925 lines
33 KiB
C
Raw Normal View History

2021-05-24 02:09:38 +02:00
/*
* SPDX-FileCopyrightText: 2015-2023 Espressif Systems (Shanghai) CO LTD
2021-05-24 02:09:38 +02:00
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <stdbool.h>
#include <stddef.h>
#include <sys/param.h>
#include "esp_log.h"
#include "esp_intr_alloc.h"
#include "esp_timer.h"
#include "esp_check.h"
#include "soc/soc_caps.h"
#include "soc/soc_pins.h"
#include "soc/gpio_periph.h"
#include "esp_rom_gpio.h"
#include "esp_rom_sys.h"
#include "driver/gpio.h"
#include "driver/sdmmc_host.h"
#include "esp_private/periph_ctrl.h"
#include "sdmmc_private.h"
#include "freertos/FreeRTOS.h"
#include "freertos/semphr.h"
2023-04-18 19:45:27 +08:00
#include "esp_clk_tree.h"
#include "soc/sdmmc_periph.h"
#include "soc/soc_caps.h"
#include "hal/gpio_hal.h"
#include "hal/sdmmc_hal.h"
#include "hal/sdmmc_ll.h"
#define SDMMC_EVENT_QUEUE_LENGTH 32
#if !SOC_RCC_IS_INDEPENDENT
// Reset and Clock Control registers are mixing with other peripherals, so we need to use a critical section
#define SDMMC_RCC_ATOMIC() PERIPH_RCC_ATOMIC()
#else
#define SDMMC_RCC_ATOMIC()
#endif
#if SOC_PERIPH_CLK_CTRL_SHARED
// Clock source and related clock settings are mixing with other peripherals, so we need to use a critical section
#define SDMMC_CLK_SRC_ATOMIC() PERIPH_RCC_ATOMIC()
#else
#define SDMMC_CLK_SRC_ATOMIC()
#endif
static const char *TAG = "sdmmc_periph";
/**
* Slot contexts
*/
typedef struct slot_ctx_t {
size_t slot_width;
sdmmc_slot_io_info_t slot_gpio_num;
bool use_gpio_matrix;
} slot_ctx_t;
/**
* Host contexts
*/
typedef struct host_ctx_t {
intr_handle_t intr_handle;
QueueHandle_t event_queue;
SemaphoreHandle_t io_intr_event;
sdmmc_hal_context_t hal;
slot_ctx_t slot_ctx[SOC_SDMMC_NUM_SLOTS];
} host_ctx_t;
static host_ctx_t s_host_ctx;
static void sdmmc_isr(void *arg);
static void sdmmc_host_dma_init(void);
static esp_err_t sdmmc_host_pullup_en_internal(int slot, int width);
esp_err_t sdmmc_host_reset(void)
{
// Set reset bits
SDMMC.ctrl.controller_reset = 1;
SDMMC.ctrl.dma_reset = 1;
SDMMC.ctrl.fifo_reset = 1;
// Wait for the reset bits to be cleared by hardware
int64_t yield_delay_us = 100 * 1000; // initially 100ms
int64_t t0 = esp_timer_get_time();
int64_t t1 = 0;
while (SDMMC.ctrl.controller_reset || SDMMC.ctrl.fifo_reset || SDMMC.ctrl.dma_reset) {
t1 = esp_timer_get_time();
if (t1 - t0 > SDMMC_HOST_RESET_TIMEOUT_US) {
return ESP_ERR_TIMEOUT;
}
if (t1 - t0 > yield_delay_us) {
yield_delay_us *= 2;
vTaskDelay(1);
}
}
return ESP_OK;
}
/* We have two clock divider stages:
* - one is the clock generator which drives SDMMC peripheral,
* it can be configured using SDMMC.clock register. It can generate
* frequencies 160MHz/(N + 1), where 0 < N < 16, I.e. from 10 to 80 MHz.
* - 4 clock dividers inside SDMMC peripheral, which can divide clock
* from the first stage by 2 * M, where 0 < M < 255
* (they can also be bypassed).
*
* For cards which aren't UHS-1 or UHS-2 cards, which we don't support,
* maximum bus frequency in high speed (HS) mode is 50 MHz.
* Note: for non-UHS-1 cards, HS mode is optional.
* Default speed (DS) mode is mandatory, it works up to 25 MHz.
* Whether the card supports HS or not can be determined using TRAN_SPEED
* field of card's CSD register.
*
* 50 MHz can not be obtained exactly, closest we can get is 53 MHz.
*
* The first stage divider is set to the highest possible value for the given
* frequency, and the the second stage dividers are used if division factor
* is >16.
*
* Of the second stage dividers, div0 is used for card 0, and div1 is used
* for card 1.
*/
static void sdmmc_host_set_clk_div(int div)
{
SDMMC_CLK_SRC_ATOMIC() {
sdmmc_ll_set_clock_div(s_host_ctx.hal.dev, div);
sdmmc_ll_select_clk_source(s_host_ctx.hal.dev, SDMMC_CLK_SRC_DEFAULT);
sdmmc_ll_init_phase_delay(s_host_ctx.hal.dev);
}
// Wait for the clock to propagate
esp_rom_delay_us(10);
}
static esp_err_t sdmmc_host_clock_update_command(int slot)
{
// Clock update command (not a real command; just updates CIU registers)
sdmmc_hw_cmd_t cmd_val = {
.card_num = slot,
.update_clk_reg = 1,
.wait_complete = 1
};
bool repeat = true;
while (repeat) {
ESP_RETURN_ON_ERROR(sdmmc_host_start_command(slot, cmd_val, 0), TAG, "sdmmc_host_start_command returned 0x%x", err_rc_);
int64_t yield_delay_us = 100 * 1000; // initially 100ms
int64_t t0 = esp_timer_get_time();
int64_t t1 = 0;
while (true) {
t1 = esp_timer_get_time();
if (t1 - t0 > SDMMC_HOST_CLOCK_UPDATE_CMD_TIMEOUT_US) {
return ESP_ERR_TIMEOUT;
}
// Sending clock update command to the CIU can generate HLE error.
// According to the manual, this is okay and we must retry the command.
if (SDMMC.rintsts.hle) {
SDMMC.rintsts.hle = 1;
repeat = true;
break;
}
// When the command is accepted by CIU, start_command bit will be
// cleared in SDMMC.cmd register.
if (SDMMC.cmd.start_command == 0) {
repeat = false;
break;
}
if (t1 - t0 > yield_delay_us) {
yield_delay_us *= 2;
vTaskDelay(1);
}
}
}
return ESP_OK;
}
void sdmmc_host_get_clk_dividers(uint32_t freq_khz, int *host_div, int *card_div)
{
2023-04-18 19:45:27 +08:00
uint32_t clk_src_freq_hz = 0;
esp_clk_tree_src_get_freq_hz(SDMMC_CLK_SRC_DEFAULT, ESP_CLK_TREE_SRC_FREQ_PRECISION_CACHED, &clk_src_freq_hz);
assert(clk_src_freq_hz == (160 * 1000 * 1000));
#if SDMMC_LL_MAX_FREQ_KHZ_FPGA
if (freq_khz >= SDMMC_LL_MAX_FREQ_KHZ_FPGA) {
ESP_LOGW(TAG, "working on FPGA, fallback to use the %d KHz", SDMMC_LL_MAX_FREQ_KHZ_FPGA);
freq_khz = SDMMC_LL_MAX_FREQ_KHZ_FPGA;
}
#endif
// Calculate new dividers
if (freq_khz >= SDMMC_FREQ_HIGHSPEED) {
*host_div = 4; // 160 MHz / 4 = 40 MHz
*card_div = 0;
} else if (freq_khz == SDMMC_FREQ_DEFAULT) {
*host_div = 8; // 160 MHz / 8 = 20 MHz
*card_div = 0;
} else if (freq_khz == SDMMC_FREQ_PROBING) {
*host_div = 10; // 160 MHz / 10 / (20 * 2) = 400 kHz
*card_div = 20;
} else {
/*
* for custom frequencies use maximum range of host divider (1-16), find the closest <= div. combination
* if exceeded, combine with the card divider to keep reasonable precision (applies mainly to low frequencies)
* effective frequency range: 400 kHz - 32 MHz (32.1 - 39.9 MHz cannot be covered with given divider scheme)
*/
2023-04-18 19:45:27 +08:00
*host_div = (clk_src_freq_hz) / (freq_khz * 1000);
if (*host_div > 15 ) {
*host_div = 2;
2023-04-18 19:45:27 +08:00
*card_div = (clk_src_freq_hz / 2) / (2 * freq_khz * 1000);
if ( ((clk_src_freq_hz / 2) % (2 * freq_khz * 1000)) > 0 ) {
(*card_div)++;
}
2023-04-18 19:45:27 +08:00
} else if ((clk_src_freq_hz % (freq_khz * 1000)) > 0) {
(*host_div)++;
}
}
}
static int sdmmc_host_calc_freq(const int host_div, const int card_div)
{
2023-04-18 19:45:27 +08:00
uint32_t clk_src_freq_hz = 0;
esp_clk_tree_src_get_freq_hz(SDMMC_CLK_SRC_DEFAULT, ESP_CLK_TREE_SRC_FREQ_PRECISION_CACHED, &clk_src_freq_hz);
assert(clk_src_freq_hz == (160 * 1000 * 1000));
return clk_src_freq_hz / host_div / ((card_div == 0) ? 1 : card_div * 2) / 1000;
}
esp_err_t sdmmc_host_set_card_clk(int slot, uint32_t freq_khz)
{
if (!(slot == 0 || slot == 1)) {
return ESP_ERR_INVALID_ARG;
}
// Disable clock first
sdmmc_ll_enable_card_clock(s_host_ctx.hal.dev, slot, false);
esp_err_t err = sdmmc_host_clock_update_command(slot);
if (err != ESP_OK) {
ESP_LOGE(TAG, "disabling clk failed");
ESP_LOGE(TAG, "%s: sdmmc_host_clock_update_command returned 0x%x", __func__, err);
return err;
}
int host_div = 0; /* clock divider of the host (SDMMC.clock) */
int card_div = 0; /* 1/2 of card clock divider (SDMMC.clkdiv) */
sdmmc_host_get_clk_dividers(freq_khz, &host_div, &card_div);
int real_freq = sdmmc_host_calc_freq(host_div, card_div);
ESP_LOGD(TAG, "slot=%d host_div=%d card_div=%d freq=%dkHz (max %" PRIu32 "kHz)", slot, host_div, card_div, real_freq, freq_khz);
// Program card clock settings, send them to the CIU
sdmmc_ll_set_card_clock_div(s_host_ctx.hal.dev, slot, card_div);
sdmmc_host_set_clk_div(host_div);
err = sdmmc_host_clock_update_command(slot);
if (err != ESP_OK) {
ESP_LOGE(TAG, "setting clk div failed");
ESP_LOGE(TAG, "%s: sdmmc_host_clock_update_command returned 0x%x", __func__, err);
return err;
}
// Re-enable clocks
sdmmc_ll_enable_card_clock(s_host_ctx.hal.dev, slot, true);
sdmmc_ll_enable_card_clock_low_power(s_host_ctx.hal.dev, slot, true);
err = sdmmc_host_clock_update_command(slot);
if (err != ESP_OK) {
ESP_LOGE(TAG, "re-enabling clk failed");
ESP_LOGE(TAG, "%s: sdmmc_host_clock_update_command returned 0x%x", __func__, err);
return err;
}
// set data timeout
const uint32_t data_timeout_ms = 100;
uint32_t data_timeout_cycles = data_timeout_ms * freq_khz;
sdmmc_ll_set_data_timeout(s_host_ctx.hal.dev, data_timeout_cycles);
// always set response timeout to highest value, it's small enough anyway
sdmmc_ll_set_response_timeout(s_host_ctx.hal.dev, 255);
return ESP_OK;
}
esp_err_t sdmmc_host_get_real_freq(int slot, int *real_freq_khz)
{
if (real_freq_khz == NULL) {
return ESP_ERR_INVALID_ARG;
}
if (!(slot == 0 || slot == 1)) {
return ESP_ERR_INVALID_ARG;
}
int host_div = sdmmc_ll_get_clock_div(s_host_ctx.hal.dev);
int card_div = sdmmc_ll_get_card_clock_div(s_host_ctx.hal.dev, slot);
*real_freq_khz = sdmmc_host_calc_freq(host_div, card_div);
return ESP_OK;
}
esp_err_t sdmmc_host_set_input_delay(int slot, sdmmc_delay_phase_t delay_phase)
{
#if CONFIG_IDF_TARGET_ESP32
//DIG-217
ESP_LOGW(TAG, "esp32 doesn't support input phase delay, fallback to 0 delay");
return ESP_ERR_NOT_SUPPORTED;
#else
ESP_RETURN_ON_FALSE((slot == 0 || slot == 1), ESP_ERR_INVALID_ARG, TAG, "invalid slot");
ESP_RETURN_ON_FALSE(delay_phase < SOC_SDMMC_DELAY_PHASE_NUM, ESP_ERR_INVALID_ARG, TAG, "invalid delay phase");
uint32_t clk_src_freq_hz = 0;
ESP_RETURN_ON_ERROR(esp_clk_tree_src_get_freq_hz(SDMMC_CLK_SRC_DEFAULT, ESP_CLK_TREE_SRC_FREQ_PRECISION_CACHED, &clk_src_freq_hz),
TAG, "get source clock frequency failed");
//Now we're in high speed. Note ESP SDMMC Host HW only supports integer divider.
int delay_phase_num = 0;
sdmmc_ll_delay_phase_t phase = SDMMC_LL_DELAY_PHASE_0;
switch (delay_phase) {
case SDMMC_DELAY_PHASE_1:
phase = SDMMC_LL_DELAY_PHASE_1;
delay_phase_num = 1;
break;
case SDMMC_DELAY_PHASE_2:
phase = SDMMC_LL_DELAY_PHASE_2;
delay_phase_num = 2;
break;
case SDMMC_DELAY_PHASE_3:
phase = SDMMC_LL_DELAY_PHASE_3;
delay_phase_num = 3;
break;
default:
phase = SDMMC_LL_DELAY_PHASE_0;
delay_phase_num = 0;
break;
}
SDMMC_CLK_SRC_ATOMIC() {
sdmmc_ll_set_din_delay(s_host_ctx.hal.dev, phase);
}
int src_clk_period_ps = (1 * 1000 * 1000) / (clk_src_freq_hz / (1 * 1000 * 1000));
int phase_diff_ps = src_clk_period_ps * sdmmc_ll_get_clock_div(s_host_ctx.hal.dev) / SOC_SDMMC_DELAY_PHASE_NUM;
ESP_LOGD(TAG, "difference between input delay phases is %d ps", phase_diff_ps);
ESP_LOGI(TAG, "host sampling edge is delayed by %d ps", phase_diff_ps * delay_phase_num);
#endif
return ESP_OK;
}
esp_err_t sdmmc_host_start_command(int slot, sdmmc_hw_cmd_t cmd, uint32_t arg)
{
if (!(slot == 0 || slot == 1)) {
return ESP_ERR_INVALID_ARG;
}
if (!sdmmc_ll_is_card_detected(s_host_ctx.hal.dev, slot)) {
return ESP_ERR_NOT_FOUND;
}
if (cmd.data_expected && cmd.rw && sdmmc_ll_is_card_write_protected(s_host_ctx.hal.dev, slot)) {
return ESP_ERR_INVALID_STATE;
}
/* Outputs should be synchronized to cclk_out */
cmd.use_hold_reg = 1;
int64_t yield_delay_us = 100 * 1000; // initially 100ms
int64_t t0 = esp_timer_get_time();
int64_t t1 = 0;
while (SDMMC.cmd.start_command == 1) {
t1 = esp_timer_get_time();
if (t1 - t0 > SDMMC_HOST_START_CMD_TIMEOUT_US) {
return ESP_ERR_TIMEOUT;
}
if (t1 - t0 > yield_delay_us) {
yield_delay_us *= 2;
vTaskDelay(1);
}
}
SDMMC.cmdarg = arg;
cmd.card_num = slot;
cmd.start_command = 1;
SDMMC.cmd = cmd;
return ESP_OK;
}
esp_err_t sdmmc_host_init(void)
{
if (s_host_ctx.intr_handle) {
return ESP_ERR_INVALID_STATE;
}
//enable bus clock for registers
SDMMC_RCC_ATOMIC() {
sdmmc_ll_enable_bus_clock(s_host_ctx.hal.dev, true);
sdmmc_ll_reset_register(s_host_ctx.hal.dev);
}
//hal context init
sdmmc_hal_init(&s_host_ctx.hal);
// Enable clock to peripheral. Use smallest divider first.
sdmmc_host_set_clk_div(2);
// Reset
esp_err_t err = sdmmc_host_reset();
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: sdmmc_host_reset returned 0x%x", __func__, err);
return err;
}
ESP_LOGD(TAG, "peripheral version %"PRIx32", hardware config %08"PRIx32, SDMMC.verid, SDMMC.hcon.val);
// Clear interrupt status and set interrupt mask to known state
SDMMC.rintsts.val = 0xffffffff;
SDMMC.intmask.val = 0;
SDMMC.ctrl.int_enable = 0;
// Allocate event queue
s_host_ctx.event_queue = xQueueCreate(SDMMC_EVENT_QUEUE_LENGTH, sizeof(sdmmc_event_t));
if (!s_host_ctx.event_queue) {
return ESP_ERR_NO_MEM;
}
s_host_ctx.io_intr_event = xSemaphoreCreateBinary();
if (!s_host_ctx.io_intr_event) {
vQueueDelete(s_host_ctx.event_queue);
s_host_ctx.event_queue = NULL;
return ESP_ERR_NO_MEM;
}
// Attach interrupt handler
esp_err_t ret = esp_intr_alloc(ETS_SDIO_HOST_INTR_SOURCE, 0, &sdmmc_isr, s_host_ctx.event_queue, &s_host_ctx.intr_handle);
if (ret != ESP_OK) {
vQueueDelete(s_host_ctx.event_queue);
s_host_ctx.event_queue = NULL;
vSemaphoreDelete(s_host_ctx.io_intr_event);
s_host_ctx.io_intr_event = NULL;
return ret;
}
// Enable interrupts
SDMMC.intmask.val =
SDMMC_INTMASK_CD |
SDMMC_INTMASK_CMD_DONE |
SDMMC_INTMASK_DATA_OVER |
SDMMC_INTMASK_RCRC | SDMMC_INTMASK_DCRC |
SDMMC_INTMASK_RTO | SDMMC_INTMASK_DTO | SDMMC_INTMASK_HTO |
SDMMC_INTMASK_SBE | SDMMC_INTMASK_EBE |
SDMMC_INTMASK_RESP_ERR | SDMMC_INTMASK_HLE; //sdio is enabled only when use.
SDMMC.ctrl.int_enable = 1;
// Disable generation of Busy Clear Interrupt
SDMMC.cardthrctl.busy_clr_int_en = 0;
// Enable DMA
sdmmc_host_dma_init();
// Initialize transaction handler
ret = sdmmc_host_transaction_handler_init();
if (ret != ESP_OK) {
vQueueDelete(s_host_ctx.event_queue);
s_host_ctx.event_queue = NULL;
vSemaphoreDelete(s_host_ctx.io_intr_event);
s_host_ctx.io_intr_event = NULL;
esp_intr_free(s_host_ctx.intr_handle);
s_host_ctx.intr_handle = NULL;
return ret;
}
return ESP_OK;
}
static void configure_pin_iomux(uint8_t gpio_num)
{
const int sdmmc_func = SDMMC_LL_IOMUX_FUNC;
const int drive_strength = 3;
assert(gpio_num != (uint8_t) GPIO_NUM_NC);
gpio_pulldown_dis(gpio_num);
uint32_t reg = GPIO_PIN_MUX_REG[gpio_num];
assert(reg != UINT32_MAX);
PIN_INPUT_ENABLE(reg);
gpio_hal_iomux_func_sel(reg, sdmmc_func);
PIN_SET_DRV(reg, drive_strength);
}
static void configure_pin_gpio_matrix(uint8_t gpio_num, uint8_t gpio_matrix_sig, gpio_mode_t mode, const char *name)
{
assert (gpio_num != (uint8_t) GPIO_NUM_NC);
ESP_LOGD(TAG, "using GPIO%d as %s pin", gpio_num, name);
gpio_reset_pin(gpio_num);
gpio_set_direction(gpio_num, mode);
gpio_pulldown_dis(gpio_num);
if (mode == GPIO_MODE_INPUT || mode == GPIO_MODE_INPUT_OUTPUT) {
esp_rom_gpio_connect_in_signal(gpio_num, gpio_matrix_sig, false);
}
if (mode == GPIO_MODE_OUTPUT || mode == GPIO_MODE_INPUT_OUTPUT) {
esp_rom_gpio_connect_out_signal(gpio_num, gpio_matrix_sig, false, false);
}
}
static void configure_pin(uint8_t gpio_num, uint8_t gpio_matrix_sig, gpio_mode_t mode, const char *name, bool use_gpio_matrix)
{
if (use_gpio_matrix) {
configure_pin_gpio_matrix(gpio_num, gpio_matrix_sig, mode, name);
} else {
configure_pin_iomux(gpio_num);
}
}
//True: pins are all not set; False: one or more pins are set
static bool s_check_pin_not_set(const sdmmc_slot_config_t *slot_config)
{
#if SOC_SDMMC_USE_GPIO_MATRIX
bool pin_not_set = !slot_config->clk && !slot_config->cmd && !slot_config->d0 && !slot_config->d1 && !slot_config->d2 &&
!slot_config->d3 && !slot_config->d4 && !slot_config->d5 && !slot_config->d6 && !slot_config->d7;
return pin_not_set;
#else
return true;
#endif
}
esp_err_t sdmmc_host_init_slot(int slot, const sdmmc_slot_config_t *slot_config)
{
if (!s_host_ctx.intr_handle) {
return ESP_ERR_INVALID_STATE;
}
if (!(slot == 0 || slot == 1)) {
return ESP_ERR_INVALID_ARG;
}
if (slot_config == NULL) {
return ESP_ERR_INVALID_ARG;
}
int gpio_cd = slot_config->cd;
int gpio_wp = slot_config->wp;
bool gpio_wp_polarity = slot_config->flags & SDMMC_SLOT_FLAG_WP_ACTIVE_HIGH;
uint8_t slot_width = slot_config->width;
// Configure pins
const sdmmc_slot_info_t *slot_info = &sdmmc_slot_info[slot];
if (slot_width == SDMMC_SLOT_WIDTH_DEFAULT) {
slot_width = slot_info->width;
} else if (slot_width > slot_info->width) {
return ESP_ERR_INVALID_ARG;
}
s_host_ctx.slot_ctx[slot].slot_width = slot_width;
bool pin_not_set = s_check_pin_not_set(slot_config);
//SD driver behaviour is: all pins not defined == using iomux
bool use_gpio_matrix = !pin_not_set;
if (slot == 0) {
#if !SDMMC_LL_SLOT_SUPPORT_GPIO_MATRIX(0)
ESP_RETURN_ON_FALSE(!use_gpio_matrix, ESP_ERR_INVALID_ARG, TAG, "doesn't support routing from GPIO matrix, driver uses dedicated IOs");
#endif
} else {
#if !SDMMC_LL_SLOT_SUPPORT_GPIO_MATRIX(1)
ESP_RETURN_ON_FALSE(!use_gpio_matrix, ESP_ERR_INVALID_ARG, TAG, "doesn't support routing from GPIO matrix, driver uses dedicated IOs");
#endif
}
s_host_ctx.slot_ctx[slot].use_gpio_matrix = use_gpio_matrix;
#if SOC_SDMMC_USE_GPIO_MATRIX
if (use_gpio_matrix) {
/* Save pin configuration for this slot */
s_host_ctx.slot_ctx[slot].slot_gpio_num.clk = slot_config->clk;
s_host_ctx.slot_ctx[slot].slot_gpio_num.cmd = slot_config->cmd;
s_host_ctx.slot_ctx[slot].slot_gpio_num.d0 = slot_config->d0;
/* Save d1 even in 1-line mode, it might be needed for SDIO INT line */
s_host_ctx.slot_ctx[slot].slot_gpio_num.d1 = slot_config->d1;
if (slot_width >= 4) {
s_host_ctx.slot_ctx[slot].slot_gpio_num.d2 = slot_config->d2;
}
/* Save d3 even for 1-line mode, as it needs to be set high */
s_host_ctx.slot_ctx[slot].slot_gpio_num.d3 = slot_config->d3;
if (slot_width >= 8) {
s_host_ctx.slot_ctx[slot].slot_gpio_num.d4 = slot_config->d4;
s_host_ctx.slot_ctx[slot].slot_gpio_num.d5 = slot_config->d5;
s_host_ctx.slot_ctx[slot].slot_gpio_num.d6 = slot_config->d6;
s_host_ctx.slot_ctx[slot].slot_gpio_num.d7 = slot_config->d7;
}
} else
#endif //#if SOC_SDMMC_USE_GPIO_MATRIX
{
/* init pin configuration for this slot */
s_host_ctx.slot_ctx[slot].slot_gpio_num.clk = sdmmc_slot_gpio_num[slot].clk;
s_host_ctx.slot_ctx[slot].slot_gpio_num.cmd = sdmmc_slot_gpio_num[slot].cmd;
s_host_ctx.slot_ctx[slot].slot_gpio_num.d0 = sdmmc_slot_gpio_num[slot].d0;
s_host_ctx.slot_ctx[slot].slot_gpio_num.d1 = sdmmc_slot_gpio_num[slot].d1;
s_host_ctx.slot_ctx[slot].slot_gpio_num.d2 = sdmmc_slot_gpio_num[slot].d2;
s_host_ctx.slot_ctx[slot].slot_gpio_num.d3 = sdmmc_slot_gpio_num[slot].d3;
s_host_ctx.slot_ctx[slot].slot_gpio_num.d4 = sdmmc_slot_gpio_num[slot].d4;
s_host_ctx.slot_ctx[slot].slot_gpio_num.d5 = sdmmc_slot_gpio_num[slot].d5;
s_host_ctx.slot_ctx[slot].slot_gpio_num.d6 = sdmmc_slot_gpio_num[slot].d6;
s_host_ctx.slot_ctx[slot].slot_gpio_num.d7 = sdmmc_slot_gpio_num[slot].d7;
}
bool pullup = slot_config->flags & SDMMC_SLOT_FLAG_INTERNAL_PULLUP;
if (pullup) {
sdmmc_host_pullup_en_internal(slot, slot_config->width);
}
configure_pin(s_host_ctx.slot_ctx[slot].slot_gpio_num.clk, sdmmc_slot_gpio_sig[slot].clk, GPIO_MODE_OUTPUT, "clk", use_gpio_matrix);
configure_pin(s_host_ctx.slot_ctx[slot].slot_gpio_num.cmd, sdmmc_slot_gpio_sig[slot].cmd, GPIO_MODE_INPUT_OUTPUT, "cmd", use_gpio_matrix);
configure_pin(s_host_ctx.slot_ctx[slot].slot_gpio_num.d0, sdmmc_slot_gpio_sig[slot].d0, GPIO_MODE_INPUT_OUTPUT, "d0", use_gpio_matrix);
if (slot_width >= 4) {
configure_pin(s_host_ctx.slot_ctx[slot].slot_gpio_num.d1, sdmmc_slot_gpio_sig[slot].d1, GPIO_MODE_INPUT_OUTPUT, "d1", use_gpio_matrix);
configure_pin(s_host_ctx.slot_ctx[slot].slot_gpio_num.d2, sdmmc_slot_gpio_sig[slot].d2, GPIO_MODE_INPUT_OUTPUT, "d2", use_gpio_matrix);
// Force D3 high to make slave enter SD mode.
// Connect to peripheral after width configuration.
gpio_config_t gpio_conf = {
.pin_bit_mask = BIT64(s_host_ctx.slot_ctx[slot].slot_gpio_num.d3),
.mode = GPIO_MODE_OUTPUT,
.pull_up_en = 0,
.pull_down_en = 0,
.intr_type = GPIO_INTR_DISABLE,
};
gpio_config(&gpio_conf);
gpio_set_level(s_host_ctx.slot_ctx[slot].slot_gpio_num.d3, 1);
}
if (slot_width == 8) {
configure_pin(s_host_ctx.slot_ctx[slot].slot_gpio_num.d4, sdmmc_slot_gpio_sig[slot].d4, GPIO_MODE_INPUT_OUTPUT, "d4", use_gpio_matrix);
configure_pin(s_host_ctx.slot_ctx[slot].slot_gpio_num.d5, sdmmc_slot_gpio_sig[slot].d5, GPIO_MODE_INPUT_OUTPUT, "d5", use_gpio_matrix);
configure_pin(s_host_ctx.slot_ctx[slot].slot_gpio_num.d6, sdmmc_slot_gpio_sig[slot].d6, GPIO_MODE_INPUT_OUTPUT, "d6", use_gpio_matrix);
configure_pin(s_host_ctx.slot_ctx[slot].slot_gpio_num.d7, sdmmc_slot_gpio_sig[slot].d7, GPIO_MODE_INPUT_OUTPUT, "d7", use_gpio_matrix);
}
// SDIO slave interrupt is edge sensitive to ~(int_n | card_int | card_detect)
// set this and card_detect to high to enable sdio interrupt
esp_rom_gpio_connect_in_signal(GPIO_MATRIX_CONST_ONE_INPUT, slot_info->card_int, false);
// Set up Card Detect input
int matrix_in_cd;
if (gpio_cd != SDMMC_SLOT_NO_CD) {
ESP_LOGD(TAG, "using GPIO%d as CD pin", gpio_cd);
esp_rom_gpio_pad_select_gpio(gpio_cd);
gpio_set_direction(gpio_cd, GPIO_MODE_INPUT);
matrix_in_cd = gpio_cd;
} else {
// if not set, default to CD low (card present)
matrix_in_cd = GPIO_MATRIX_CONST_ZERO_INPUT;
}
esp_rom_gpio_connect_in_signal(matrix_in_cd, slot_info->card_detect, false);
// Set up Write Protect input
int matrix_in_wp;
if (gpio_wp != SDMMC_SLOT_NO_WP) {
ESP_LOGD(TAG, "using GPIO%d as WP pin", gpio_wp);
esp_rom_gpio_pad_select_gpio(gpio_wp);
gpio_set_direction(gpio_wp, GPIO_MODE_INPUT);
matrix_in_wp = gpio_wp;
} else {
// if not set, default to WP high (not write protected)
matrix_in_wp = GPIO_MATRIX_CONST_ONE_INPUT;
}
// As hardware expects an active-high signal,
// if WP signal is active low, then invert it in GPIO matrix,
// else keep it in its default state
esp_rom_gpio_connect_in_signal(matrix_in_wp, slot_info->write_protect, (gpio_wp_polarity? false : true));
// By default, set probing frequency (400kHz) and 1-bit bus
esp_err_t ret = sdmmc_host_set_card_clk(slot, 400);
if (ret != ESP_OK) {
ESP_LOGE(TAG, "setting probing freq and 1-bit bus failed");
ESP_LOGE(TAG, "%s: sdmmc_host_set_card_clk returned 0x%x", __func__, ret);
return ret;
}
ret = sdmmc_host_set_bus_width(slot, 1);
if (ret != ESP_OK) {
return ret;
}
return ESP_OK;
}
esp_err_t sdmmc_host_deinit(void)
{
if (!s_host_ctx.intr_handle) {
return ESP_ERR_INVALID_STATE;
}
esp_intr_free(s_host_ctx.intr_handle);
s_host_ctx.intr_handle = NULL;
vQueueDelete(s_host_ctx.event_queue);
s_host_ctx.event_queue = NULL;
vQueueDelete(s_host_ctx.io_intr_event);
s_host_ctx.io_intr_event = NULL;
sdmmc_ll_deinit_clk(s_host_ctx.hal.dev);
sdmmc_host_transaction_handler_deinit();
//disable bus clock for registers
SDMMC_RCC_ATOMIC() {
sdmmc_ll_enable_bus_clock(s_host_ctx.hal.dev, false);
}
return ESP_OK;
}
esp_err_t sdmmc_host_wait_for_event(int tick_count, sdmmc_event_t *out_event)
{
if (!out_event) {
return ESP_ERR_INVALID_ARG;
}
if (!s_host_ctx.event_queue) {
return ESP_ERR_INVALID_STATE;
}
int ret = xQueueReceive(s_host_ctx.event_queue, out_event, tick_count);
if (ret == pdFALSE) {
return ESP_ERR_TIMEOUT;
}
return ESP_OK;
}
esp_err_t sdmmc_host_set_bus_width(int slot, size_t width)
{
if (!(slot == 0 || slot == 1)) {
return ESP_ERR_INVALID_ARG;
}
if (sdmmc_slot_info[slot].width < width) {
return ESP_ERR_INVALID_ARG;
}
const uint16_t mask = BIT(slot);
if (width == 1) {
SDMMC.ctype.card_width_8 &= ~mask;
SDMMC.ctype.card_width &= ~mask;
} else if (width == 4) {
SDMMC.ctype.card_width_8 &= ~mask;
SDMMC.ctype.card_width |= mask;
// D3 was set to GPIO high to force slave into SD mode, until 4-bit mode is set
configure_pin(s_host_ctx.slot_ctx[slot].slot_gpio_num.d3, sdmmc_slot_gpio_sig[slot].d3, GPIO_MODE_INPUT_OUTPUT, "d3", s_host_ctx.slot_ctx[slot].use_gpio_matrix);
} else if (width == 8) {
SDMMC.ctype.card_width_8 |= mask;
// D3 was set to GPIO high to force slave into SD mode, until 4-bit mode is set
configure_pin(s_host_ctx.slot_ctx[slot].slot_gpio_num.d3, sdmmc_slot_gpio_sig[slot].d3, GPIO_MODE_INPUT_OUTPUT, "d3", s_host_ctx.slot_ctx[slot].use_gpio_matrix);
} else {
return ESP_ERR_INVALID_ARG;
}
ESP_LOGD(TAG, "slot=%d width=%d", slot, width);
return ESP_OK;
}
size_t sdmmc_host_get_slot_width(int slot)
{
assert( slot == 0 || slot == 1 );
return s_host_ctx.slot_ctx[slot].slot_width;
}
esp_err_t sdmmc_host_set_bus_ddr_mode(int slot, bool ddr_enabled)
{
if (!(slot == 0 || slot == 1)) {
return ESP_ERR_INVALID_ARG;
}
if (s_host_ctx.slot_ctx[slot].slot_width == 8 && ddr_enabled) {
ESP_LOGW(TAG, "DDR mode with 8-bit bus width is not supported yet");
// requires reconfiguring controller clock for 2x card frequency
return ESP_ERR_NOT_SUPPORTED;
}
sdmmc_ll_enable_ddr_mode(s_host_ctx.hal.dev, slot, ddr_enabled);
ESP_LOGD(TAG, "slot=%d ddr=%d", slot, ddr_enabled ? 1 : 0);
return ESP_OK;
}
esp_err_t sdmmc_host_set_cclk_always_on(int slot, bool cclk_always_on)
{
if (!(slot == 0 || slot == 1)) {
return ESP_ERR_INVALID_ARG;
}
if (cclk_always_on) {
sdmmc_ll_enable_card_clock_low_power(s_host_ctx.hal.dev, slot, false);
} else {
sdmmc_ll_enable_card_clock_low_power(s_host_ctx.hal.dev, slot, true);
}
sdmmc_host_clock_update_command(slot);
return ESP_OK;
}
static void sdmmc_host_dma_init(void)
{
SDMMC.ctrl.dma_enable = 1;
SDMMC.bmod.val = 0;
SDMMC.bmod.sw_reset = 1;
SDMMC.idinten.ni = 1;
SDMMC.idinten.ri = 1;
SDMMC.idinten.ti = 1;
}
void sdmmc_host_dma_stop(void)
{
SDMMC.ctrl.use_internal_dma = 0;
SDMMC.ctrl.dma_reset = 1;
SDMMC.bmod.fb = 0;
SDMMC.bmod.enable = 0;
}
void sdmmc_host_dma_prepare(sdmmc_desc_t *desc, size_t block_size, size_t data_size)
{
// Set size of data and DMA descriptor pointer
sdmmc_ll_set_data_transfer_len(s_host_ctx.hal.dev, data_size);
sdmmc_ll_set_block_size(s_host_ctx.hal.dev, block_size);
sdmmc_ll_set_desc_addr(s_host_ctx.hal.dev, (uint32_t)desc);
// Enable everything needed to use DMA
sdmmc_ll_enable_dma(s_host_ctx.hal.dev, true);
sdmmc_host_dma_resume();
}
void sdmmc_host_dma_resume(void)
{
sdmmc_ll_poll_demand(s_host_ctx.hal.dev);
}
bool sdmmc_host_card_busy(void)
{
return SDMMC.status.data_busy == 1;
}
esp_err_t sdmmc_host_io_int_enable(int slot)
{
configure_pin(s_host_ctx.slot_ctx[slot].slot_gpio_num.d1, sdmmc_slot_gpio_sig[slot].d1, GPIO_MODE_INPUT_OUTPUT, "d1", s_host_ctx.slot_ctx[slot].use_gpio_matrix);
return ESP_OK;
}
esp_err_t sdmmc_host_io_int_wait(int slot, TickType_t timeout_ticks)
2018-12-29 02:04:37 +08:00
{
/* SDIO interrupts are negedge sensitive ones: the status bit is only set
* when first interrupt triggered.
*
* If D1 GPIO is low when entering this function, we know that interrupt
* (in SDIO sense) has occurred and we don't need to use SDMMC peripheral
* interrupt.
*/
assert(slot == 0 || slot == 1);
/* Disable SDIO interrupt */
if (slot == 0) {
sdmmc_ll_enable_interrupt(s_host_ctx.hal.dev, SDMMC_INTMASK_IO_SLOT0, false);
sdmmc_ll_clear_interrupt(s_host_ctx.hal.dev, SDMMC_INTMASK_IO_SLOT0);
} else {
sdmmc_ll_enable_interrupt(s_host_ctx.hal.dev, SDMMC_INTMASK_IO_SLOT1, false);
sdmmc_ll_clear_interrupt(s_host_ctx.hal.dev, SDMMC_INTMASK_IO_SLOT1);
}
if (gpio_get_level(s_host_ctx.slot_ctx[slot].slot_gpio_num.d1) == 0) {
return ESP_OK;
}
/* Otherwise, need to wait for an interrupt. Since D1 was high,
* SDMMC peripheral interrupt is guaranteed to trigger on negedge.
*/
xSemaphoreTake(s_host_ctx.io_intr_event, 0);
/* Re-enable SDIO interrupt */
if (slot == 0) {
sdmmc_ll_enable_interrupt(s_host_ctx.hal.dev, SDMMC_INTMASK_IO_SLOT0, true);
} else {
sdmmc_ll_enable_interrupt(s_host_ctx.hal.dev, SDMMC_INTMASK_IO_SLOT1, true);
}
2018-12-29 02:04:37 +08:00
if (xSemaphoreTake(s_host_ctx.io_intr_event, timeout_ticks) == pdTRUE) {
return ESP_OK;
} else {
return ESP_ERR_TIMEOUT;
}
}
/**
* @brief SDMMC interrupt handler
*
* All communication in SD protocol is driven by the master, and the hardware
* handles things like stop commands automatically.
* So the interrupt handler doesn't need to do much, we just push interrupt
* status into a queue, clear interrupt flags, and let the task currently
* doing communication figure out what to do next.
* This also applies to SDIO interrupts which are generated by the slave.
*
* Card detect interrupts pose a small issue though, because if a card is
* plugged in and out a few times, while there is no task to process
* the events, event queue can become full and some card detect events
* may be dropped. We ignore this problem for now, since the there are no other
* interesting events which can get lost due to this.
*/
static void sdmmc_isr(void *arg)
{
QueueHandle_t queue = (QueueHandle_t) arg;
sdmmc_event_t event;
int higher_priority_task_awoken = pdFALSE;
uint32_t pending = sdmmc_ll_get_intr_status(s_host_ctx.hal.dev) & 0xFFFF;
SDMMC.rintsts.val = pending;
event.sdmmc_status = pending;
uint32_t dma_pending = SDMMC.idsts.val;
SDMMC.idsts.val = dma_pending;
event.dma_status = dma_pending & 0x1f;
if (pending != 0 || dma_pending != 0) {
xQueueSendFromISR(queue, &event, &higher_priority_task_awoken);
}
uint32_t sdio_pending = (sdmmc_ll_get_intr_status(s_host_ctx.hal.dev) & (SDMMC_INTMASK_IO_SLOT1 | SDMMC_INTMASK_IO_SLOT0));
if (sdio_pending) {
// disable the interrupt (no need to clear here, this is done in sdmmc_host_io_int_wait)
sdmmc_ll_enable_interrupt(s_host_ctx.hal.dev, sdio_pending, false);
xSemaphoreGiveFromISR(s_host_ctx.io_intr_event, &higher_priority_task_awoken);
}
if (higher_priority_task_awoken == pdTRUE) {
portYIELD_FROM_ISR();
}
}
static esp_err_t sdmmc_host_pullup_en_internal(int slot, int width)
{
if (width > sdmmc_slot_info[slot].width) {
//in esp32 we only support 8 bit in slot 0, note this is occupied by the flash by default
return ESP_ERR_INVALID_ARG;
}
// according to the spec, the host controls the clk, we don't to pull it up here
gpio_pullup_en(s_host_ctx.slot_ctx[slot].slot_gpio_num.cmd);
gpio_pullup_en(s_host_ctx.slot_ctx[slot].slot_gpio_num.d0);
if (width >= 4) {
gpio_pullup_en(s_host_ctx.slot_ctx[slot].slot_gpio_num.d1);
gpio_pullup_en(s_host_ctx.slot_ctx[slot].slot_gpio_num.d2);
gpio_pullup_en(s_host_ctx.slot_ctx[slot].slot_gpio_num.d3);
}
if (width == 8) {
gpio_pullup_en(s_host_ctx.slot_ctx[slot].slot_gpio_num.d4);
gpio_pullup_en(s_host_ctx.slot_ctx[slot].slot_gpio_num.d5);
gpio_pullup_en(s_host_ctx.slot_ctx[slot].slot_gpio_num.d6);
gpio_pullup_en(s_host_ctx.slot_ctx[slot].slot_gpio_num.d7);
}
return ESP_OK;
}