1313 lines
42 KiB
C
Raw Normal View History

// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stddef.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "sdkconfig.h"
#include "esp_heap_caps.h"
#include "esp_heap_caps_init.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/queue.h"
#include "freertos/semphr.h"
#include "freertos/xtensa_api.h"
#include "freertos/portmacro.h"
#include "xtensa/core-macros.h"
#include "esp_types.h"
#include "esp_system.h"
#include "esp_task.h"
#include "esp_intr.h"
#include "esp_attr.h"
#include "esp_phy_init.h"
#include "esp_bt.h"
#include "esp_err.h"
#include "esp_log.h"
#include "esp_pm.h"
#include "esp_ipc.h"
#include "driver/periph_ctrl.h"
#include "soc/rtc.h"
#include "soc/rtc_cntl_reg.h"
#include "soc/soc_memory_layout.h"
#include "esp_clk.h"
#if CONFIG_BT_ENABLED
/* Macro definition
************************************************************************
*/
#define BTDM_LOG_TAG "BTDM_INIT"
#define BTDM_INIT_PERIOD (5000) /* ms */
/* Bluetooth system and controller config */
#define BTDM_CFG_BT_DATA_RELEASE (1<<0)
#define BTDM_CFG_HCI_UART (1<<1)
#define BTDM_CFG_CONTROLLER_RUN_APP_CPU (1<<2)
2018-05-03 20:22:08 +08:00
#define BTDM_CFG_SCAN_DUPLICATE_OPTIONS (1<<3)
#define BTDM_CFG_SEND_ADV_RESERVED_SIZE (1<<4)
/* Sleep mode */
#define BTDM_MODEM_SLEEP_MODE_NONE (0)
#define BTDM_MODEM_SLEEP_MODE_ORIG (1)
#define BTDM_MODEM_SLEEP_MODE_EVED (2)
/* Low Power Clock Selection */
#define BTDM_LPCLK_SEL_XTAL (0)
#define BTDM_LPCLK_SEL_XTAL32K (1)
#define BTDM_LPCLK_SEL_RTC_SLOW (2)
#define BTDM_LPCLK_SEL_8M (3)
/* Sleep duration */
#define BTDM_MIN_SLEEP_DURATION (20)
#define BT_DEBUG(...)
#define BT_API_CALL_CHECK(info, api_call, ret) \
do{\
esp_err_t __err = (api_call);\
if ((ret) != __err) {\
BT_DEBUG("%s %d %s ret=0x%X\n", __FUNCTION__, __LINE__, (info), __err);\
return __err;\
}\
} while(0)
#define OSI_FUNCS_TIME_BLOCKING 0xffffffff
#define OSI_VERSION 0x00010001
#define OSI_MAGIC_VALUE 0xFADEBEAD
/* SPIRAM Configuration */
#if CONFIG_SPIRAM_USE_MALLOC
#define BTDM_MAX_QUEUE_NUM (5)
#endif
/* Types definition
************************************************************************
*/
/* VHCI function interface */
typedef struct vhci_host_callback {
void (*notify_host_send_available)(void); /*!< callback used to notify that the host can send packet to controller */
int (*notify_host_recv)(uint8_t *data, uint16_t len); /*!< callback used to notify that the controller has a packet to send to the host*/
} vhci_host_callback_t;
/* Dram region */
typedef struct {
esp_bt_mode_t mode;
intptr_t start;
intptr_t end;
} btdm_dram_available_region_t;
/* PSRAM configuration */
#if CONFIG_SPIRAM_USE_MALLOC
typedef struct {
QueueHandle_t handle;
void *storage;
void *buffer;
} btdm_queue_item_t;
#endif
/* OSI function */
struct osi_funcs_t {
uint32_t _version;
xt_handler (*_set_isr)(int n, xt_handler f, void *arg);
void (*_ints_on)(unsigned int mask);
void (*_interrupt_disable)(void);
void (*_interrupt_restore)(void);
void (*_task_yield)(void);
void (*_task_yield_from_isr)(void);
void *(*_semphr_create)(uint32_t max, uint32_t init);
void (*_semphr_delete)(void *semphr);
int32_t (*_semphr_take_from_isr)(void *semphr, void *hptw);
int32_t (*_semphr_give_from_isr)(void *semphr, void *hptw);
int32_t (*_semphr_take)(void *semphr, uint32_t block_time_ms);
int32_t (*_semphr_give)(void *semphr);
void *(*_mutex_create)(void);
void (*_mutex_delete)(void *mutex);
int32_t (*_mutex_lock)(void *mutex);
int32_t (*_mutex_unlock)(void *mutex);
void *(* _queue_create)(uint32_t queue_len, uint32_t item_size);
void (* _queue_delete)(void *queue);
int32_t (* _queue_send)(void *queue, void *item, uint32_t block_time_ms);
int32_t (* _queue_send_from_isr)(void *queue, void *item, void *hptw);
int32_t (* _queue_recv)(void *queue, void *item, uint32_t block_time_ms);
int32_t (* _queue_recv_from_isr)(void *queue, void *item, void *hptw);
int32_t (* _task_create)(void *task_func, const char *name, uint32_t stack_depth, void *param, uint32_t prio, void *task_handle, uint32_t core_id);
void (* _task_delete)(void *task_handle);
bool (* _is_in_isr)(void);
int (* _cause_sw_intr_to_core)(int core_id, int intr_no);
void *(* _malloc)(uint32_t size);
void *(* _malloc_internal)(uint32_t size);
void (* _free)(void *p);
int32_t (* _read_efuse_mac)(uint8_t mac[6]);
void (* _srand)(unsigned int seed);
int (* _rand)(void);
uint32_t (* _btdm_lpcycles_2_us)(uint32_t cycles);
uint32_t (* _btdm_us_2_lpcycles)(uint32_t us);
bool (* _btdm_sleep_check_duration)(uint32_t *slot_cnt);
void (* _btdm_sleep_enter)(void);
void (* _btdm_sleep_exit)(void); /* called from ISR */
uint32_t _magic;
};
/* External functions or values
************************************************************************
*/
/* not for user call, so don't put to include file */
/* OSI */
extern int btdm_osi_funcs_register(void *osi_funcs);
/* Initialise and De-initialise */
extern int btdm_controller_init(uint32_t config_mask, esp_bt_controller_config_t *config_opts);
extern void btdm_controller_deinit(void);
extern int btdm_controller_enable(esp_bt_mode_t mode);
extern void btdm_controller_disable(void);
extern uint8_t btdm_controller_get_mode(void);
extern const char *btdm_controller_get_compile_version(void);
extern void btdm_rf_bb_init(void);
/* Sleep */
extern void btdm_controller_enable_sleep(bool enable);
extern void btdm_controller_set_sleep_mode(uint8_t mode);
extern uint8_t btdm_controller_get_sleep_mode(void);
extern bool btdm_power_state_active(void);
extern void btdm_wakeup_request(void);
/* Low Power Clock */
extern bool btdm_lpclk_select_src(uint32_t sel);
extern bool btdm_lpclk_set_div(uint32_t div);
/* VHCI */
extern bool API_vhci_host_check_send_available(void);
extern void API_vhci_host_send_packet(uint8_t *data, uint16_t len);
extern int API_vhci_host_register_callback(const vhci_host_callback_t *callback);
/* TX power */
extern int ble_txpwr_set(int power_type, int power_level);
extern int ble_txpwr_get(int power_type);
extern int bredr_txpwr_set(int min_power_level, int max_power_level);
extern int bredr_txpwr_get(int *min_power_level, int *max_power_level);
extern void bredr_sco_datapath_set(uint8_t data_path);
extern void btdm_controller_scan_duplicate_list_clear(void);
extern char _bss_start_btdm;
extern char _bss_end_btdm;
extern char _data_start_btdm;
extern char _data_end_btdm;
extern uint32_t _data_start_btdm_rom;
extern uint32_t _data_end_btdm_rom;
extern uint32_t _bt_bss_start;
extern uint32_t _bt_bss_end;
extern uint32_t _btdm_bss_start;
extern uint32_t _btdm_bss_end;
extern uint32_t _bt_data_start;
extern uint32_t _bt_data_end;
extern uint32_t _btdm_data_start;
extern uint32_t _btdm_data_end;
/* Local Function Declare
*********************************************************************
*/
#if CONFIG_SPIRAM_USE_MALLOC
static bool IRAM_ATTR btdm_queue_generic_register(const btdm_queue_item_t *queue);
static bool IRAM_ATTR btdm_queue_generic_deregister(btdm_queue_item_t *queue);
#endif /* CONFIG_SPIRAM_USE_MALLOC */
static void IRAM_ATTR interrupt_disable(void);
static void IRAM_ATTR interrupt_restore(void);
static void IRAM_ATTR task_yield_from_isr(void);
static void *IRAM_ATTR semphr_create_wrapper(uint32_t max, uint32_t init);
static void IRAM_ATTR semphr_delete_wrapper(void *semphr);
static int32_t IRAM_ATTR semphr_take_from_isr_wrapper(void *semphr, void *hptw);
static int32_t IRAM_ATTR semphr_give_from_isr_wrapper(void *semphr, void *hptw);
static int32_t IRAM_ATTR semphr_take_wrapper(void *semphr, uint32_t block_time_ms);
static int32_t IRAM_ATTR semphr_give_wrapper(void *semphr);
static void *IRAM_ATTR mutex_create_wrapper(void);
static void IRAM_ATTR mutex_delete_wrapper(void *mutex);
static int32_t IRAM_ATTR mutex_lock_wrapper(void *mutex);
static int32_t IRAM_ATTR mutex_unlock_wrapper(void *mutex);
static void *IRAM_ATTR queue_create_wrapper(uint32_t queue_len, uint32_t item_size);
static void IRAM_ATTR queue_delete_wrapper(void *queue);
static int32_t IRAM_ATTR queue_send_wrapper(void *queue, void *item, uint32_t block_time_ms);
static int32_t IRAM_ATTR queue_send_from_isr_wrapper(void *queue, void *item, void *hptw);
static int32_t IRAM_ATTR queue_recv_wrapper(void *queue, void *item, uint32_t block_time_ms);
static int32_t IRAM_ATTR queue_recv_from_isr_wrapper(void *queue, void *item, void *hptw);
static int32_t IRAM_ATTR task_create_wrapper(void *task_func, const char *name, uint32_t stack_depth, void *param, uint32_t prio, void *task_handle, uint32_t core_id);
static void IRAM_ATTR task_delete_wrapper(void *task_handle);
static bool IRAM_ATTR is_in_isr_wrapper(void);
static void IRAM_ATTR cause_sw_intr(void *arg);
static int IRAM_ATTR cause_sw_intr_to_core_wrapper(int core_id, int intr_no);
static void * IRAM_ATTR malloc_internal_wrapper(size_t size);
static int32_t IRAM_ATTR read_mac_wrapper(uint8_t mac[6]);
static void IRAM_ATTR srand_wrapper(unsigned int seed);
static int IRAM_ATTR rand_wrapper(void);
static uint32_t IRAM_ATTR btdm_lpcycles_2_us(uint32_t cycles);
static uint32_t IRAM_ATTR btdm_us_2_lpcycles(uint32_t us);
static bool IRAM_ATTR btdm_sleep_check_duration(uint32_t *slot_cnt);
static void IRAM_ATTR btdm_sleep_enter_wrapper(void);
static void IRAM_ATTR btdm_sleep_exit_wrapper(void);
/* Local variable definition
***************************************************************************
*/
/* OSI funcs */
static const struct osi_funcs_t osi_funcs_ro = {
._version = OSI_VERSION,
._set_isr = xt_set_interrupt_handler,
._ints_on = xt_ints_on,
._interrupt_disable = interrupt_disable,
._interrupt_restore = interrupt_restore,
._task_yield = vPortYield,
._task_yield_from_isr = task_yield_from_isr,
._semphr_create = semphr_create_wrapper,
._semphr_delete = semphr_delete_wrapper,
._semphr_take_from_isr = semphr_take_from_isr_wrapper,
._semphr_give_from_isr = semphr_give_from_isr_wrapper,
._semphr_take = semphr_take_wrapper,
._semphr_give = semphr_give_wrapper,
._mutex_create = mutex_create_wrapper,
._mutex_delete = mutex_delete_wrapper,
._mutex_lock = mutex_lock_wrapper,
._mutex_unlock = mutex_unlock_wrapper,
._queue_create = queue_create_wrapper,
._queue_delete = queue_delete_wrapper,
._queue_send = queue_send_wrapper,
._queue_send_from_isr = queue_send_from_isr_wrapper,
._queue_recv = queue_recv_wrapper,
._queue_recv_from_isr = queue_recv_from_isr_wrapper,
._task_create = task_create_wrapper,
._task_delete = task_delete_wrapper,
._is_in_isr = is_in_isr_wrapper,
._cause_sw_intr_to_core = cause_sw_intr_to_core_wrapper,
._malloc = malloc,
._malloc_internal = malloc_internal_wrapper,
._free = free,
._read_efuse_mac = read_mac_wrapper,
._srand = srand_wrapper,
._rand = rand_wrapper,
._btdm_lpcycles_2_us = btdm_lpcycles_2_us,
._btdm_us_2_lpcycles = btdm_us_2_lpcycles,
._btdm_sleep_check_duration = btdm_sleep_check_duration,
._btdm_sleep_enter = btdm_sleep_enter_wrapper,
._btdm_sleep_exit = btdm_sleep_exit_wrapper,
._magic = OSI_MAGIC_VALUE,
};
/* the mode column will be modified by release function to indicate the available region */
static btdm_dram_available_region_t btdm_dram_available_region[] = {
//following is .data
{ESP_BT_MODE_BTDM, SOC_MEM_BT_DATA_START, SOC_MEM_BT_DATA_END },
//following is memory which HW will use
{ESP_BT_MODE_BTDM, SOC_MEM_BT_EM_BTDM0_START, SOC_MEM_BT_EM_BTDM0_END },
{ESP_BT_MODE_BLE, SOC_MEM_BT_EM_BLE_START, SOC_MEM_BT_EM_BLE_END },
{ESP_BT_MODE_BTDM, SOC_MEM_BT_EM_BTDM1_START, SOC_MEM_BT_EM_BTDM1_END },
{ESP_BT_MODE_CLASSIC_BT, SOC_MEM_BT_EM_BREDR_START, SOC_MEM_BT_EM_BREDR_REAL_END},
//following is .bss
{ESP_BT_MODE_BTDM, SOC_MEM_BT_BSS_START, SOC_MEM_BT_BSS_END },
{ESP_BT_MODE_BTDM, SOC_MEM_BT_MISC_START, SOC_MEM_BT_MISC_END },
};
/* Reserve the full memory region used by Bluetooth Controller,
* some may be released later at runtime. */
SOC_RESERVE_MEMORY_REGION(SOC_MEM_BT_EM_START, SOC_MEM_BT_EM_BREDR_REAL_END, rom_bt_em);
SOC_RESERVE_MEMORY_REGION(SOC_MEM_BT_BSS_START, SOC_MEM_BT_BSS_END, rom_bt_bss);
SOC_RESERVE_MEMORY_REGION(SOC_MEM_BT_MISC_START, SOC_MEM_BT_MISC_END, rom_bt_misc);
SOC_RESERVE_MEMORY_REGION(SOC_MEM_BT_DATA_START, SOC_MEM_BT_DATA_END, rom_bt_data);
static struct osi_funcs_t *osi_funcs_p;
#if CONFIG_SPIRAM_USE_MALLOC
static btdm_queue_item_t btdm_queue_table[BTDM_MAX_QUEUE_NUM];
SemaphoreHandle_t btdm_queue_table_mux = NULL;
#endif /* #if CONFIG_SPIRAM_USE_MALLOC */
/* Static variable declare */
static bool btdm_bb_init_flag = false;
static esp_bt_controller_status_t btdm_controller_status = ESP_BT_CONTROLLER_STATUS_IDLE;
static portMUX_TYPE global_int_mux = portMUX_INITIALIZER_UNLOCKED;
// measured average low power clock period in micro seconds
static uint32_t btdm_lpcycle_us = 0;
static uint8_t btdm_lpcycle_us_frac = 0; // number of fractional bit for btdm_lpcycle_us
#ifdef CONFIG_PM_ENABLE
static esp_pm_lock_handle_t s_pm_lock;
#endif
#if CONFIG_SPIRAM_USE_MALLOC
static bool IRAM_ATTR btdm_queue_generic_register(const btdm_queue_item_t *queue)
{
if (!btdm_queue_table_mux || !queue) {
return NULL;
}
bool ret = false;
btdm_queue_item_t *item;
xSemaphoreTake(btdm_queue_table_mux, portMAX_DELAY);
for (int i = 0; i < BTDM_MAX_QUEUE_NUM; ++i) {
item = &btdm_queue_table[i];
if (item->handle == NULL) {
memcpy(item, queue, sizeof(btdm_queue_item_t));
ret = true;
break;
}
}
xSemaphoreGive(btdm_queue_table_mux);
return ret;
}
static bool IRAM_ATTR btdm_queue_generic_deregister(btdm_queue_item_t *queue)
{
if (!btdm_queue_table_mux || !queue) {
return false;
}
bool ret = false;
btdm_queue_item_t *item;
xSemaphoreTake(btdm_queue_table_mux, portMAX_DELAY);
for (int i = 0; i < BTDM_MAX_QUEUE_NUM; ++i) {
item = &btdm_queue_table[i];
if (item->handle == queue->handle) {
memcpy(queue, item, sizeof(btdm_queue_item_t));
memset(item, 0, sizeof(btdm_queue_item_t));
ret = true;
break;
}
}
xSemaphoreGive(btdm_queue_table_mux);
return ret;
}
#endif /* CONFIG_SPIRAM_USE_MALLOC */
static void IRAM_ATTR interrupt_disable(void)
{
if (xPortInIsrContext()) {
portENTER_CRITICAL_ISR(&global_int_mux);
} else {
portENTER_CRITICAL(&global_int_mux);
}
}
static void IRAM_ATTR interrupt_restore(void)
{
if (xPortInIsrContext()) {
portEXIT_CRITICAL_ISR(&global_int_mux);
} else {
portEXIT_CRITICAL(&global_int_mux);
}
}
static void IRAM_ATTR task_yield_from_isr(void)
{
portYIELD_FROM_ISR();
}
static void *IRAM_ATTR semphr_create_wrapper(uint32_t max, uint32_t init)
{
#if !CONFIG_SPIRAM_USE_MALLOC
return (void *)xSemaphoreCreateCounting(max, init);
#else
StaticQueue_t *queue_buffer = NULL;
QueueHandle_t handle = NULL;
queue_buffer = heap_caps_malloc(sizeof(StaticQueue_t), MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT);
if (!queue_buffer) {
goto error;
}
handle = xSemaphoreCreateCountingStatic(max, init, queue_buffer);
if (!handle) {
goto error;
}
btdm_queue_item_t item = {
.handle = handle,
.storage = NULL,
.buffer = queue_buffer,
};
if (!btdm_queue_generic_register(&item)) {
goto error;
}
return handle;
error:
if (handle) {
vSemaphoreDelete(handle);
}
if (queue_buffer) {
free(queue_buffer);
}
return NULL;
#endif
}
static void IRAM_ATTR semphr_delete_wrapper(void *semphr)
{
#if !CONFIG_SPIRAM_USE_MALLOC
vSemaphoreDelete(semphr);
#else
btdm_queue_item_t item = {
.handle = semphr,
.storage = NULL,
.buffer = NULL,
};
if (btdm_queue_generic_deregister(&item)) {
vSemaphoreDelete(item.handle);
free(item.buffer);
}
return;
#endif
}
static int32_t IRAM_ATTR semphr_take_from_isr_wrapper(void *semphr, void *hptw)
{
return (int32_t)xSemaphoreTakeFromISR(semphr, hptw);
}
static int32_t IRAM_ATTR semphr_give_from_isr_wrapper(void *semphr, void *hptw)
{
return (int32_t)xSemaphoreGiveFromISR(semphr, hptw);
}
static int32_t IRAM_ATTR semphr_take_wrapper(void *semphr, uint32_t block_time_ms)
{
if (block_time_ms == OSI_FUNCS_TIME_BLOCKING) {
return (int32_t)xSemaphoreTake(semphr, portMAX_DELAY);
} else {
return (int32_t)xSemaphoreTake(semphr, block_time_ms / portTICK_PERIOD_MS);
}
}
static int32_t IRAM_ATTR semphr_give_wrapper(void *semphr)
{
return (int32_t)xSemaphoreGive(semphr);
}
static void *IRAM_ATTR mutex_create_wrapper(void)
{
#if CONFIG_SPIRAM_USE_MALLOC
StaticQueue_t *queue_buffer = NULL;
QueueHandle_t handle = NULL;
queue_buffer = heap_caps_malloc(sizeof(StaticQueue_t), MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT);
if (!queue_buffer) {
goto error;
}
handle = xSemaphoreCreateMutexStatic(queue_buffer);
if (!handle) {
goto error;
}
btdm_queue_item_t item = {
.handle = handle,
.storage = NULL,
.buffer = queue_buffer,
};
if (!btdm_queue_generic_register(&item)) {
goto error;
}
return handle;
error:
if (handle) {
vSemaphoreDelete(handle);
}
if (queue_buffer) {
free(queue_buffer);
}
return NULL;
#else
return (void *)xSemaphoreCreateMutex();
#endif
}
static void IRAM_ATTR mutex_delete_wrapper(void *mutex)
{
#if !CONFIG_SPIRAM_USE_MALLOC
vSemaphoreDelete(mutex);
#else
btdm_queue_item_t item = {
.handle = mutex,
.storage = NULL,
.buffer = NULL,
};
if (btdm_queue_generic_deregister(&item)) {
vSemaphoreDelete(item.handle);
free(item.buffer);
}
return;
#endif
}
static int32_t IRAM_ATTR mutex_lock_wrapper(void *mutex)
{
return (int32_t)xSemaphoreTake(mutex, portMAX_DELAY);
}
static int32_t IRAM_ATTR mutex_unlock_wrapper(void *mutex)
{
return (int32_t)xSemaphoreGive(mutex);
}
static void *IRAM_ATTR queue_create_wrapper(uint32_t queue_len, uint32_t item_size)
{
#if CONFIG_SPIRAM_USE_MALLOC
StaticQueue_t *queue_buffer = NULL;
uint8_t *queue_storage = NULL;
QueueHandle_t handle = NULL;
queue_buffer = heap_caps_malloc(sizeof(StaticQueue_t), MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT);
if (!queue_buffer) {
goto error;
}
queue_storage = heap_caps_malloc((queue_len*item_size), MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT);
if (!queue_storage ) {
goto error;
}
handle = xQueueCreateStatic(queue_len, item_size, queue_storage, queue_buffer);
if (!handle) {
goto error;
}
btdm_queue_item_t item = {
.handle = handle,
.storage = queue_storage,
.buffer = queue_buffer,
};
if (!btdm_queue_generic_register(&item)) {
goto error;
}
return handle;
error:
if (handle) {
vQueueDelete(handle);
}
if (queue_storage) {
free(queue_storage);
}
if (queue_buffer) {
free(queue_buffer);
}
return NULL;
#else
return (void *)xQueueCreate(queue_len, item_size);
#endif
}
static void IRAM_ATTR queue_delete_wrapper(void *queue)
{
#if !CONFIG_SPIRAM_USE_MALLOC
vQueueDelete(queue);
#else
btdm_queue_item_t item = {
.handle = queue,
.storage = NULL,
.buffer = NULL,
};
if (btdm_queue_generic_deregister(&item)) {
vQueueDelete(item.handle);
free(item.storage);
free(item.buffer);
}
return;
#endif
}
static int32_t IRAM_ATTR queue_send_wrapper(void *queue, void *item, uint32_t block_time_ms)
{
if (block_time_ms == OSI_FUNCS_TIME_BLOCKING) {
return (int32_t)xQueueSend(queue, item, portMAX_DELAY);
} else {
return (int32_t)xQueueSend(queue, item, block_time_ms / portTICK_PERIOD_MS);
}
}
static int32_t IRAM_ATTR queue_send_from_isr_wrapper(void *queue, void *item, void *hptw)
{
return (int32_t)xQueueSendFromISR(queue, item, hptw);
}
static int32_t IRAM_ATTR queue_recv_wrapper(void *queue, void *item, uint32_t block_time_ms)
{
if (block_time_ms == OSI_FUNCS_TIME_BLOCKING) {
return (int32_t)xQueueReceive(queue, item, portMAX_DELAY);
} else {
return (int32_t)xQueueReceive(queue, item, block_time_ms / portTICK_PERIOD_MS);
}
}
static int32_t IRAM_ATTR queue_recv_from_isr_wrapper(void *queue, void *item, void *hptw)
{
return (int32_t)xQueueReceiveFromISR(queue, item, hptw);
}
static int32_t IRAM_ATTR task_create_wrapper(void *task_func, const char *name, uint32_t stack_depth, void *param, uint32_t prio, void *task_handle, uint32_t core_id)
{
return (uint32_t)xTaskCreatePinnedToCore(task_func, name, stack_depth, param, prio, task_handle, (core_id < portNUM_PROCESSORS ? core_id : tskNO_AFFINITY));
}
static void IRAM_ATTR task_delete_wrapper(void *task_handle)
{
vTaskDelete(task_handle);
}
static bool IRAM_ATTR is_in_isr_wrapper(void)
{
return (bool)xPortInIsrContext();
}
static void IRAM_ATTR cause_sw_intr(void *arg)
{
/* just convert void * to int, because the width is the same */
uint32_t intr_no = (uint32_t)arg;
XTHAL_SET_INTSET((1<<intr_no));
}
static int IRAM_ATTR cause_sw_intr_to_core_wrapper(int core_id, int intr_no)
{
esp_err_t err = ESP_OK;
if (xPortGetCoreID() == core_id) {
cause_sw_intr((void *)intr_no);
} else {
err = esp_ipc_call(core_id, cause_sw_intr, (void *)intr_no);
}
return err;
}
static void * IRAM_ATTR malloc_internal_wrapper(size_t size)
{
return heap_caps_malloc(size, MALLOC_CAP_DEFAULT|MALLOC_CAP_INTERNAL);
}
static int32_t IRAM_ATTR read_mac_wrapper(uint8_t mac[6])
{
return esp_read_mac(mac, ESP_MAC_BT);
}
static void IRAM_ATTR srand_wrapper(unsigned int seed)
{
/* empty function */
}
static int IRAM_ATTR rand_wrapper(void)
{
return (int)esp_random();
}
static uint32_t IRAM_ATTR btdm_lpcycles_2_us(uint32_t cycles)
{
// The number of lp cycles should not lead to overflow. Thrs: 100s (for 32kHz freq)
// clock measurement is conducted
uint64_t us = (uint64_t)btdm_lpcycle_us * cycles;
us = (us + (1 << (btdm_lpcycle_us_frac - 1))) >> btdm_lpcycle_us_frac;
return (uint32_t)us;
}
/*
* @brief Converts a duration in slots into a number of low power clock cycles.
*/
static uint32_t IRAM_ATTR btdm_us_2_lpcycles(uint32_t us)
{
// The number of sleep duration(us) should not lead to overflow. Thrs: 100s
// Compute the sleep duration in us to low power clock cycles, with calibration result applied
// clock measurement is conducted
uint64_t cycles = ((uint64_t)(us) << btdm_lpcycle_us_frac) / btdm_lpcycle_us;
return (uint32_t)cycles;
}
static bool IRAM_ATTR btdm_sleep_check_duration(uint32_t *slot_cnt)
{
if (*slot_cnt < BTDM_MIN_SLEEP_DURATION) {
return false;
}
2018-05-29 20:02:54 +08:00
/* wake up 3 slots in advance */
*slot_cnt = *slot_cnt -3;
return true;
}
static void IRAM_ATTR btdm_sleep_enter_wrapper(void)
{
if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
esp_modem_sleep_enter(MODEM_BLE_MODULE);
esp_modem_sleep_enter(MODEM_CLASSIC_BT_MODULE);
} else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) {
esp_modem_sleep_enter(MODEM_BLE_MODULE);
// pause bluetooth baseband
periph_module_disable(PERIPH_BT_BASEBAND_MODULE);
}
}
static void IRAM_ATTR btdm_sleep_exit_wrapper(void)
{
if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
esp_modem_sleep_exit(MODEM_BLE_MODULE);
esp_modem_sleep_exit(MODEM_CLASSIC_BT_MODULE);
} else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) {
// resume bluetooth baseband
periph_module_enable(PERIPH_BT_BASEBAND_MODULE);
esp_modem_sleep_exit(MODEM_BLE_MODULE);
}
}
bool esp_vhci_host_check_send_available(void)
{
return API_vhci_host_check_send_available();
}
void esp_vhci_host_send_packet(uint8_t *data, uint16_t len)
{
if (!btdm_power_state_active()) {
btdm_wakeup_request();
}
API_vhci_host_send_packet(data, len);
}
esp_err_t esp_vhci_host_register_callback(const esp_vhci_host_callback_t *callback)
{
return API_vhci_host_register_callback((const vhci_host_callback_t *)callback) == 0 ? ESP_OK : ESP_FAIL;
}
static uint32_t btdm_config_mask_load(void)
{
uint32_t mask = 0x0;
#if CONFIG_BTDM_CONTROLLER_HCI_MODE_UART_H4
mask |= BTDM_CFG_HCI_UART;
#endif
#if CONFIG_BTDM_CONTROLLER_PINNED_TO_CORE == 1
mask |= BTDM_CFG_CONTROLLER_RUN_APP_CPU;
#endif
2018-05-03 20:22:08 +08:00
mask |= BTDM_CFG_SCAN_DUPLICATE_OPTIONS;
mask |= BTDM_CFG_SEND_ADV_RESERVED_SIZE;
return mask;
}
static void btdm_controller_mem_init(void)
{
/* initialise .data section */
memcpy(&_data_start_btdm, (void *)_data_start_btdm_rom, &_data_end_btdm - &_data_start_btdm);
ESP_LOGD(BTDM_LOG_TAG, ".data initialise [0x%08x] <== [0x%08x]", (uint32_t)&_data_start_btdm, _data_start_btdm_rom);
//initial em, .bss section
for (int i = 1; i < sizeof(btdm_dram_available_region)/sizeof(btdm_dram_available_region_t); i++) {
if (btdm_dram_available_region[i].mode != ESP_BT_MODE_IDLE) {
memset((void *)btdm_dram_available_region[i].start, 0x0, btdm_dram_available_region[i].end - btdm_dram_available_region[i].start);
ESP_LOGD(BTDM_LOG_TAG, ".bss initialise [0x%08x] - [0x%08x]", btdm_dram_available_region[i].start, btdm_dram_available_region[i].end);
}
}
}
static esp_err_t try_heap_caps_add_region(intptr_t start, intptr_t end)
{
int ret = heap_caps_add_region(start, end);
/* heap_caps_add_region() returns ESP_ERR_INVALID_SIZE if the memory region is
* is too small to fit a heap. This cannot be termed as a fatal error and hence
* we replace it by ESP_OK
*/
if (ret == ESP_ERR_INVALID_SIZE) {
return ESP_OK;
}
return ret;
}
esp_err_t esp_bt_controller_mem_release(esp_bt_mode_t mode)
{
bool update = true;
intptr_t mem_start, mem_end;
if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_IDLE) {
return ESP_ERR_INVALID_STATE;
}
//already released
if (!(mode & btdm_dram_available_region[0].mode)) {
return ESP_ERR_INVALID_STATE;
}
for (int i = 0; i < sizeof(btdm_dram_available_region)/sizeof(btdm_dram_available_region_t); i++) {
//skip the share mode, idle mode and other mode
if (btdm_dram_available_region[i].mode == ESP_BT_MODE_IDLE
|| (mode & btdm_dram_available_region[i].mode) != btdm_dram_available_region[i].mode) {
//clear the bit of the mode which will be released
btdm_dram_available_region[i].mode &= ~mode;
continue;
} else {
//clear the bit of the mode which will be released
btdm_dram_available_region[i].mode &= ~mode;
}
if (update) {
mem_start = btdm_dram_available_region[i].start;
mem_end = btdm_dram_available_region[i].end;
update = false;
}
if (i < sizeof(btdm_dram_available_region)/sizeof(btdm_dram_available_region_t) - 1) {
mem_end = btdm_dram_available_region[i].end;
if (btdm_dram_available_region[i+1].mode != ESP_BT_MODE_IDLE
&& (mode & btdm_dram_available_region[i+1].mode) == btdm_dram_available_region[i+1].mode
&& mem_end == btdm_dram_available_region[i+1].start) {
continue;
} else {
ESP_LOGD(BTDM_LOG_TAG, "Release DRAM [0x%08x] - [0x%08x]", mem_start, mem_end);
ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
update = true;
}
} else {
mem_end = btdm_dram_available_region[i].end;
ESP_LOGD(BTDM_LOG_TAG, "Release DRAM [0x%08x] - [0x%08x]", mem_start, mem_end);
ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
update = true;
}
}
Reclaim BT/BTDM BSS and Data in bluetooth memory release function 1. Modify esp_bt_controller_mem_release() to release BTDM BSS and Data to heap if ESP_BT_MODE_BTDM mode is passed to it 2. Add a new API esp_bt_mem_release() which internally calls esp_bt_controller_mem_release() with the provided mode and then if mode is ESP_BT_MODE_BTDM, releases BT BSS and Data to heap. Background: For Wi-Fi and BT/BLE applications, for e.g. the usecase is like when Bluetooth is used for provisioning and once the device is connected to the Wi-Fi AP, we can turn off Bluetooth completely. In such scenarios, it should be possible to reclaim all the memory of Bluetooth. Although, currently this does not happen. Experiment: Made the following modifications to examples/bluetooth/gatt_server : 1. Added support of simple_wifi to it 2. Moved all the bluetooth related code under CONFIG_BT_ENABLED config option 3. Calculated the free heap in 2 similar scenarios: i. Disabled BT (CONFIG_BT_ENABLED undefined) and checked the free heap after STA connected ii. Kept BT enabled and disabled it after STA connected and checked the free heap Ideally, the numbers for i., ii. above should have been similar. But there was a delta of almost 30-31K. (i. > ii.) 4. Through make size-components checked the common BSS for libbta.a and libbtdm_app.a and found it to be almost 30K. Data is around 1K Solution: 1. Modified the linker script to mark the BSS and Data for these libraries and free it when ESP_BT_MODE_BTDM mode is passed to mem release APIs. 2. Verified that the free heap is comparable for i. and ii. above. Note: It is known that once this is done, Bluetooth can only be used again post reboot. Signed-off-by: Hrishikesh Dhayagude <hrishi@espressif.com>
2018-07-11 11:52:32 +05:30
if (mode == ESP_BT_MODE_BTDM) {
mem_start = (intptr_t)&_btdm_bss_start;
mem_end = (intptr_t)&_btdm_bss_end;
if (mem_start != mem_end) {
ESP_LOGD(BTDM_LOG_TAG, "Release BTDM BSS [0x%08x] - [0x%08x]", mem_start, mem_end);
ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
}
Reclaim BT/BTDM BSS and Data in bluetooth memory release function 1. Modify esp_bt_controller_mem_release() to release BTDM BSS and Data to heap if ESP_BT_MODE_BTDM mode is passed to it 2. Add a new API esp_bt_mem_release() which internally calls esp_bt_controller_mem_release() with the provided mode and then if mode is ESP_BT_MODE_BTDM, releases BT BSS and Data to heap. Background: For Wi-Fi and BT/BLE applications, for e.g. the usecase is like when Bluetooth is used for provisioning and once the device is connected to the Wi-Fi AP, we can turn off Bluetooth completely. In such scenarios, it should be possible to reclaim all the memory of Bluetooth. Although, currently this does not happen. Experiment: Made the following modifications to examples/bluetooth/gatt_server : 1. Added support of simple_wifi to it 2. Moved all the bluetooth related code under CONFIG_BT_ENABLED config option 3. Calculated the free heap in 2 similar scenarios: i. Disabled BT (CONFIG_BT_ENABLED undefined) and checked the free heap after STA connected ii. Kept BT enabled and disabled it after STA connected and checked the free heap Ideally, the numbers for i., ii. above should have been similar. But there was a delta of almost 30-31K. (i. > ii.) 4. Through make size-components checked the common BSS for libbta.a and libbtdm_app.a and found it to be almost 30K. Data is around 1K Solution: 1. Modified the linker script to mark the BSS and Data for these libraries and free it when ESP_BT_MODE_BTDM mode is passed to mem release APIs. 2. Verified that the free heap is comparable for i. and ii. above. Note: It is known that once this is done, Bluetooth can only be used again post reboot. Signed-off-by: Hrishikesh Dhayagude <hrishi@espressif.com>
2018-07-11 11:52:32 +05:30
mem_start = (intptr_t)&_btdm_data_start;
mem_end = (intptr_t)&_btdm_data_end;
if (mem_start != mem_end) {
ESP_LOGD(BTDM_LOG_TAG, "Release BTDM Data [0x%08x] - [0x%08x]", mem_start, mem_end);
ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
}
Reclaim BT/BTDM BSS and Data in bluetooth memory release function 1. Modify esp_bt_controller_mem_release() to release BTDM BSS and Data to heap if ESP_BT_MODE_BTDM mode is passed to it 2. Add a new API esp_bt_mem_release() which internally calls esp_bt_controller_mem_release() with the provided mode and then if mode is ESP_BT_MODE_BTDM, releases BT BSS and Data to heap. Background: For Wi-Fi and BT/BLE applications, for e.g. the usecase is like when Bluetooth is used for provisioning and once the device is connected to the Wi-Fi AP, we can turn off Bluetooth completely. In such scenarios, it should be possible to reclaim all the memory of Bluetooth. Although, currently this does not happen. Experiment: Made the following modifications to examples/bluetooth/gatt_server : 1. Added support of simple_wifi to it 2. Moved all the bluetooth related code under CONFIG_BT_ENABLED config option 3. Calculated the free heap in 2 similar scenarios: i. Disabled BT (CONFIG_BT_ENABLED undefined) and checked the free heap after STA connected ii. Kept BT enabled and disabled it after STA connected and checked the free heap Ideally, the numbers for i., ii. above should have been similar. But there was a delta of almost 30-31K. (i. > ii.) 4. Through make size-components checked the common BSS for libbta.a and libbtdm_app.a and found it to be almost 30K. Data is around 1K Solution: 1. Modified the linker script to mark the BSS and Data for these libraries and free it when ESP_BT_MODE_BTDM mode is passed to mem release APIs. 2. Verified that the free heap is comparable for i. and ii. above. Note: It is known that once this is done, Bluetooth can only be used again post reboot. Signed-off-by: Hrishikesh Dhayagude <hrishi@espressif.com>
2018-07-11 11:52:32 +05:30
}
return ESP_OK;
}
esp_err_t esp_bt_mem_release(esp_bt_mode_t mode)
{
int ret;
intptr_t mem_start, mem_end;
ret = esp_bt_controller_mem_release(mode);
if (ret != ESP_OK) {
return ret;
}
if (mode == ESP_BT_MODE_BTDM) {
mem_start = (intptr_t)&_bt_bss_start;
mem_end = (intptr_t)&_bt_bss_end;
if (mem_start != mem_end) {
ESP_LOGD(BTDM_LOG_TAG, "Release BT BSS [0x%08x] - [0x%08x]", mem_start, mem_end);
ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
}
Reclaim BT/BTDM BSS and Data in bluetooth memory release function 1. Modify esp_bt_controller_mem_release() to release BTDM BSS and Data to heap if ESP_BT_MODE_BTDM mode is passed to it 2. Add a new API esp_bt_mem_release() which internally calls esp_bt_controller_mem_release() with the provided mode and then if mode is ESP_BT_MODE_BTDM, releases BT BSS and Data to heap. Background: For Wi-Fi and BT/BLE applications, for e.g. the usecase is like when Bluetooth is used for provisioning and once the device is connected to the Wi-Fi AP, we can turn off Bluetooth completely. In such scenarios, it should be possible to reclaim all the memory of Bluetooth. Although, currently this does not happen. Experiment: Made the following modifications to examples/bluetooth/gatt_server : 1. Added support of simple_wifi to it 2. Moved all the bluetooth related code under CONFIG_BT_ENABLED config option 3. Calculated the free heap in 2 similar scenarios: i. Disabled BT (CONFIG_BT_ENABLED undefined) and checked the free heap after STA connected ii. Kept BT enabled and disabled it after STA connected and checked the free heap Ideally, the numbers for i., ii. above should have been similar. But there was a delta of almost 30-31K. (i. > ii.) 4. Through make size-components checked the common BSS for libbta.a and libbtdm_app.a and found it to be almost 30K. Data is around 1K Solution: 1. Modified the linker script to mark the BSS and Data for these libraries and free it when ESP_BT_MODE_BTDM mode is passed to mem release APIs. 2. Verified that the free heap is comparable for i. and ii. above. Note: It is known that once this is done, Bluetooth can only be used again post reboot. Signed-off-by: Hrishikesh Dhayagude <hrishi@espressif.com>
2018-07-11 11:52:32 +05:30
mem_start = (intptr_t)&_bt_data_start;
mem_end = (intptr_t)&_bt_data_end;
if (mem_start != mem_end) {
ESP_LOGD(BTDM_LOG_TAG, "Release BT Data [0x%08x] - [0x%08x]", mem_start, mem_end);
ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
}
Reclaim BT/BTDM BSS and Data in bluetooth memory release function 1. Modify esp_bt_controller_mem_release() to release BTDM BSS and Data to heap if ESP_BT_MODE_BTDM mode is passed to it 2. Add a new API esp_bt_mem_release() which internally calls esp_bt_controller_mem_release() with the provided mode and then if mode is ESP_BT_MODE_BTDM, releases BT BSS and Data to heap. Background: For Wi-Fi and BT/BLE applications, for e.g. the usecase is like when Bluetooth is used for provisioning and once the device is connected to the Wi-Fi AP, we can turn off Bluetooth completely. In such scenarios, it should be possible to reclaim all the memory of Bluetooth. Although, currently this does not happen. Experiment: Made the following modifications to examples/bluetooth/gatt_server : 1. Added support of simple_wifi to it 2. Moved all the bluetooth related code under CONFIG_BT_ENABLED config option 3. Calculated the free heap in 2 similar scenarios: i. Disabled BT (CONFIG_BT_ENABLED undefined) and checked the free heap after STA connected ii. Kept BT enabled and disabled it after STA connected and checked the free heap Ideally, the numbers for i., ii. above should have been similar. But there was a delta of almost 30-31K. (i. > ii.) 4. Through make size-components checked the common BSS for libbta.a and libbtdm_app.a and found it to be almost 30K. Data is around 1K Solution: 1. Modified the linker script to mark the BSS and Data for these libraries and free it when ESP_BT_MODE_BTDM mode is passed to mem release APIs. 2. Verified that the free heap is comparable for i. and ii. above. Note: It is known that once this is done, Bluetooth can only be used again post reboot. Signed-off-by: Hrishikesh Dhayagude <hrishi@espressif.com>
2018-07-11 11:52:32 +05:30
}
return ESP_OK;
}
esp_err_t esp_bt_controller_init(esp_bt_controller_config_t *cfg)
{
BaseType_t ret;
uint32_t btdm_cfg_mask = 0;
osi_funcs_p = (struct osi_funcs_t *)malloc_internal_wrapper(sizeof(struct osi_funcs_t));
if (osi_funcs_p == NULL) {
return ESP_ERR_NO_MEM;
}
memcpy(osi_funcs_p, &osi_funcs_ro, sizeof(struct osi_funcs_t));
if (btdm_osi_funcs_register(osi_funcs_p) != 0) {
return ESP_ERR_INVALID_ARG;
}
if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_IDLE) {
return ESP_ERR_INVALID_STATE;
}
//if all the bt available memory was already released, cannot initialize bluetooth controller
if (btdm_dram_available_region[0].mode == ESP_BT_MODE_IDLE) {
return ESP_ERR_INVALID_STATE;
}
if (cfg == NULL) {
return ESP_ERR_INVALID_ARG;
}
if (cfg->controller_task_prio != ESP_TASK_BT_CONTROLLER_PRIO
|| cfg->controller_task_stack_size < ESP_TASK_BT_CONTROLLER_STACK) {
return ESP_ERR_INVALID_ARG;
}
//overwrite some parameters
cfg->bt_max_sync_conn = CONFIG_BTDM_CONTROLLER_BR_EDR_MAX_SYNC_CONN_EFF;
cfg->magic = ESP_BT_CONTROLLER_CONFIG_MAGIC_VAL;
if (((cfg->mode & ESP_BT_MODE_BLE) && (cfg->ble_max_conn <= 0 || cfg->ble_max_conn > BTDM_CONTROLLER_BLE_MAX_CONN_LIMIT))
|| ((cfg->mode & ESP_BT_MODE_CLASSIC_BT) && (cfg->bt_max_acl_conn <= 0 || cfg->bt_max_acl_conn > BTDM_CONTROLLER_BR_EDR_MAX_ACL_CONN_LIMIT))
|| ((cfg->mode & ESP_BT_MODE_CLASSIC_BT) && (cfg->bt_max_sync_conn > BTDM_CONTROLLER_BR_EDR_MAX_SYNC_CONN_LIMIT))) {
return ESP_ERR_INVALID_ARG;
}
#ifdef CONFIG_PM_ENABLE
esp_err_t err = esp_pm_lock_create(ESP_PM_APB_FREQ_MAX, 0, "bt", &s_pm_lock);
if (err != ESP_OK) {
return err;
}
#endif
ESP_LOGI(BTDM_LOG_TAG, "BT controller compile version [%s]", btdm_controller_get_compile_version());
#if CONFIG_SPIRAM_USE_MALLOC
btdm_queue_table_mux = xSemaphoreCreateMutex();
if (btdm_queue_table == NULL) {
#ifdef CONFIG_PM_ENABLE
esp_pm_lock_delete(s_pm_lock);
s_pm_lock = NULL;
#endif
return ESP_ERR_NO_MEM;
}
memset(btdm_queue_table, 0, sizeof(btdm_queue_item_t) * BTDM_MAX_QUEUE_NUM);
#endif
btdm_controller_mem_init();
periph_module_enable(PERIPH_BT_MODULE);
btdm_lpcycle_us_frac = RTC_CLK_CAL_FRACT;
btdm_lpcycle_us = 32 << btdm_lpcycle_us_frac;
2018-05-29 20:02:54 +08:00
#if CONFIG_BTDM_MODEM_SLEEP_MODE_ORIG
bool select_src_ret = false;
bool set_div_ret = false;
#if CONFIG_BTDM_LPCLK_SEL_MAIN_XTAL
select_src_ret = btdm_lpclk_select_src(BTDM_LPCLK_SEL_XTAL);
set_div_ret = btdm_lpclk_set_div(rtc_clk_xtal_freq_get() * 32 - 1);
assert(select_src_ret && set_div_ret);
btdm_lpcycle_us_frac = RTC_CLK_CAL_FRACT;
btdm_lpcycle_us = 32 << btdm_lpcycle_us_frac;
#elif CONFIG_BTDM_LPCLK_SEL_EXT_32K_XTAL
select_src_ret = btdm_lpclk_select_src(BTDM_LPCLK_SEL_XTAL32K);
set_div_ret = btdm_lpclk_set_div(0);
assert(select_src_ret && set_div_ret);
btdm_lpcycle_us_frac = RTC_CLK_CAL_FRACT;
btdm_lpcycle_us = esp_clk_slowclk_cal_get();
assert(btdm_lpcycle_us != 0);
#endif // CONFIG_BTDM_LPCLK_SEL_XX
btdm_controller_set_sleep_mode(BTDM_MODEM_SLEEP_MODE_ORIG);
#elif CONFIG_BTDM_MODEM_SLEEP_MODE_EVED
btdm_controller_set_sleep_mode(BTDM_MODEM_SLEEP_MODE_EVED);
#else
btdm_controller_set_sleep_mode(BTDM_MODEM_SLEEP_MODE_NONE);
#endif
btdm_cfg_mask = btdm_config_mask_load();
ret = btdm_controller_init(btdm_cfg_mask, cfg);
if (ret) {
#ifdef CONFIG_PM_ENABLE
esp_pm_lock_delete(s_pm_lock);
s_pm_lock = NULL;
#endif
return ESP_ERR_NO_MEM;
}
btdm_controller_status = ESP_BT_CONTROLLER_STATUS_INITED;
return ESP_OK;
}
esp_err_t esp_bt_controller_deinit(void)
{
if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_INITED) {
return ESP_ERR_INVALID_STATE;
}
btdm_controller_deinit();
periph_module_disable(PERIPH_BT_MODULE);
#if CONFIG_SPIRAM_USE_MALLOC
vSemaphoreDelete(btdm_queue_table_mux);
btdm_queue_table_mux = NULL;
memset(btdm_queue_table, 0, sizeof(btdm_queue_item_t) * BTDM_MAX_QUEUE_NUM);
#endif
free(osi_funcs_p);
osi_funcs_p = NULL;
btdm_controller_status = ESP_BT_CONTROLLER_STATUS_IDLE;
btdm_lpcycle_us = 0;
btdm_controller_set_sleep_mode(BTDM_MODEM_SLEEP_MODE_NONE);
#ifdef CONFIG_PM_ENABLE
esp_pm_lock_delete(s_pm_lock);
s_pm_lock = NULL;
#endif
return ESP_OK;
}
esp_err_t esp_bt_controller_enable(esp_bt_mode_t mode)
{
int ret;
if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_INITED) {
return ESP_ERR_INVALID_STATE;
}
//As the history reason, mode should be equal to the mode which set in esp_bt_controller_init()
if (mode != btdm_controller_get_mode()) {
return ESP_ERR_INVALID_ARG;
}
#ifdef CONFIG_PM_ENABLE
esp_pm_lock_acquire(s_pm_lock);
#endif
esp_phy_load_cal_and_init(PHY_BT_MODULE);
if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_NONE) {
//Just register to sleep module, make the modem sleep modules check BT sleep status when sleep enter.
//Thus, it will prevent WIFI from disabling RF when BT is not in sleep but is using RF.
esp_modem_sleep_register(MODEM_BLE_MODULE);
esp_modem_sleep_register(MODEM_CLASSIC_BT_MODULE);
esp_modem_sleep_exit(MODEM_BLE_MODULE);
esp_modem_sleep_exit(MODEM_CLASSIC_BT_MODULE);
} else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
esp_modem_sleep_register(MODEM_BLE_MODULE);
esp_modem_sleep_register(MODEM_CLASSIC_BT_MODULE);
} else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) {
esp_modem_sleep_register(MODEM_BLE_MODULE);
}
if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
btdm_controller_enable_sleep(true);
}
if (btdm_bb_init_flag == false) {
btdm_bb_init_flag = true;
btdm_rf_bb_init(); /* only initialise once */
}
ret = btdm_controller_enable(mode);
if (ret) {
if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_NONE
|| btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
esp_modem_sleep_deregister(MODEM_BLE_MODULE);
esp_modem_sleep_deregister(MODEM_CLASSIC_BT_MODULE);
} else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) {
esp_modem_sleep_deregister(MODEM_BLE_MODULE);
}
esp_phy_rf_deinit(PHY_BT_MODULE);
#ifdef CONFIG_PM_ENABLE
esp_pm_lock_release(s_pm_lock);
#endif
return ESP_ERR_INVALID_STATE;
}
btdm_controller_status = ESP_BT_CONTROLLER_STATUS_ENABLED;
return ESP_OK;
}
esp_err_t esp_bt_controller_disable(void)
{
if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) {
return ESP_ERR_INVALID_STATE;
}
// disable modem sleep and wake up from sleep mode
if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
btdm_controller_enable_sleep(false);
if (!btdm_power_state_active()) {
btdm_wakeup_request();
}
while (!btdm_power_state_active()) {
ets_delay_us(1000);
}
}
btdm_controller_disable();
if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_NONE
|| btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
esp_modem_sleep_deregister(MODEM_BLE_MODULE);
esp_modem_sleep_deregister(MODEM_CLASSIC_BT_MODULE);
} else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) {
esp_modem_sleep_deregister(MODEM_BLE_MODULE);
}
esp_phy_rf_deinit(PHY_BT_MODULE);
btdm_controller_status = ESP_BT_CONTROLLER_STATUS_INITED;
#ifdef CONFIG_PM_ENABLE
esp_pm_lock_release(s_pm_lock);
#endif
return ESP_OK;
}
esp_bt_controller_status_t esp_bt_controller_get_status(void)
{
return btdm_controller_status;
}
/* extra functions */
esp_err_t esp_ble_tx_power_set(esp_ble_power_type_t power_type, esp_power_level_t power_level)
{
if (ble_txpwr_set(power_type, power_level) != 0) {
return ESP_ERR_INVALID_ARG;
}
return ESP_OK;
}
esp_power_level_t esp_ble_tx_power_get(esp_ble_power_type_t power_type)
{
return (esp_power_level_t)ble_txpwr_get(power_type);
}
2018-04-19 17:22:49 +08:00
esp_err_t esp_bredr_tx_power_set(esp_power_level_t min_power_level, esp_power_level_t max_power_level)
{
esp_err_t err;
int ret;
ret = bredr_txpwr_set(min_power_level, max_power_level);
if (ret == 0) {
err = ESP_OK;
} else if (ret == -1) {
err = ESP_ERR_INVALID_ARG;
} else {
err = ESP_ERR_INVALID_STATE;
}
return err;
}
esp_err_t esp_bredr_tx_power_get(esp_power_level_t *min_power_level, esp_power_level_t *max_power_level)
{
if (bredr_txpwr_get((int *)min_power_level, (int *)max_power_level) != 0) {
return ESP_ERR_INVALID_ARG;
}
return ESP_OK;
}
esp_err_t esp_bt_sleep_enable (void)
{
esp_err_t status;
if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) {
return ESP_ERR_INVALID_STATE;
}
if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
esp_modem_sleep_register(MODEM_BLE_MODULE);
esp_modem_sleep_register(MODEM_CLASSIC_BT_MODULE);
btdm_controller_enable_sleep (true);
status = ESP_OK;
} else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) {
esp_modem_sleep_register(MODEM_BLE_MODULE);
btdm_controller_enable_sleep (true);
status = ESP_OK;
} else {
status = ESP_ERR_NOT_SUPPORTED;
}
return status;
}
esp_err_t esp_bt_sleep_disable (void)
{
esp_err_t status;
if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) {
return ESP_ERR_INVALID_STATE;
}
if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
esp_modem_sleep_deregister(MODEM_BLE_MODULE);
esp_modem_sleep_deregister(MODEM_CLASSIC_BT_MODULE);
btdm_controller_enable_sleep (false);
status = ESP_OK;
} else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) {
esp_modem_sleep_deregister(MODEM_BLE_MODULE);
btdm_controller_enable_sleep (false);
status = ESP_OK;
} else {
status = ESP_ERR_NOT_SUPPORTED;
}
return status;
}
bool esp_bt_controller_is_sleeping(void)
{
if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED ||
btdm_controller_get_sleep_mode() != BTDM_MODEM_SLEEP_MODE_ORIG) {
return false;
}
return !btdm_power_state_active();
}
void esp_bt_controller_wakeup_request(void)
{
if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED ||
btdm_controller_get_sleep_mode() != BTDM_MODEM_SLEEP_MODE_ORIG) {
return;
}
btdm_wakeup_request();
}
esp_err_t esp_bredr_sco_datapath_set(esp_sco_data_path_t data_path)
{
if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) {
return ESP_ERR_INVALID_STATE;
}
bredr_sco_datapath_set(data_path);
return ESP_OK;
}
esp_err_t esp_ble_scan_dupilcate_list_flush(void)
{
if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) {
return ESP_ERR_INVALID_STATE;
}
btdm_controller_scan_duplicate_list_clear();
return ESP_OK;
}
#endif /* CONFIG_BT_ENABLED */