esp-idf/components/spi_flash/flash_mmap.c

416 lines
12 KiB
C
Raw Normal View History

/*
2022-01-12 02:03:50 -05:00
* SPDX-FileCopyrightText: 2015-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
2016-10-19 05:17:24 -04:00
#include <stdlib.h>
#include <assert.h>
#include <string.h>
#include <stdio.h>
#include <freertos/FreeRTOS.h>
#include "sdkconfig.h"
#include "esp_attr.h"
#include "esp_log.h"
#include "hal/mmu_ll.h"
#include "soc/mmu.h"
#include "esp_private/esp_mmu_map_private.h"
#include "esp_mmu_map.h"
#if CONFIG_SPIRAM
#include "esp_private/esp_psram_extram.h"
#include "esp_private/mmu_psram_flash.h"
#endif
#include "esp_private/cache_utils.h"
#include "spi_flash_mmap.h"
#if CONFIG_IDF_TARGET_ESP32
#include "esp32/rom/cache.h"
2020-01-16 22:47:08 -05:00
#elif CONFIG_IDF_TARGET_ESP32S2
#include "esp32s2/rom/cache.h"
2020-07-29 01:13:51 -04:00
#elif CONFIG_IDF_TARGET_ESP32S3
#include "esp32s3/rom/cache.h"
#elif CONFIG_IDF_TARGET_ESP32C3
#include "esp32c3/rom/cache.h"
2022-10-19 03:57:24 -04:00
#elif CONFIG_IDF_TARGET_ESP32H4
#include "esp32h4/rom/cache.h"
2022-01-17 21:32:56 -05:00
#elif CONFIG_IDF_TARGET_ESP32C2
#include "esp32c2/rom/cache.h"
2022-07-12 09:19:35 -04:00
#elif CONFIG_IDF_TARGET_ESP32C6
#include "esp32c6/rom/cache.h"
#elif CONFIG_IDF_TARGET_ESP32H2
#include "esp32h2/rom/cache.h"
#endif
2016-10-19 05:17:24 -04:00
2022-05-09 04:44:02 -04:00
#if CONFIG_SPIRAM_FETCH_INSTRUCTIONS
extern int _instruction_reserved_start;
extern int _instruction_reserved_end;
#endif
#if CONFIG_SPIRAM_RODATA
extern int _rodata_reserved_start;
extern int _rodata_reserved_end;
#endif
#if !CONFIG_SPI_FLASH_ROM_IMPL
2016-10-19 05:17:24 -04:00
typedef struct mmap_block_t {
uint32_t *vaddr_list;
int list_num;
} mmap_block_t;
2016-10-19 05:17:24 -04:00
esp_err_t spi_flash_mmap(size_t src_addr, size_t size, spi_flash_mmap_memory_t memory,
const void** out_ptr, spi_flash_mmap_handle_t* out_handle)
2016-10-19 05:17:24 -04:00
{
esp_err_t ret = ESP_FAIL;
mmu_mem_caps_t caps = 0;
void *ptr = NULL;
mmap_block_t *block = NULL;
uint32_t *vaddr_list = NULL;
block = heap_caps_calloc(1, sizeof(mmap_block_t), MALLOC_CAP_INTERNAL);
if (!block) {
ret = ESP_ERR_NO_MEM;
goto err;
2016-10-19 05:17:24 -04:00
}
vaddr_list = heap_caps_calloc(1, 1 * sizeof(uint32_t), MALLOC_CAP_INTERNAL);
if (!vaddr_list) {
ret = ESP_ERR_NO_MEM;
goto err;
}
block->vaddr_list = vaddr_list;
if (memory == SPI_FLASH_MMAP_INST) {
caps = MMU_MEM_CAP_EXEC | MMU_MEM_CAP_32BIT;
} else {
caps = MMU_MEM_CAP_READ | MMU_MEM_CAP_8BIT;
2016-10-19 05:17:24 -04:00
}
2023-02-10 07:40:51 -05:00
ret = esp_mmu_map(src_addr, size, MMU_TARGET_FLASH0, caps, ESP_MMU_MMAP_FLAG_PADDR_SHARED, &ptr);
if (ret == ESP_OK) {
vaddr_list[0] = (uint32_t)ptr;
block->list_num = 1;
} else if (ret == ESP_ERR_INVALID_STATE) {
/**
* paddr region is mapped already,
* to keep `flash_mmap.c` original behaviour, we consider this as a valid behaviour.
* Set `list_num` to 0 so we don't need to call `esp_mmu_unmap` to this one, as `esp_mmu_map`
* doesn't really create a new handle.
*/
block->list_num = 0;
} else {
goto err;
}
*out_ptr = ptr;
*out_handle = (uint32_t)block;
return ESP_OK;
err:
if (vaddr_list) {
free(vaddr_list);
}
if (block) {
free(block);
}
return ret;
}
static int s_find_non_contiguous_block_nums(const int *pages, int page_count)
{
int nums = 1;
int last_end = pages[0] + 1;
for (int i = 1; i < page_count; i++) {
if (pages[i] != last_end) {
nums++;
}
last_end = pages[i] + 1;
}
return nums;
}
static void s_merge_contiguous_pages(const int *pages, uint32_t page_count, int block_nums, int (*out_blocks)[2])
{
uint32_t last_end = pages[0] + 1;
int new_array_id = 0;
out_blocks[new_array_id][0] = pages[0];
out_blocks[new_array_id][1] = 1;
for (int i = 1; i < page_count; i++) {
if (pages[i] != last_end) {
new_array_id += 1;
assert(new_array_id < block_nums);
out_blocks[new_array_id][0] = pages[i];
out_blocks[new_array_id][1] = 1;
} else {
out_blocks[new_array_id][1] += 1;
}
last_end = pages[i] + 1;
}
}
static void s_pages_to_bytes(int (*blocks)[2], int block_nums)
{
for (int i = 0; i < block_nums; i++) {
blocks[i][0] = blocks[i][0] * CONFIG_MMU_PAGE_SIZE;
blocks[i][1] = blocks[i][1] * CONFIG_MMU_PAGE_SIZE;
}
}
esp_err_t spi_flash_mmap_pages(const int *pages, size_t page_count, spi_flash_mmap_memory_t memory,
const void** out_ptr, spi_flash_mmap_handle_t* out_handle)
{
esp_err_t ret = ESP_FAIL;
mmu_mem_caps_t caps = 0;
mmap_block_t *block = NULL;
uint32_t *vaddr_list = NULL;
int successful_cnt = 0;
int block_num = s_find_non_contiguous_block_nums(pages, page_count);
int paddr_blocks[block_num][2];
s_merge_contiguous_pages(pages, page_count, block_num, paddr_blocks);
s_pages_to_bytes(paddr_blocks, block_num);
block = heap_caps_calloc(1, sizeof(mmap_block_t), MALLOC_CAP_INTERNAL);
if (!block) {
ret = ESP_ERR_NO_MEM;
goto err;
2016-10-19 05:17:24 -04:00
}
vaddr_list = heap_caps_calloc(1, block_num * sizeof(uint32_t), MALLOC_CAP_INTERNAL);
if (!vaddr_list) {
2016-10-19 05:17:24 -04:00
ret = ESP_ERR_NO_MEM;
goto err;
}
if (memory == SPI_FLASH_MMAP_INST) {
caps = MMU_MEM_CAP_EXEC | MMU_MEM_CAP_32BIT;
} else {
caps = MMU_MEM_CAP_READ | MMU_MEM_CAP_8BIT;
}
for (int i = 0; i < block_num; i++) {
void *ptr = NULL;
2023-02-10 07:40:51 -05:00
ret = esp_mmu_map(paddr_blocks[i][0], paddr_blocks[i][1], MMU_TARGET_FLASH0, caps, ESP_MMU_MMAP_FLAG_PADDR_SHARED, &ptr);
if (ret == ESP_OK) {
vaddr_list[i] = (uint32_t)ptr;
successful_cnt++;
} else {
/**
* A note for `ret == ESP_ERR_INVALID_STATE`:
* If one of the `*pages` are mapped already, this means we can't find a
* consecutive vaddr block for these `*pages`
*/
goto err;
2016-10-19 05:17:24 -04:00
}
vaddr_list[i] = (uint32_t)ptr;
2016-10-19 05:17:24 -04:00
}
block->vaddr_list = vaddr_list;
block->list_num = successful_cnt;
/**
* We get a contiguous vaddr block, but may contain multiple esp_mmu handles.
* The first handle vaddr is the start address of this contiguous vaddr block.
*/
*out_ptr = (void *)vaddr_list[0];
*out_handle = (uint32_t)block;
return ESP_OK;
err:
for (int i = 0; i < successful_cnt; i++) {
esp_mmu_unmap((void *)vaddr_list[i]);
}
if (vaddr_list) {
free(vaddr_list);
}
if (block) {
free(block);
2016-10-19 05:17:24 -04:00
}
return ret;
}
void spi_flash_munmap(spi_flash_mmap_handle_t handle)
2016-10-19 05:17:24 -04:00
{
esp_err_t ret = ESP_FAIL;
mmap_block_t *block = (void *)handle;
for (int i = 0; i < block->list_num; i++) {
ret = esp_mmu_unmap((void *)block->vaddr_list[i]);
if (ret == ESP_ERR_NOT_FOUND) {
assert(0 && "invalid handle, or handle already unmapped");
2016-10-19 05:17:24 -04:00
}
}
free(block->vaddr_list);
free(block);
}
void spi_flash_mmap_dump(void)
{
esp_mmu_map_dump_mapped_blocks(stdout);
2016-10-19 05:17:24 -04:00
}
uint32_t spi_flash_mmap_get_free_pages(spi_flash_mmap_memory_t memory)
{
mmu_mem_caps_t caps = 0;
if (memory == SPI_FLASH_MMAP_INST) {
caps = MMU_MEM_CAP_EXEC | MMU_MEM_CAP_32BIT;
} else {
caps = MMU_MEM_CAP_READ | MMU_MEM_CAP_8BIT;
}
size_t len = 0;
esp_mmu_map_get_max_consecutive_free_block_size(caps, MMU_TARGET_FLASH0, &len);
return len / CONFIG_MMU_PAGE_SIZE;
}
size_t spi_flash_cache2phys(const void *cached)
{
if (cached == NULL) {
return SPI_FLASH_CACHE2PHYS_FAIL;
}
esp_err_t ret = ESP_FAIL;
uint32_t paddr = 0;
mmu_target_t target = 0;
ret = esp_mmu_vaddr_to_paddr((void *)cached, &paddr, &target);
if (ret != ESP_OK) {
return SPI_FLASH_CACHE2PHYS_FAIL;
2020-12-08 23:22:55 -05:00
}
int offset = 0;
#if CONFIG_SPIRAM_RODATA
if ((uint32_t)cached >= (uint32_t)&_rodata_reserved_start && (uint32_t)cached <= (uint32_t)&_rodata_reserved_end) {
offset = rodata_flash2spiram_offset();
}
#endif
#if CONFIG_SPIRAM_FETCH_INSTRUCTIONS
if ((uint32_t)cached >= (uint32_t)&_instruction_reserved_start && (uint32_t)cached <= (uint32_t)&_instruction_reserved_end) {
offset = instruction_flash2spiram_offset();
}
#endif
return paddr + offset * CONFIG_MMU_PAGE_SIZE;
}
const void * spi_flash_phys2cache(size_t phys_offs, spi_flash_mmap_memory_t memory)
{
esp_err_t ret = ESP_FAIL;
void *ptr = NULL;
mmu_target_t target = MMU_TARGET_FLASH0;
__attribute__((unused)) uint32_t phys_page = phys_offs / CONFIG_MMU_PAGE_SIZE;
#if CONFIG_SPIRAM_FETCH_INSTRUCTIONS
if (phys_page >= instruction_flash_start_page_get() && phys_page <= instruction_flash_end_page_get()) {
target = MMU_TARGET_PSRAM0;
phys_offs -= instruction_flash2spiram_offset() * CONFIG_MMU_PAGE_SIZE;
}
#endif
#if CONFIG_SPIRAM_RODATA
if (phys_page >= rodata_flash_start_page_get() && phys_page <= rodata_flash_start_page_get()) {
target = MMU_TARGET_PSRAM0;
phys_offs -= rodata_flash2spiram_offset() * CONFIG_MMU_PAGE_SIZE;
}
#endif
mmu_vaddr_t type = (memory == SPI_FLASH_MMAP_DATA) ? MMU_VADDR_DATA : MMU_VADDR_INSTRUCTION;
ret = esp_mmu_paddr_to_vaddr(phys_offs, target, type, &ptr);
if (ret == ESP_ERR_NOT_FOUND) {
return NULL;
}
assert(ret == ESP_OK);
return (const void *)ptr;
}
static bool IRAM_ATTR is_page_mapped_in_cache(uint32_t phys_page, const void **out_ptr)
{
int start[2], end[2];
*out_ptr = NULL;
/* SPI_FLASH_MMAP_DATA */
2020-12-08 23:22:55 -05:00
start[0] = SOC_MMU_DROM0_PAGES_START;
end[0] = SOC_MMU_DROM0_PAGES_END;
/* SPI_FLASH_MMAP_INST */
2020-12-08 23:22:55 -05:00
start[1] = SOC_MMU_PRO_IRAM0_FIRST_USABLE_PAGE;
end[1] = SOC_MMU_IROM0_PAGES_END;
for (int j = 0; j < 2; j++) {
for (int i = start[j]; i < end[j]; i++) {
uint32_t entry_pro = mmu_ll_read_entry(MMU_TABLE_CORE0, i);
if (entry_pro == SOC_MMU_PAGE_IN_FLASH(phys_page)) {
#if !CONFIG_IDF_TARGET_ESP32
if (j == 0) { /* SPI_FLASH_MMAP_DATA */
2020-12-08 23:22:55 -05:00
*out_ptr = (const void *)(SOC_MMU_VADDR0_START_ADDR + SPI_FLASH_MMU_PAGE_SIZE * (i - start[0]));
} else { /* SPI_FLASH_MMAP_INST */
2020-12-08 23:22:55 -05:00
*out_ptr = (const void *)(SOC_MMU_VADDR1_FIRST_USABLE_ADDR + SPI_FLASH_MMU_PAGE_SIZE * (i - start[1]));
}
#endif
return true;
}
}
}
return false;
}
/* Validates if given flash address has corresponding cache mapping, if yes, flushes cache memories */
IRAM_ATTR bool spi_flash_check_and_flush_cache(size_t start_addr, size_t length)
{
bool ret = false;
/* align start_addr & length to full MMU pages */
uint32_t page_start_addr = start_addr & ~(SPI_FLASH_MMU_PAGE_SIZE-1);
length += (start_addr - page_start_addr);
length = (length + SPI_FLASH_MMU_PAGE_SIZE - 1) & ~(SPI_FLASH_MMU_PAGE_SIZE-1);
for (uint32_t addr = page_start_addr; addr < page_start_addr + length; addr += SPI_FLASH_MMU_PAGE_SIZE) {
uint32_t page = addr / SPI_FLASH_MMU_PAGE_SIZE;
// TODO: IDF-4969
if (page >= 256) {
return false; /* invalid address */
}
const void *vaddr = NULL;
if (is_page_mapped_in_cache(page, &vaddr)) {
2019-06-10 03:07:12 -04:00
#if CONFIG_IDF_TARGET_ESP32
#if CONFIG_SPIRAM
2022-05-10 22:32:56 -04:00
esp_psram_extram_writeback_cache();
#endif
Cache_Flush(0);
#ifndef CONFIG_FREERTOS_UNICORE
Cache_Flush(1);
#endif
return true;
#else // CONFIG_IDF_TARGET_ESP32
if (vaddr != NULL) {
Cache_Invalidate_Addr((uint32_t)vaddr, SPI_FLASH_MMU_PAGE_SIZE);
ret = true;
}
#endif // CONFIG_IDF_TARGET_ESP32
}
}
return ret;
}
#endif //!CONFIG_SPI_FLASH_ROM_IMPL