206 lines
7.9 KiB
C
Raw Normal View History

/*
* SPDX-FileCopyrightText: 2015-2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include "esp_err.h"
#include "esp_ipc.h"
#include "esp_private/esp_ipc_isr.h"
#include "esp_attr.h"
#include "esp_cpu.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/semphr.h"
#define IPC_MAX_PRIORITY (configMAX_PRIORITIES - 1)
#if !defined(CONFIG_FREERTOS_UNICORE) || defined(CONFIG_APPTRACE_GCOV_ENABLE)
#if CONFIG_COMPILER_OPTIMIZATION_NONE
#define IPC_STACK_SIZE (CONFIG_ESP_IPC_TASK_STACK_SIZE + 0x100)
#else
#define IPC_STACK_SIZE (CONFIG_ESP_IPC_TASK_STACK_SIZE)
#endif //CONFIG_COMPILER_OPTIMIZATION_NONE
static DRAM_ATTR StaticSemaphore_t s_ipc_mutex_buffer[portNUM_PROCESSORS];
static DRAM_ATTR StaticSemaphore_t s_ipc_sem_buffer[portNUM_PROCESSORS];
static DRAM_ATTR StaticSemaphore_t s_ipc_ack_buffer[portNUM_PROCESSORS];
static TaskHandle_t s_ipc_task_handle[portNUM_PROCESSORS];
static SemaphoreHandle_t s_ipc_mutex[portNUM_PROCESSORS]; // This mutex is used as a global lock for esp_ipc_* APIs
static SemaphoreHandle_t s_ipc_sem[portNUM_PROCESSORS]; // Two semaphores used to wake each of ipc tasks
static SemaphoreHandle_t s_ipc_ack[portNUM_PROCESSORS]; // Semaphore used to acknowledge that task was woken up,
// or function has finished running
static volatile esp_ipc_func_t s_func[portNUM_PROCESSORS]; // Function which should be called by high priority task
static void * volatile s_func_arg[portNUM_PROCESSORS]; // Argument to pass into s_func
typedef enum {
IPC_WAIT_FOR_START,
IPC_WAIT_FOR_END
} esp_ipc_wait_t;
static volatile esp_ipc_wait_t s_ipc_wait[portNUM_PROCESSORS];// This variable tells high priority task when it should give
// s_ipc_ack semaphore: before s_func is called, or
// after it returns
static volatile esp_ipc_func_t s_no_block_func[portNUM_PROCESSORS] = { 0 };
static volatile bool s_no_block_func_and_arg_are_ready[portNUM_PROCESSORS] = { 0 };
static void * volatile s_no_block_func_arg[portNUM_PROCESSORS];
static void IRAM_ATTR ipc_task(void* arg)
{
2020-11-17 12:48:35 +08:00
const int cpuid = (int) arg;
assert(cpuid == xPortGetCoreID());
#ifdef CONFIG_ESP_IPC_ISR_ENABLE
esp_ipc_isr_init();
#endif
while (true) {
// Wait for IPC to be initiated.
// This will be indicated by giving the semaphore corresponding to
// this CPU.
if (xSemaphoreTake(s_ipc_sem[cpuid], portMAX_DELAY) != pdTRUE) {
// TODO: when can this happen?
abort();
}
if (s_no_block_func_and_arg_are_ready[cpuid] && s_no_block_func[cpuid]) {
(*s_no_block_func[cpuid])(s_no_block_func_arg[cpuid]);
s_no_block_func_and_arg_are_ready[cpuid] = false;
s_no_block_func[cpuid] = NULL;
// esp_ipc API and esp_ipc_call_nonblocking APIs can be processed together if they came at the same time
}
if (s_func[cpuid]) {
// we need to cache s_func, s_func_arg and s_ipc_wait variables locally because they can be changed by a subsequent IPC call.
esp_ipc_func_t func = s_func[cpuid];
void* arg = s_func_arg[cpuid];
esp_ipc_wait_t ipc_wait = s_ipc_wait[cpuid];
s_func[cpuid] = NULL;
if (ipc_wait == IPC_WAIT_FOR_START) {
xSemaphoreGive(s_ipc_ack[cpuid]);
}
(*func)(arg);
if (ipc_wait == IPC_WAIT_FOR_END) {
xSemaphoreGive(s_ipc_ack[cpuid]);
}
}
}
// TODO: currently this is unreachable code. Introduce esp_ipc_uninit
// function which will signal to both tasks that they can shut down.
// Not critical at this point, we don't have a use case for stopping
// IPC yet.
// Also need to delete the semaphore here.
vTaskDelete(NULL);
}
/*
* Initialize inter-processor call module. This function is called automatically
* on CPU start and should not be called from the application.
*
* This function start two tasks, one on each CPU. These tasks are started
* with high priority. These tasks are normally inactive, waiting until one of
* the esp_ipc_call_* functions to be used. One of these tasks will be
* woken up to execute the callback provided to esp_ipc_call_nonblocking or
* esp_ipc_call_blocking.
*/
static void esp_ipc_init(void) __attribute__((constructor));
static void esp_ipc_init(void)
{
char task_name[configMAX_TASK_NAME_LEN];
for (int i = 0; i < portNUM_PROCESSORS; ++i) {
snprintf(task_name, sizeof(task_name), "ipc%d", i);
s_ipc_mutex[i] = xSemaphoreCreateMutexStatic(&s_ipc_mutex_buffer[i]);
s_ipc_ack[i] = xSemaphoreCreateBinaryStatic(&s_ipc_ack_buffer[i]);
s_ipc_sem[i] = xSemaphoreCreateBinaryStatic(&s_ipc_sem_buffer[i]);
portBASE_TYPE res = xTaskCreatePinnedToCore(ipc_task, task_name, IPC_STACK_SIZE, (void*) i,
IPC_MAX_PRIORITY, &s_ipc_task_handle[i], i);
assert(res == pdTRUE);
(void)res;
}
}
static esp_err_t esp_ipc_call_and_wait(uint32_t cpu_id, esp_ipc_func_t func, void* arg, esp_ipc_wait_t wait_for)
{
if (cpu_id >= portNUM_PROCESSORS) {
return ESP_ERR_INVALID_ARG;
}
if (xTaskGetSchedulerState() != taskSCHEDULER_RUNNING) {
return ESP_ERR_INVALID_STATE;
}
#ifdef CONFIG_ESP_IPC_USES_CALLERS_PRIORITY
TaskHandle_t task_handler = xTaskGetCurrentTaskHandle();
UBaseType_t priority_of_current_task = uxTaskPriorityGet(task_handler);
UBaseType_t priority_of_running_ipc_task = uxTaskPriorityGet(s_ipc_task_handle[cpu_id]);
if (priority_of_running_ipc_task < priority_of_current_task) {
vTaskPrioritySet(s_ipc_task_handle[cpu_id], priority_of_current_task);
}
xSemaphoreTake(s_ipc_mutex[cpu_id], portMAX_DELAY);
vTaskPrioritySet(s_ipc_task_handle[cpu_id], priority_of_current_task);
#else
xSemaphoreTake(s_ipc_mutex[0], portMAX_DELAY);
#endif
s_func_arg[cpu_id] = arg;
s_ipc_wait[cpu_id] = wait_for;
// s_func must be set after all other parameters. The ipc_task use this as indicator of the IPC is prepared.
s_func[cpu_id] = func;
xSemaphoreGive(s_ipc_sem[cpu_id]);
xSemaphoreTake(s_ipc_ack[cpu_id], portMAX_DELAY);
#ifdef CONFIG_ESP_IPC_USES_CALLERS_PRIORITY
xSemaphoreGive(s_ipc_mutex[cpu_id]);
#else
xSemaphoreGive(s_ipc_mutex[0]);
#endif
return ESP_OK;
}
esp_err_t esp_ipc_call(uint32_t cpu_id, esp_ipc_func_t func, void* arg)
{
return esp_ipc_call_and_wait(cpu_id, func, arg, IPC_WAIT_FOR_START);
}
esp_err_t esp_ipc_call_blocking(uint32_t cpu_id, esp_ipc_func_t func, void* arg)
{
return esp_ipc_call_and_wait(cpu_id, func, arg, IPC_WAIT_FOR_END);
}
esp_err_t esp_ipc_call_nonblocking(uint32_t cpu_id, esp_ipc_func_t func, void* arg)
{
if (cpu_id >= portNUM_PROCESSORS || s_ipc_task_handle[cpu_id] == NULL) {
return ESP_ERR_INVALID_ARG;
}
if (cpu_id == xPortGetCoreID() && xTaskGetSchedulerState() != taskSCHEDULER_RUNNING) {
return ESP_ERR_INVALID_STATE;
}
// Since it can be called from an interrupt or Scheduler is Suspened, it can not wait for a mutex to be released.
if (esp_cpu_compare_and_set((volatile uint32_t *)&s_no_block_func[cpu_id], 0, (uint32_t)func)) {
s_no_block_func_arg[cpu_id] = arg;
s_no_block_func_and_arg_are_ready[cpu_id] = true;
if (xPortInIsrContext()) {
xSemaphoreGiveFromISR(s_ipc_sem[cpu_id], NULL);
} else {
#ifdef CONFIG_ESP_IPC_USES_CALLERS_PRIORITY
vTaskPrioritySet(s_ipc_task_handle[cpu_id], IPC_MAX_PRIORITY);
#endif
xSemaphoreGive(s_ipc_sem[cpu_id]);
}
return ESP_OK;
}
return ESP_FAIL;
}
#endif // !defined(CONFIG_FREERTOS_UNICORE) || defined(CONFIG_APPTRACE_GCOV_ENABLE)