2022-09-19 11:46:55 +02:00
|
|
|
/*
|
2023-02-14 09:48:14 +01:00
|
|
|
* SPDX-FileCopyrightText: 2022-2023 Espressif Systems (Shanghai) CO LTD
|
2022-09-19 11:46:55 +02:00
|
|
|
*
|
|
|
|
* SPDX-License-Identifier: Unlicense OR CC0-1.0
|
|
|
|
*/
|
2017-05-11 17:56:17 +10:00
|
|
|
/*
|
|
|
|
Generic test for heap tracing support
|
|
|
|
|
|
|
|
Only compiled in if CONFIG_HEAP_TRACING is set
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <esp_types.h>
|
|
|
|
#include <stdio.h>
|
|
|
|
#include <stdlib.h>
|
|
|
|
#include <string.h>
|
|
|
|
#include "sdkconfig.h"
|
|
|
|
#include "unity.h"
|
|
|
|
|
2018-02-28 11:00:45 +11:00
|
|
|
#include "freertos/FreeRTOS.h"
|
|
|
|
#include "freertos/task.h"
|
|
|
|
|
2022-12-22 11:36:36 +01:00
|
|
|
#include "esp_heap_caps.h"
|
|
|
|
|
2017-05-11 17:56:17 +10:00
|
|
|
#ifdef CONFIG_HEAP_TRACING
|
|
|
|
// only compile in heap tracing tests if tracing is enabled
|
|
|
|
|
2017-10-18 21:09:53 +08:00
|
|
|
#include "esp_heap_trace.h"
|
|
|
|
|
2022-12-22 11:36:36 +01:00
|
|
|
TEST_CASE("heap trace leak check", "[heap-trace]")
|
2017-05-11 17:56:17 +10:00
|
|
|
{
|
|
|
|
heap_trace_record_t recs[8];
|
|
|
|
heap_trace_init_standalone(recs, 8);
|
|
|
|
|
|
|
|
printf("Leak check test\n"); // Print something before trace starts, or stdout allocations skew total counts
|
|
|
|
fflush(stdout);
|
|
|
|
|
|
|
|
heap_trace_start(HEAP_TRACE_LEAKS);
|
|
|
|
|
|
|
|
void *a = malloc(64);
|
|
|
|
memset(a, '3', 64);
|
|
|
|
|
|
|
|
void *b = malloc(96);
|
|
|
|
memset(b, '4', 11);
|
|
|
|
|
|
|
|
printf("a.address %p vs %p b.address %p vs %p\n", a, recs[0].address, b, recs[1].address);
|
|
|
|
|
|
|
|
heap_trace_dump();
|
|
|
|
TEST_ASSERT_EQUAL(2, heap_trace_get_count());
|
|
|
|
|
|
|
|
heap_trace_record_t trace_a, trace_b;
|
|
|
|
heap_trace_get(0, &trace_a);
|
|
|
|
heap_trace_get(1, &trace_b);
|
|
|
|
|
|
|
|
printf("trace_a.address %p trace_bb.address %p\n", trace_a.address, trace_b.address);
|
|
|
|
|
|
|
|
TEST_ASSERT_EQUAL_PTR(a, trace_a.address);
|
|
|
|
TEST_ASSERT_EQUAL_PTR(b, trace_b.address);
|
|
|
|
|
|
|
|
TEST_ASSERT_EQUAL_PTR(recs[0].address, trace_a.address);
|
|
|
|
TEST_ASSERT_EQUAL_PTR(recs[1].address, trace_b.address);
|
|
|
|
|
|
|
|
free(a);
|
|
|
|
|
|
|
|
TEST_ASSERT_EQUAL(1, heap_trace_get_count());
|
|
|
|
|
|
|
|
heap_trace_get(0, &trace_b);
|
|
|
|
TEST_ASSERT_EQUAL_PTR(b, trace_b.address);
|
|
|
|
|
2023-02-14 09:48:14 +01:00
|
|
|
/* trace_a freed and placed back to unused list,
|
|
|
|
so recs[0].address is 0*/
|
|
|
|
TEST_ASSERT_EQUAL_PTR(recs[0].address, 0x00);
|
2017-05-11 17:56:17 +10:00
|
|
|
|
|
|
|
heap_trace_stop();
|
|
|
|
}
|
|
|
|
|
2022-12-22 11:36:36 +01:00
|
|
|
TEST_CASE("heap trace wrapped buffer check", "[heap-trace]")
|
2017-05-11 17:56:17 +10:00
|
|
|
{
|
|
|
|
const size_t N = 8;
|
|
|
|
heap_trace_record_t recs[N];
|
|
|
|
heap_trace_init_standalone(recs, N);
|
|
|
|
|
|
|
|
heap_trace_start(HEAP_TRACE_LEAKS);
|
|
|
|
|
|
|
|
void *ptrs[N+1];
|
|
|
|
for (int i = 0; i < N+1; i++) {
|
|
|
|
ptrs[i] = malloc(i*3);
|
|
|
|
}
|
|
|
|
|
|
|
|
// becuase other mallocs happen as part of this control flow,
|
|
|
|
// we can't guarantee N entries of ptrs[] are in the heap check buffer.
|
|
|
|
// but we should guarantee at least the last one is
|
|
|
|
bool saw_last_ptr = false;
|
|
|
|
for (int i = 0; i < N; i++) {
|
|
|
|
heap_trace_record_t rec;
|
|
|
|
heap_trace_get(i, &rec);
|
|
|
|
if (rec.address == ptrs[N-1]) {
|
|
|
|
saw_last_ptr = true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
TEST_ASSERT(saw_last_ptr);
|
|
|
|
|
|
|
|
void *other = malloc(6);
|
|
|
|
|
|
|
|
heap_trace_dump();
|
|
|
|
|
|
|
|
for (int i = 0; i < N+1; i++) {
|
|
|
|
free(ptrs[i]);
|
|
|
|
}
|
|
|
|
|
|
|
|
heap_trace_dump();
|
|
|
|
|
|
|
|
bool saw_other = false;
|
|
|
|
|
|
|
|
for (int i = 0; i < heap_trace_get_count(); i++) {
|
|
|
|
heap_trace_record_t rec;
|
|
|
|
heap_trace_get(i, &rec);
|
|
|
|
|
|
|
|
// none of ptr[]s should be in the heap trace any more
|
|
|
|
for (int j = 0; j < N+1; j++) {
|
|
|
|
TEST_ASSERT_NOT_EQUAL(ptrs[j], rec.address);
|
|
|
|
}
|
|
|
|
if (rec.address == other) {
|
|
|
|
saw_other = true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// 'other' pointer should be somewhere in the leak dump
|
|
|
|
TEST_ASSERT(saw_other);
|
|
|
|
|
|
|
|
heap_trace_stop();
|
|
|
|
}
|
|
|
|
|
2018-02-28 11:00:45 +11:00
|
|
|
static void print_floats_task(void *ignore)
|
|
|
|
{
|
|
|
|
heap_trace_start(HEAP_TRACE_ALL);
|
|
|
|
char buf[16] = { };
|
|
|
|
volatile float f = 12.3456;
|
|
|
|
sprintf(buf, "%.4f", f);
|
|
|
|
TEST_ASSERT_EQUAL_STRING("12.3456", buf);
|
|
|
|
heap_trace_stop();
|
|
|
|
|
|
|
|
vTaskDelete(NULL);
|
|
|
|
}
|
|
|
|
|
2022-12-22 11:36:36 +01:00
|
|
|
TEST_CASE("can trace allocations made by newlib", "[heap-trace]")
|
2018-02-28 11:00:45 +11:00
|
|
|
{
|
|
|
|
const size_t N = 8;
|
|
|
|
heap_trace_record_t recs[N];
|
|
|
|
heap_trace_init_standalone(recs, N);
|
|
|
|
|
|
|
|
/* Verifying that newlib code performs an allocation is very fiddly:
|
|
|
|
|
|
|
|
- Printing a float allocates data associated with the task, but only the
|
|
|
|
first time a task prints a float of this length. So we do it in a one-shot task
|
|
|
|
to avoid possibility it already happened.
|
|
|
|
|
|
|
|
- If newlib is updated this test may start failing if the printf() implementation
|
|
|
|
changes. (This version passes for both nano & regular formatting in newlib 2.2.0)
|
|
|
|
|
|
|
|
- We also do the tracing in the task so we only capture things directly related to it.
|
|
|
|
*/
|
|
|
|
|
|
|
|
xTaskCreate(print_floats_task, "print_float", 4096, NULL, 5, NULL);
|
|
|
|
vTaskDelay(10);
|
|
|
|
|
|
|
|
/* has to be at least a few as newlib allocates via multiple different function calls */
|
|
|
|
TEST_ASSERT(heap_trace_get_count() > 3);
|
|
|
|
}
|
2017-05-11 17:56:17 +10:00
|
|
|
|
2022-12-22 11:36:36 +01:00
|
|
|
TEST_CASE("check for summary value validity", "[heap-trace]") {
|
|
|
|
const size_t alloc_size = 100;
|
|
|
|
const size_t counter_size = 2;
|
|
|
|
const size_t ptr_array_size = counter_size + 1;
|
|
|
|
|
|
|
|
// N+1 pointers to allocate to test the overflow in the summary
|
|
|
|
void *ptrs[ptr_array_size];
|
|
|
|
|
|
|
|
heap_trace_record_t recs[counter_size];
|
|
|
|
heap_trace_init_standalone(recs, counter_size);
|
|
|
|
heap_trace_start(HEAP_TRACE_ALL);
|
|
|
|
|
|
|
|
for (size_t i = 0; i < ptr_array_size; i ++) {
|
|
|
|
ptrs[i] = heap_caps_malloc(alloc_size, MALLOC_CAP_INTERNAL);
|
|
|
|
TEST_ASSERT_NOT_NULL(ptrs[i]);
|
|
|
|
}
|
|
|
|
|
|
|
|
// check that the summary shows the right number of internal memory allocation count
|
|
|
|
heap_trace_summary_t summary;
|
|
|
|
heap_trace_summary(&summary);
|
|
|
|
TEST_ASSERT(summary.count == counter_size);
|
|
|
|
TEST_ASSERT(summary.capacity == counter_size);
|
|
|
|
TEST_ASSERT(summary.total_allocations == ptr_array_size);
|
|
|
|
TEST_ASSERT(summary.has_overflowed == true);
|
|
|
|
|
|
|
|
// free the pointers
|
|
|
|
for (size_t i = 0; i < ptr_array_size; i++) {
|
|
|
|
heap_caps_free(ptrs[i]);
|
|
|
|
}
|
|
|
|
|
|
|
|
heap_trace_summary(&summary);
|
|
|
|
TEST_ASSERT(summary.total_frees == ptr_array_size);
|
|
|
|
|
|
|
|
heap_trace_stop();
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef CONFIG_SPIRAM
|
|
|
|
void* allocate_pointer(uint32_t caps)
|
|
|
|
{
|
|
|
|
const size_t alloc_size = 100;
|
|
|
|
void *ptr = heap_caps_malloc(alloc_size, caps);
|
|
|
|
TEST_ASSERT_NOT_NULL(ptr);
|
|
|
|
return ptr;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_CASE("can dump only internal memory allocations", "[trace-dump][internal]")
|
|
|
|
{
|
|
|
|
const size_t number_log = 2;
|
|
|
|
heap_trace_record_t recs[number_log];
|
|
|
|
heap_trace_init_standalone(recs, number_log);
|
|
|
|
heap_trace_start(HEAP_TRACE_ALL);
|
|
|
|
|
|
|
|
void *internal_ptr = allocate_pointer(MALLOC_CAP_INTERNAL);
|
|
|
|
void *external_ptr = allocate_pointer(MALLOC_CAP_SPIRAM);
|
|
|
|
|
|
|
|
// dump records for memory only. The pytest environment will look for specific strings
|
|
|
|
// related to internal memory allocation in the output of the dump.
|
|
|
|
heap_trace_dump_caps(MALLOC_CAP_INTERNAL);
|
|
|
|
|
|
|
|
heap_caps_free(internal_ptr);
|
|
|
|
heap_caps_free(external_ptr);
|
|
|
|
|
|
|
|
heap_trace_stop();
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_CASE("can dump only external memory allocations", "[trace-dump][external]")
|
|
|
|
{
|
|
|
|
const size_t number_log = 2;
|
|
|
|
heap_trace_record_t recs[number_log];
|
|
|
|
heap_trace_init_standalone(recs, number_log);
|
|
|
|
heap_trace_start(HEAP_TRACE_ALL);
|
|
|
|
|
|
|
|
void *internal_ptr = allocate_pointer(MALLOC_CAP_INTERNAL);
|
|
|
|
void *external_ptr = allocate_pointer(MALLOC_CAP_SPIRAM);
|
|
|
|
|
|
|
|
// dump records for memory only. The pytest environment will look for specific strings
|
|
|
|
// related to external memory allocation in the output of the dump.
|
|
|
|
heap_trace_dump_caps(MALLOC_CAP_SPIRAM);
|
|
|
|
|
|
|
|
heap_caps_free(internal_ptr);
|
|
|
|
heap_caps_free(external_ptr);
|
|
|
|
|
|
|
|
heap_trace_stop();
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_CASE("can dump both external and internal allocations", "[trace-dump][all]")
|
|
|
|
{
|
|
|
|
const size_t number_log = 2;
|
|
|
|
heap_trace_record_t recs[number_log];
|
|
|
|
heap_trace_init_standalone(recs, number_log);
|
|
|
|
heap_trace_start(HEAP_TRACE_ALL);
|
|
|
|
|
|
|
|
void *internal_ptr = allocate_pointer(MALLOC_CAP_INTERNAL);
|
|
|
|
void *external_ptr = allocate_pointer(MALLOC_CAP_SPIRAM);
|
|
|
|
|
|
|
|
// dump records for memory only. The pytest environment will look for specific strings
|
|
|
|
// related to external and internal memory allocation in the output of the dump.
|
|
|
|
heap_trace_dump_caps(MALLOC_CAP_INTERNAL | MALLOC_CAP_SPIRAM);
|
|
|
|
|
|
|
|
heap_caps_free(internal_ptr);
|
|
|
|
heap_caps_free(external_ptr);
|
|
|
|
|
|
|
|
heap_trace_stop();
|
|
|
|
}
|
|
|
|
#endif // CONFIG_SPIRAM
|
2017-05-11 17:56:17 +10:00
|
|
|
|
|
|
|
#endif
|