esp-idf/components/esp32/clk.c

329 lines
12 KiB
C
Raw Normal View History

// Copyright 2015-2017 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdint.h>
#include <sys/cdefs.h>
#include <sys/time.h>
#include <sys/param.h>
#include "sdkconfig.h"
#include "esp_attr.h"
#include "esp_log.h"
#include "esp32/clk.h"
#include "esp_clk_internal.h"
#include "esp32/rom/ets_sys.h"
#include "esp32/rom/uart.h"
#include "esp32/rom/rtc.h"
#include "soc/soc.h"
#include "soc/dport_reg.h"
#include "soc/rtc.h"
#include "soc/rtc_wdt.h"
#include "soc/rtc_periph.h"
#include "soc/i2s_periph.h"
#include "driver/periph_ctrl.h"
#include "xtensa/core-macros.h"
#include "bootloader_clock.h"
#include "driver/spi_common.h"
/* Number of cycles to wait from the 32k XTAL oscillator to consider it running.
* Larger values increase startup delay. Smaller values may cause false positive
* detection (i.e. oscillator runs for a few cycles and then stops).
*/
#define SLOW_CLK_CAL_CYCLES CONFIG_ESP32_RTC_CLK_CAL_CYCLES
#define MHZ (1000000)
/* Indicates that this 32k oscillator gets input from external oscillator, rather
* than a crystal.
*/
#define EXT_OSC_FLAG BIT(3)
/* This is almost the same as rtc_slow_freq_t, except that we define
* an extra enum member for the external 32k oscillator.
* For convenience, lower 2 bits should correspond to rtc_slow_freq_t values.
*/
typedef enum {
SLOW_CLK_150K = RTC_SLOW_FREQ_RTC, //!< Internal 150 kHz RC oscillator
SLOW_CLK_32K_XTAL = RTC_SLOW_FREQ_32K_XTAL, //!< External 32 kHz XTAL
SLOW_CLK_8MD256 = RTC_SLOW_FREQ_8MD256, //!< Internal 8 MHz RC oscillator, divided by 256
SLOW_CLK_32K_EXT_OSC = RTC_SLOW_FREQ_32K_XTAL | EXT_OSC_FLAG //!< External 32k oscillator connected to 32K_XP pin
} slow_clk_sel_t;
static void select_rtc_slow_clk(slow_clk_sel_t slow_clk);
// g_ticks_us defined in ROMs for PRO and APP CPU
extern uint32_t g_ticks_per_us_pro;
#ifndef CONFIG_FREERTOS_UNICORE
extern uint32_t g_ticks_per_us_app;
#endif
static const char* TAG = "clk";
void esp_clk_init(void)
{
rtc_config_t cfg = RTC_CONFIG_DEFAULT();
rtc_init(cfg);
#ifdef CONFIG_ESP32_COMPATIBLE_PRE_V2_1_BOOTLOADERS
/* Check the bootloader set the XTAL frequency.
Bootloaders pre-v2.1 don't do this.
*/
rtc_xtal_freq_t xtal_freq = rtc_clk_xtal_freq_get();
if (xtal_freq == RTC_XTAL_FREQ_AUTO) {
ESP_EARLY_LOGW(TAG, "RTC domain not initialised by bootloader");
bootloader_clock_configure();
}
#else
/* If this assertion fails, either upgrade the bootloader or enable CONFIG_ESP32_COMPATIBLE_PRE_V2_1_BOOTLOADERS */
assert(rtc_clk_xtal_freq_get() != RTC_XTAL_FREQ_AUTO);
#endif
rtc_clk_fast_freq_set(RTC_FAST_FREQ_8M);
#ifdef CONFIG_BOOTLOADER_WDT_ENABLE
// WDT uses a SLOW_CLK clock source. After a function select_rtc_slow_clk a frequency of this source can changed.
// If the frequency changes from 150kHz to 32kHz, then the timeout set for the WDT will increase 4.6 times.
// Therefore, for the time of frequency change, set a new lower timeout value (1.6 sec).
// This prevents excessive delay before resetting in case the supply voltage is drawdown.
// (If frequency is changed from 150kHz to 32kHz then WDT timeout will increased to 1.6sec * 150/32 = 7.5 sec).
rtc_wdt_protect_off();
rtc_wdt_feed();
rtc_wdt_set_time(RTC_WDT_STAGE0, 1600);
rtc_wdt_protect_on();
#endif
#if defined(CONFIG_ESP32_RTC_CLK_SRC_EXT_CRYS)
select_rtc_slow_clk(SLOW_CLK_32K_XTAL);
#elif defined(CONFIG_ESP32_RTC_CLK_SRC_EXT_OSC)
select_rtc_slow_clk(SLOW_CLK_32K_EXT_OSC);
#elif defined(CONFIG_ESP32_RTC_CLK_SRC_INT_8MD256)
select_rtc_slow_clk(SLOW_CLK_8MD256);
#else
select_rtc_slow_clk(RTC_SLOW_FREQ_RTC);
#endif
#ifdef CONFIG_BOOTLOADER_WDT_ENABLE
// After changing a frequency WDT timeout needs to be set for new frequency.
rtc_wdt_protect_off();
rtc_wdt_feed();
rtc_wdt_set_time(RTC_WDT_STAGE0, CONFIG_BOOTLOADER_WDT_TIME_MS);
rtc_wdt_protect_on();
#endif
rtc_cpu_freq_config_t old_config, new_config;
rtc_clk_cpu_freq_get_config(&old_config);
const uint32_t old_freq_mhz = old_config.freq_mhz;
const uint32_t new_freq_mhz = CONFIG_ESP32_DEFAULT_CPU_FREQ_MHZ;
bool res = rtc_clk_cpu_freq_mhz_to_config(new_freq_mhz, &new_config);
assert(res);
// Wait for UART TX to finish, otherwise some UART output will be lost
// when switching APB frequency
uart_tx_wait_idle(CONFIG_ESP_CONSOLE_UART_NUM);
rtc_clk_cpu_freq_set_config(&new_config);
// Re calculate the ccount to make time calculation correct.
XTHAL_SET_CCOUNT( (uint64_t)XTHAL_GET_CCOUNT() * new_freq_mhz / old_freq_mhz );
}
int IRAM_ATTR esp_clk_cpu_freq(void)
{
return g_ticks_per_us_pro * MHZ;
}
int IRAM_ATTR esp_clk_apb_freq(void)
{
return MIN(g_ticks_per_us_pro, 80) * MHZ;
}
int IRAM_ATTR esp_clk_xtal_freq(void)
{
return rtc_clk_xtal_freq_get() * MHZ;
}
void IRAM_ATTR ets_update_cpu_frequency(uint32_t ticks_per_us)
{
/* Update scale factors used by ets_delay_us */
g_ticks_per_us_pro = ticks_per_us;
#ifndef CONFIG_FREERTOS_UNICORE
g_ticks_per_us_app = ticks_per_us;
#endif
}
static void select_rtc_slow_clk(slow_clk_sel_t slow_clk)
{
rtc_slow_freq_t rtc_slow_freq = slow_clk & RTC_CNTL_ANA_CLK_RTC_SEL_V;
uint32_t cal_val = 0;
do {
if (rtc_slow_freq == RTC_SLOW_FREQ_32K_XTAL) {
/* 32k XTAL oscillator needs to be enabled and running before it can
* be used. Hardware doesn't have a direct way of checking if the
* oscillator is running. Here we use rtc_clk_cal function to count
* the number of main XTAL cycles in the given number of 32k XTAL
* oscillator cycles. If the 32k XTAL has not started up, calibration
* will time out, returning 0.
*/
ESP_EARLY_LOGD(TAG, "waiting for 32k oscillator to start up");
if (slow_clk == SLOW_CLK_32K_XTAL) {
rtc_clk_32k_enable(true);
} else if (slow_clk == SLOW_CLK_32K_EXT_OSC) {
rtc_clk_32k_enable_external();
}
// When SLOW_CLK_CAL_CYCLES is set to 0, clock calibration will not be performed at startup.
if (SLOW_CLK_CAL_CYCLES > 0) {
cal_val = rtc_clk_cal(RTC_CAL_32K_XTAL, SLOW_CLK_CAL_CYCLES);
if (cal_val == 0 || cal_val < 15000000L) {
ESP_EARLY_LOGW(TAG, "32 kHz XTAL not found, switching to internal 150 kHz oscillator");
rtc_slow_freq = RTC_SLOW_FREQ_RTC;
}
}
} else if (rtc_slow_freq == RTC_SLOW_FREQ_8MD256) {
rtc_clk_8m_enable(true, true);
}
rtc_clk_slow_freq_set(rtc_slow_freq);
if (SLOW_CLK_CAL_CYCLES > 0) {
/* TODO: 32k XTAL oscillator has some frequency drift at startup.
* Improve calibration routine to wait until the frequency is stable.
*/
cal_val = rtc_clk_cal(RTC_CAL_RTC_MUX, SLOW_CLK_CAL_CYCLES);
} else {
const uint64_t cal_dividend = (1ULL << RTC_CLK_CAL_FRACT) * 1000000ULL;
cal_val = (uint32_t) (cal_dividend / rtc_clk_slow_freq_get_hz());
}
} while (cal_val == 0);
ESP_EARLY_LOGD(TAG, "RTC_SLOW_CLK calibration value: %d", cal_val);
esp_clk_slowclk_cal_set(cal_val);
}
void rtc_clk_select_rtc_slow_clk()
{
select_rtc_slow_clk(RTC_SLOW_FREQ_32K_XTAL);
}
/* This function is not exposed as an API at this point.
* All peripheral clocks are default enabled after chip is powered on.
* This function disables some peripheral clocks when cpu starts.
* These peripheral clocks are enabled when the peripherals are initialized
* and disabled when they are de-initialized.
*/
void esp_perip_clk_init(void)
{
uint32_t common_perip_clk, hwcrypto_perip_clk, wifi_bt_sdio_clk = 0;
#if CONFIG_FREERTOS_UNICORE
RESET_REASON rst_reas[1];
#else
RESET_REASON rst_reas[2];
#endif
rst_reas[0] = rtc_get_reset_reason(0);
#if !CONFIG_FREERTOS_UNICORE
rst_reas[1] = rtc_get_reset_reason(1);
#endif
/* For reason that only reset CPU, do not disable the clocks
* that have been enabled before reset.
*/
if ((rst_reas[0] >= TGWDT_CPU_RESET && rst_reas[0] <= RTCWDT_CPU_RESET)
#if !CONFIG_FREERTOS_UNICORE
|| (rst_reas[1] >= TGWDT_CPU_RESET && rst_reas[1] <= RTCWDT_CPU_RESET)
#endif
) {
common_perip_clk = ~DPORT_READ_PERI_REG(DPORT_PERIP_CLK_EN_REG);
hwcrypto_perip_clk = ~DPORT_READ_PERI_REG(DPORT_PERI_CLK_EN_REG);
wifi_bt_sdio_clk = ~DPORT_READ_PERI_REG(DPORT_WIFI_CLK_EN_REG);
}
else {
common_perip_clk = DPORT_WDG_CLK_EN |
DPORT_PCNT_CLK_EN |
DPORT_LEDC_CLK_EN |
DPORT_TIMERGROUP1_CLK_EN |
DPORT_PWM0_CLK_EN |
DPORT_CAN_CLK_EN |
DPORT_PWM1_CLK_EN |
DPORT_PWM2_CLK_EN |
DPORT_PWM3_CLK_EN;
hwcrypto_perip_clk = DPORT_PERI_EN_AES |
DPORT_PERI_EN_SHA |
DPORT_PERI_EN_RSA |
DPORT_PERI_EN_SECUREBOOT;
wifi_bt_sdio_clk = DPORT_WIFI_CLK_WIFI_EN |
DPORT_WIFI_CLK_BT_EN_M |
DPORT_WIFI_CLK_UNUSED_BIT5 |
DPORT_WIFI_CLK_UNUSED_BIT12 |
DPORT_WIFI_CLK_SDIOSLAVE_EN |
DPORT_WIFI_CLK_SDIO_HOST_EN |
DPORT_WIFI_CLK_EMAC_EN;
}
//Reset the communication peripherals like I2C, SPI, UART, I2S and bring them to known state.
common_perip_clk |= DPORT_I2S0_CLK_EN |
#if CONFIG_ESP_CONSOLE_UART_NUM != 0
DPORT_UART_CLK_EN |
#endif
#if CONFIG_ESP_CONSOLE_UART_NUM != 1
DPORT_UART1_CLK_EN |
#endif
#if CONFIG_ESP_CONSOLE_UART_NUM != 2
DPORT_UART2_CLK_EN |
#endif
DPORT_SPI2_CLK_EN |
DPORT_I2C_EXT0_CLK_EN |
DPORT_UHCI0_CLK_EN |
DPORT_RMT_CLK_EN |
DPORT_UHCI1_CLK_EN |
DPORT_SPI3_CLK_EN |
DPORT_I2C_EXT1_CLK_EN |
DPORT_I2S1_CLK_EN |
DPORT_SPI_DMA_CLK_EN;
#if CONFIG_SPIRAM_SPEED_80M
//80MHz SPIRAM uses SPI2/SPI3 as well; it's initialized before this is called. Because it is used in
//a weird mode where clock to the peripheral is disabled but reset is also disabled, it 'hangs'
//in a state where it outputs a continuous 80MHz signal. Mask its bit here because we should
//not modify that state, regardless of what we calculated earlier.
if (spicommon_periph_in_use(HSPI_HOST)) {
common_perip_clk &= ~DPORT_SPI2_CLK_EN;
}
if (spicommon_periph_in_use(VSPI_HOST)) {
common_perip_clk &= ~DPORT_SPI3_CLK_EN;
}
#endif
/* Change I2S clock to audio PLL first. Because if I2S uses 160MHz clock,
* the current is not reduced when disable I2S clock.
*/
DPORT_SET_PERI_REG_MASK(I2S_CLKM_CONF_REG(0), I2S_CLKA_ENA);
DPORT_SET_PERI_REG_MASK(I2S_CLKM_CONF_REG(1), I2S_CLKA_ENA);
/* Disable some peripheral clocks. */
DPORT_CLEAR_PERI_REG_MASK(DPORT_PERIP_CLK_EN_REG, common_perip_clk);
DPORT_SET_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG, common_perip_clk);
/* Disable hardware crypto clocks. */
DPORT_CLEAR_PERI_REG_MASK(DPORT_PERI_CLK_EN_REG, hwcrypto_perip_clk);
DPORT_SET_PERI_REG_MASK(DPORT_PERI_RST_EN_REG, hwcrypto_perip_clk);
/* Disable WiFi/BT/SDIO clocks. */
DPORT_CLEAR_PERI_REG_MASK(DPORT_WIFI_CLK_EN_REG, wifi_bt_sdio_clk);
/* Enable RNG clock. */
periph_module_enable(PERIPH_RNG_MODULE);
}