410 lines
13 KiB
C
Raw Normal View History

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <sys/time.h>
#include <sys/param.h>
#include "unity.h"
#include "esp_pm.h"
#include "esp_sleep.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/semphr.h"
#include "esp_log.h"
#include "driver/timer.h"
#include "driver/rtc_io.h"
#include "soc/rtc_periph.h"
#include "esp_rom_sys.h"
#include "sdkconfig.h"
#if CONFIG_IDF_TARGET_ESP32
#include "esp32/clk.h"
#include "esp32/ulp.h"
#elif CONFIG_IDF_TARGET_ESP32S2
#include "esp32s2/clk.h"
#include "esp32s2/ulp.h"
2020-09-14 12:15:00 +08:00
#elif CONFIG_IDF_TARGET_ESP32S3
#include "esp32s3/clk.h"
#include "esp32s3/ulp.h"
#elif CONFIG_IDF_TARGET_ESP32C3
#include "esp32c3/clk.h"
#elif CONFIG_IDF_TARGET_ESP32H2
#include "esp32h2/clk.h"
#endif
TEST_CASE("Can dump power management lock stats", "[pm]")
{
esp_pm_dump_locks(stdout);
}
#ifdef CONFIG_PM_ENABLE
static void switch_freq(int mhz)
{
int xtal_freq = rtc_clk_xtal_freq_get();
#if CONFIG_IDF_TARGET_ESP32
esp_pm_config_esp32_t pm_config = {
#elif CONFIG_IDF_TARGET_ESP32S2
esp_pm_config_esp32s2_t pm_config = {
2020-09-14 12:15:00 +08:00
#elif CONFIG_IDF_TARGET_ESP32S3
esp_pm_config_esp32s3_t pm_config = {
#elif CONFIG_IDF_TARGET_ESP32C3
esp_pm_config_esp32c3_t pm_config = {
#elif CONFIG_IDF_TARGET_ESP32H2
esp_pm_config_esp32h2_t pm_config = {
#endif
.max_freq_mhz = mhz,
.min_freq_mhz = MIN(mhz, xtal_freq),
};
ESP_ERROR_CHECK( esp_pm_configure(&pm_config) );
printf("Waiting for frequency to be set to %d MHz...\n", mhz);
while (esp_clk_cpu_freq() / MHZ != mhz) {
vTaskDelay(pdMS_TO_TICKS(200));
printf("Frequency is %d MHz\n", esp_clk_cpu_freq() / MHZ);
}
}
#if CONFIG_IDF_TARGET_ESP32C3 || CONFIG_IDF_TARGET_ESP32H2
static const int test_freqs[] = {40, 160, 80, 40, 80, 10, 80, 20, 40};
#else
static const int test_freqs[] = {240, 40, 160, 240, 80, 40, 240, 40, 80, 10, 80, 20, 40};
#endif
TEST_CASE("Can switch frequency using esp_pm_configure", "[pm]")
{
int orig_freq_mhz = esp_clk_cpu_freq() / MHZ;
for (int i = 0; i < sizeof(test_freqs)/sizeof(int); i++) {
switch_freq(test_freqs[i]);
}
switch_freq(orig_freq_mhz);
}
#if CONFIG_FREERTOS_USE_TICKLESS_IDLE
static void light_sleep_enable(void)
{
int cur_freq_mhz = esp_clk_cpu_freq() / MHZ;
int xtal_freq = (int) rtc_clk_xtal_freq_get();
#if CONFIG_IDF_TARGET_ESP32
esp_pm_config_esp32_t pm_config = {
#elif CONFIG_IDF_TARGET_ESP32S2
esp_pm_config_esp32s2_t pm_config = {
2020-09-14 12:15:00 +08:00
#elif CONFIG_IDF_TARGET_ESP32S3
esp_pm_config_esp32s3_t pm_config = {
#elif CONFIG_IDF_TARGET_ESP32C3
esp_pm_config_esp32c3_t pm_config = {
#elif CONFIG_IDF_TARGET_ESP32H2
esp_pm_config_esp32h2_t pm_config = {
#endif
.max_freq_mhz = cur_freq_mhz,
.min_freq_mhz = xtal_freq,
.light_sleep_enable = true
};
ESP_ERROR_CHECK( esp_pm_configure(&pm_config) );
}
static void light_sleep_disable(void)
{
int cur_freq_mhz = esp_clk_cpu_freq() / MHZ;
#if CONFIG_IDF_TARGET_ESP32
esp_pm_config_esp32_t pm_config = {
#elif CONFIG_IDF_TARGET_ESP32S2
esp_pm_config_esp32s2_t pm_config = {
2020-09-14 12:15:00 +08:00
#elif CONFIG_IDF_TARGET_ESP32S3
esp_pm_config_esp32s3_t pm_config = {
#elif CONFIG_IDF_TARGET_ESP32C3
esp_pm_config_esp32c3_t pm_config = {
#elif CONFIG_IDF_TARGET_ESP32H2
esp_pm_config_esp32h2_t pm_config = {
#endif
.max_freq_mhz = cur_freq_mhz,
.min_freq_mhz = cur_freq_mhz,
};
ESP_ERROR_CHECK( esp_pm_configure(&pm_config) );
}
TEST_CASE("Automatic light occurs when tasks are suspended", "[pm]")
{
/* To figure out if light sleep takes place, use Timer Group timer.
* It will stop working while in light sleep.
*/
timer_config_t config = {
.counter_dir = TIMER_COUNT_UP,
.divider = 80 /* 1 us per tick */
};
timer_init(TIMER_GROUP_0, TIMER_0, &config);
timer_set_counter_value(TIMER_GROUP_0, TIMER_0, 0);
timer_start(TIMER_GROUP_0, TIMER_0);
light_sleep_enable();
for (int ticks_to_delay = CONFIG_FREERTOS_IDLE_TIME_BEFORE_SLEEP;
ticks_to_delay < CONFIG_FREERTOS_IDLE_TIME_BEFORE_SLEEP * 10;
++ticks_to_delay) {
/* Wait until next tick */
vTaskDelay(1);
/* The following delay should cause light sleep to start */
uint64_t count_start;
timer_get_counter_value(TIMER_GROUP_0, TIMER_0, &count_start);
vTaskDelay(ticks_to_delay);
uint64_t count_end;
timer_get_counter_value(TIMER_GROUP_0, TIMER_0, &count_end);
int timer_diff_us = (int) (count_end - count_start);
const int us_per_tick = 1 * portTICK_PERIOD_MS * 1000;
printf("%d %d\n", ticks_to_delay * us_per_tick, timer_diff_us);
TEST_ASSERT(timer_diff_us < ticks_to_delay * us_per_tick);
}
light_sleep_disable();
}
#if !TEMPORARY_DISABLED_FOR_TARGETS(ESP32S2, ESP32S3)
#if !DISABLED_FOR_TARGETS(ESP32C3)
// No ULP on C3
// Fix failure on ESP32 when running alone; passes when the previous test is run before this one
TEST_CASE("Can wake up from automatic light sleep by GPIO", "[pm][ignore]")
{
#if CONFIG_IDF_TARGET_ESP32
assert(CONFIG_ESP32_ULP_COPROC_RESERVE_MEM >= 16 && "this test needs ESP32_ULP_COPROC_RESERVE_MEM option set in menuconfig");
#elif CONFIG_IDF_TARGET_ESP32S2
assert(CONFIG_ESP32S2_ULP_COPROC_RESERVE_MEM >= 16 && "this test needs ESP32_ULP_COPROC_RESERVE_MEM option set in menuconfig");
2020-09-14 12:15:00 +08:00
#elif CONFIG_IDF_TARGET_ESP32S3
assert(CONFIG_ESP32S3_ULP_COPROC_RESERVE_MEM >= 16 && "this test needs ESP32_ULP_COPROC_RESERVE_MEM option set in menuconfig");
#endif
/* Set up GPIO used to wake up RTC */
const int ext1_wakeup_gpio = 25;
const int ext_rtc_io = RTCIO_GPIO25_CHANNEL;
TEST_ESP_OK(rtc_gpio_init(ext1_wakeup_gpio));
rtc_gpio_set_direction(ext1_wakeup_gpio, RTC_GPIO_MODE_INPUT_OUTPUT);
rtc_gpio_set_level(ext1_wakeup_gpio, 0);
/* Enable wakeup */
TEST_ESP_OK(esp_sleep_enable_ext1_wakeup(1ULL << ext1_wakeup_gpio, ESP_EXT1_WAKEUP_ANY_HIGH));
/* To simplify test environment, we'll use a ULP program to set GPIO high */
ulp_insn_t ulp_code[] = {
I_DELAY(65535), /* about 8ms, given 8MHz ULP clock */
I_WR_REG_BIT(RTC_CNTL_HOLD_FORCE_REG, RTC_CNTL_PDAC1_HOLD_FORCE_S, 0),
I_WR_REG_BIT(RTC_GPIO_OUT_REG, ext_rtc_io + RTC_GPIO_OUT_DATA_S, 1),
I_DELAY(1000),
I_WR_REG_BIT(RTC_GPIO_OUT_REG, ext_rtc_io + RTC_GPIO_OUT_DATA_S, 0),
I_WR_REG_BIT(RTC_CNTL_HOLD_FORCE_REG, RTC_CNTL_PDAC1_HOLD_FORCE_S, 1),
I_END(),
I_HALT()
};
TEST_ESP_OK(ulp_set_wakeup_period(0, 1000 /* us */));
size_t size = sizeof(ulp_code)/sizeof(ulp_insn_t);
TEST_ESP_OK(ulp_process_macros_and_load(0, ulp_code, &size));
light_sleep_enable();
2019-07-25 23:11:31 +08:00
int rtcio_num = rtc_io_number_get(ext1_wakeup_gpio);
for (int i = 0; i < 10; ++i) {
/* Set GPIO low */
2019-07-25 23:11:31 +08:00
REG_CLR_BIT(rtc_io_desc[rtcio_num].reg, rtc_io_desc[rtcio_num].hold_force);
rtc_gpio_set_level(ext1_wakeup_gpio, 0);
2019-07-25 23:11:31 +08:00
REG_SET_BIT(rtc_io_desc[rtcio_num].reg, rtc_io_desc[rtcio_num].hold_force);
/* Wait for the next tick */
vTaskDelay(1);
/* Start ULP program */
ulp_run(0);
const int delay_ms = 200;
const int delay_ticks = delay_ms / portTICK_PERIOD_MS;
int64_t start_rtc = esp_clk_rtc_time();
int64_t start_hs = esp_timer_get_time();
uint32_t start_tick = xTaskGetTickCount();
/* Will enter sleep here */
vTaskDelay(delay_ticks);
int64_t end_rtc = esp_clk_rtc_time();
int64_t end_hs = esp_timer_get_time();
uint32_t end_tick = xTaskGetTickCount();
printf("%lld %lld %u\n", end_rtc - start_rtc, end_hs - start_hs, end_tick - start_tick);
TEST_ASSERT_INT32_WITHIN(3, delay_ticks, end_tick - start_tick);
TEST_ASSERT_INT32_WITHIN(2 * portTICK_PERIOD_MS * 1000, delay_ms * 1000, end_hs - start_hs);
TEST_ASSERT_INT32_WITHIN(2 * portTICK_PERIOD_MS * 1000, delay_ms * 1000, end_rtc - start_rtc);
}
2019-07-25 23:11:31 +08:00
REG_CLR_BIT(rtc_io_desc[rtcio_num].reg, rtc_io_desc[rtcio_num].hold_force);
rtc_gpio_deinit(ext1_wakeup_gpio);
light_sleep_disable();
}
#endif //!DISABLED_FOR_TARGETS(ESP32C3)
#endif //!TEMPORARY_DISABLED_FOR_TARGETS(ESP32S2, ESP32S3)
typedef struct {
int delay_us;
int result;
SemaphoreHandle_t done;
} delay_test_arg_t;
static void test_delay_task(void* p)
{
delay_test_arg_t* arg = (delay_test_arg_t*) p;
vTaskDelay(1);
uint64_t start = esp_clk_rtc_time();
vTaskDelay(arg->delay_us / portTICK_PERIOD_MS / 1000);
uint64_t stop = esp_clk_rtc_time();
arg->result = (int) (stop - start);
xSemaphoreGive(arg->done);
vTaskDelete(NULL);
}
TEST_CASE("vTaskDelay duration is correct with light sleep enabled", "[pm]")
{
light_sleep_enable();
delay_test_arg_t args = {
.done = xSemaphoreCreateBinary()
};
const int delays[] = { 10, 20, 50, 100, 150, 200, 250 };
const int delays_count = sizeof(delays) / sizeof(delays[0]);
for (int i = 0; i < delays_count; ++i) {
int delay_ms = delays[i];
args.delay_us = delay_ms * 1000;
xTaskCreatePinnedToCore(test_delay_task, "", 2048, (void*) &args, 3, NULL, 0);
TEST_ASSERT( xSemaphoreTake(args.done, delay_ms * 10 / portTICK_PERIOD_MS) );
printf("CPU0: %d %d\n", args.delay_us, args.result);
TEST_ASSERT_INT32_WITHIN(1000 * portTICK_PERIOD_MS * 2, args.delay_us, args.result);
#if portNUM_PROCESSORS == 2
xTaskCreatePinnedToCore(test_delay_task, "", 2048, (void*) &args, 3, NULL, 1);
TEST_ASSERT( xSemaphoreTake(args.done, delay_ms * 10 / portTICK_PERIOD_MS) );
printf("CPU1: %d %d\n", args.delay_us, args.result);
TEST_ASSERT_INT32_WITHIN(1000 * portTICK_PERIOD_MS * 2, args.delay_us, args.result);
#endif
}
vSemaphoreDelete(args.done);
light_sleep_disable();
}
/* This test is similar to the one in test_esp_timer.c, but since we can't use
* ref_clock, this test uses RTC clock for timing. Also enables automatic
* light sleep.
*/
TEST_CASE("esp_timer produces correct delays with light sleep", "[pm]")
{
// no, we can't make this a const size_t (§6.7.5.2)
#define NUM_INTERVALS 16
typedef struct {
esp_timer_handle_t timer;
size_t cur_interval;
int intervals[NUM_INTERVALS];
int64_t t_start;
SemaphoreHandle_t done;
} test_args_t;
void timer_func(void* arg)
{
test_args_t* p_args = (test_args_t*) arg;
int64_t t_end = esp_clk_rtc_time();
int32_t ms_diff = (t_end - p_args->t_start) / 1000;
printf("timer #%d %dms\n", p_args->cur_interval, ms_diff);
p_args->intervals[p_args->cur_interval++] = ms_diff;
// Deliberately make timer handler run longer.
// We check that this doesn't affect the result.
esp_rom_delay_us(10*1000);
if (p_args->cur_interval == NUM_INTERVALS) {
printf("done\n");
TEST_ESP_OK(esp_timer_stop(p_args->timer));
xSemaphoreGive(p_args->done);
}
}
light_sleep_enable();
const int delay_ms = 100;
test_args_t args = {0};
esp_timer_handle_t timer1;
esp_timer_create_args_t create_args = {
.callback = &timer_func,
.arg = &args,
.name = "timer1",
};
TEST_ESP_OK(esp_timer_create(&create_args, &timer1));
args.timer = timer1;
args.t_start = esp_clk_rtc_time();
args.done = xSemaphoreCreateBinary();
TEST_ESP_OK(esp_timer_start_periodic(timer1, delay_ms * 1000));
TEST_ASSERT(xSemaphoreTake(args.done, delay_ms * NUM_INTERVALS * 2));
TEST_ASSERT_EQUAL_UINT32(NUM_INTERVALS, args.cur_interval);
for (size_t i = 0; i < NUM_INTERVALS; ++i) {
TEST_ASSERT_INT32_WITHIN(portTICK_PERIOD_MS, (i + 1) * delay_ms, args.intervals[i]);
}
TEST_ESP_OK( esp_timer_dump(stdout) );
TEST_ESP_OK( esp_timer_delete(timer1) );
vSemaphoreDelete(args.done);
light_sleep_disable();
#undef NUM_INTERVALS
}
static void timer_cb1(void *arg)
{
++*((int*) arg);
}
TEST_CASE("esp_timer with SKIP_UNHANDLED_EVENTS does not wake up CPU from sleep", "[pm]")
{
int count_calls = 0;
int timer_interval_ms = 50;
const esp_timer_create_args_t timer_args = {
.name = "timer_cb1",
.arg = &count_calls,
.callback = &timer_cb1,
.skip_unhandled_events = true,
};
esp_timer_handle_t periodic_timer;
esp_timer_create(&timer_args, &periodic_timer);
TEST_ESP_OK(esp_timer_start_periodic(periodic_timer, timer_interval_ms * 1000));
light_sleep_enable();
const unsigned count_delays = 5;
unsigned i = count_delays;
while (i-- > 0) {
vTaskDelay(pdMS_TO_TICKS(500));
}
TEST_ASSERT_INT_WITHIN(1, count_delays, count_calls);
light_sleep_disable();
TEST_ESP_OK(esp_timer_stop(periodic_timer));
TEST_ESP_OK(esp_timer_dump(stdout));
TEST_ESP_OK(esp_timer_delete(periodic_timer));
}
#endif // CONFIG_FREERTOS_USE_TICKLESS_IDLE
#endif // CONFIG_PM_ENABLE