull_mode(CONFIG_ETH_DM9051_INT_GPIO, GPIO_PULLDOWN_ONLY); gpio_set_intr_type(CONFIG_ETH_DM9051_INT_GPIO, GPIO_INTR_POSEDGE); gpio_intr_enable(CONFIG_ETH_DM9051_INT_GPIO); gpio_isr_handler_add(CONFIG_ETH_DM9051_INT_GPIO, dm9051_isr_handler, emac); MAC_CHECK(eth->on_state_changed(eth, ETH_STATE_LLINIT, NULL) == ESP_OK, "lowlevel init failed", err, ESP_FAIL); /* reset dm9051 */ MAC_CHECK(dm9051_reset(emac) == ESP_OK, "reset dm9051 failed", err, ESP_FAIL); /* verify chip id */ MAC_CHECK(dm9051_verify_id(emac) == ESP_OK, "vefiry chip ID failed", err, ESP_FAIL); /* default setup of internal registers */ MAC_CHECK(dm9051_setup_default(emac) == ESP_OK, "dm9051 default setup failed", err, ESP_FAIL); /* clear multicast hash table */ MAC_CHECK(dm9051_clear_multicast_table(emac) == ESP_OK, "clear multicast table failed", err, ESP_FAIL); /* get emac address from eeprom */ MAC_CHECK(dm9051_get_mac_addr(emac) == ESP_OK, "fetch ethernet mac address failed", err, ESP_FAIL); return ESP_OK; err: gpio_isr_handler_remove(CONFIG_ETH_DM9051_INT_GPIO); gpio_reset_pin(CONFIG_ETH_DM9051_INT_GPIO); eth->on_state_changed(eth, ETH_STATE_DEINIT, NULL); return ret; } static esp_err_t emac_dm9051_deinit(esp_eth_mac_t *mac) { emac_dm9051_t *emac = __containerof(mac, emac_dm9051_t, parent); esp_eth_mediator_t *eth = emac->eth; dm9051_stop(emac); gpio_isr_handler_remove(CONFIG_ETH_DM9051_INT_GPIO); gpio_reset_pin(CONFIG_ETH_DM9051_INT_GPIO); eth->on_state_changed(eth, ETH_STATE_DEINIT, NULL); return ESP_OK; } static esp_err_t emac_dm9051_del(esp_eth_mac_t *mac) { emac_dm9051_t *emac = __containerof(mac, emac_dm9051_t, parent); vTaskDelete(emac->rx_task_hdl); vSemaphoreDelete(emac->spi_lock); free(emac); return ESP_OK; } esp_eth_mac_t *esp_eth_mac_new_dm9051(const eth_mac_config_t *config) { esp_eth_mac_t *ret = NULL; MAC_CHECK(config, "can't set mac config to null", err, NULL); MAC_CHECK(config->spi_hdl, "can't set spi handle to null", err, NULL); emac_dm9051_t *emac = calloc(1, sizeof(emac_dm9051_t)); MAC_CHECK(emac, "calloc emac failed", err, NULL); /* bind methods and attributes */ emac->sw_reset_timeout_ms = config->sw_reset_timeout_ms; emac->spi_hdl = config->spi_hdl; emac->parent.set_mediator = emac_dm9051_set_mediator; emac->parent.init = emac_dm9051_init; emac->parent.deinit = emac_dm9051_deinit; emac->parent.del = emac_dm9051_del; emac->parent.write_phy_reg = emac_dm9051_write_phy_reg; emac->parent.read_phy_reg = emac_dm9051_read_phy_reg; emac->parent.set_addr = emac_dm9051_set_addr; emac->parent.get_addr = emac_dm9051_get_addr; emac->parent.set_speed = emac_dm9051_set_speed; emac->parent.set_duplex = emac_dm9051_set_duplex; emac->parent.set_link = emac_dm9051_set_link; emac->parent.set_promiscuous = emac_dm9051_set_promiscuous; emac->parent.transmit = emac_dm9051_transmit; emac->parent.receive = emac_dm9051_receive; /* create mutex */ emac->spi_lock = xSemaphoreCreateMutex(); MAC_CHECK(emac->spi_lock, "create lock failed", err_lock, NULL); /* create dm9051 task */ BaseType_t xReturned = xTaskCreate(emac_dm9051_task, "dm9051_tsk", config->rx_task_stack_size, emac, config->rx_task_prio, &emac->rx_task_hdl); MAC_CHECK(xReturned == pdPASS, "create dm9051 task failed", err_tsk, NULL); return &(emac->parent); err_tsk: vSemaphoreDelete(emac->spi_lock); err_lock: free(emac); err: return ret; }