esp-idf/components/bootloader_support/src/bootloader_common.c

385 lines
13 KiB
C
Raw Normal View History

// Copyright 2018 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdbool.h>
#include <assert.h>
#include "string.h"
#include "sdkconfig.h"
#include "esp_err.h"
#include "esp_log.h"
#include "esp32/rom/crc.h"
#include "esp32/rom/gpio.h"
#include "esp_secure_boot.h"
#include "esp_flash_partitions.h"
#include "bootloader_flash.h"
#include "bootloader_common.h"
#include "soc/gpio_periph.h"
#include "soc/rtc.h"
#include "soc/efuse_reg.h"
#include "soc/apb_ctrl_reg.h"
#include "esp_image_format.h"
#include "bootloader_sha.h"
#include "sys/param.h"
#define ESP_PARTITION_HASH_LEN 32 /* SHA-256 digest length */
static const char* TAG = "boot_comm";
uint32_t bootloader_common_ota_select_crc(const esp_ota_select_entry_t *s)
{
return crc32_le(UINT32_MAX, (uint8_t*)&s->ota_seq, 4);
}
bool bootloader_common_ota_select_invalid(const esp_ota_select_entry_t *s)
{
return s->ota_seq == UINT32_MAX || s->ota_state == ESP_OTA_IMG_INVALID || s->ota_state == ESP_OTA_IMG_ABORTED;
}
bool bootloader_common_ota_select_valid(const esp_ota_select_entry_t *s)
{
return bootloader_common_ota_select_invalid(s) == false && s->crc == bootloader_common_ota_select_crc(s);
}
esp_comm_gpio_hold_t bootloader_common_check_long_hold_gpio(uint32_t num_pin, uint32_t delay_sec)
{
gpio_pad_select_gpio(num_pin);
if (GPIO_PIN_MUX_REG[num_pin]) {
PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[num_pin]);
}
gpio_pad_pullup(num_pin);
uint32_t tm_start = esp_log_early_timestamp();
if (GPIO_INPUT_GET(num_pin) == 1) {
return GPIO_NOT_HOLD;
}
do {
if (GPIO_INPUT_GET(num_pin) != 0) {
return GPIO_SHORT_HOLD;
}
} while (delay_sec > ((esp_log_early_timestamp() - tm_start) / 1000L));
return GPIO_LONG_HOLD;
}
// Search for a label in the list. list = "nvs1, nvs2, otadata, nvs"; label = "nvs".
bool bootloader_common_label_search(const char *list, char *label)
{
if (list == NULL || label == NULL) {
return false;
}
const char *sub_list_start_like_label = strstr(list, label);
while (sub_list_start_like_label != NULL) {
// ["," or " "] + label + ["," or " " or "\0"]
// first character before the label found there must be a delimiter ["," or " "].
int idx_first = sub_list_start_like_label - list;
if (idx_first == 0 || (idx_first != 0 && (list[idx_first - 1] == ',' || list[idx_first - 1] == ' '))) {
// next character after the label found there must be a delimiter ["," or " " or "\0"].
int len_label = strlen(label);
if (sub_list_start_like_label[len_label] == 0 ||
sub_list_start_like_label[len_label] == ',' ||
sub_list_start_like_label[len_label] == ' ') {
return true;
}
}
// [start_delim] + label + [end_delim] was not found.
// Position is moving to next delimiter if it is not the end of list.
int pos_delim = strcspn(sub_list_start_like_label, ", ");
if (pos_delim == strlen(sub_list_start_like_label)) {
break;
}
sub_list_start_like_label = strstr(&sub_list_start_like_label[pos_delim], label);
}
return false;
}
bool bootloader_common_erase_part_type_data(const char *list_erase, bool ota_data_erase)
{
const esp_partition_info_t *partitions;
const char *marker;
esp_err_t err;
int num_partitions;
bool ret = true;
partitions = bootloader_mmap(ESP_PARTITION_TABLE_OFFSET, ESP_PARTITION_TABLE_MAX_LEN);
if (!partitions) {
ESP_LOGE(TAG, "bootloader_mmap(0x%x, 0x%x) failed", ESP_PARTITION_TABLE_OFFSET, ESP_PARTITION_TABLE_MAX_LEN);
return false;
}
ESP_LOGD(TAG, "mapped partition table 0x%x at 0x%x", ESP_PARTITION_TABLE_OFFSET, (intptr_t)partitions);
err = esp_partition_table_verify(partitions, true, &num_partitions);
if (err != ESP_OK) {
ESP_LOGE(TAG, "Failed to verify partition table");
ret = false;
} else {
ESP_LOGI(TAG, "## Label Usage Offset Length Cleaned");
for (int i = 0; i < num_partitions; i++) {
const esp_partition_info_t *partition = &partitions[i];
char label[sizeof(partition->label) + 1] = {0};
if (partition->type == PART_TYPE_DATA) {
bool fl_ota_data_erase = false;
if (ota_data_erase == true && partition->subtype == PART_SUBTYPE_DATA_OTA) {
fl_ota_data_erase = true;
}
// partition->label is not null-terminated string.
strncpy(label, (char *)&partition->label, sizeof(label) - 1);
if (fl_ota_data_erase == true || (bootloader_common_label_search(list_erase, label) == true)) {
err = bootloader_flash_erase_range(partition->pos.offset, partition->pos.size);
if (err != ESP_OK) {
ret = false;
marker = "err";
} else {
marker = "yes";
}
} else {
marker = "no";
}
ESP_LOGI(TAG, "%2d %-16s data %08x %08x [%s]", i, partition->label,
partition->pos.offset, partition->pos.size, marker);
}
}
}
bootloader_munmap(partitions);
return ret;
}
esp_err_t bootloader_common_get_sha256_of_partition (uint32_t address, uint32_t size, int type, uint8_t *out_sha_256)
{
if (out_sha_256 == NULL || size == 0) {
return ESP_ERR_INVALID_ARG;
}
if (type == PART_TYPE_APP) {
const esp_partition_pos_t partition_pos = {
.offset = address,
.size = size,
};
esp_image_metadata_t data;
// Function esp_image_verify() verifies and fills the structure data.
// here important to get: image_digest, image_len, hash_appended.
if (esp_image_verify(ESP_IMAGE_VERIFY_SILENT, &partition_pos, &data) != ESP_OK) {
return ESP_ERR_IMAGE_INVALID;
}
if (data.image.hash_appended) {
memcpy(out_sha_256, data.image_digest, ESP_PARTITION_HASH_LEN);
return ESP_OK;
}
// If image doesn't have a appended hash then hash calculates for entire image.
size = data.image_len;
}
// If image is type by data then hash is calculated for entire image.
const void *partition_bin = bootloader_mmap(address, size);
if (partition_bin == NULL) {
ESP_LOGE(TAG, "bootloader_mmap(0x%x, 0x%x) failed", address, size);
return ESP_FAIL;
}
bootloader_sha256_handle_t sha_handle = bootloader_sha256_start();
if (sha_handle == NULL) {
bootloader_munmap(partition_bin);
return ESP_ERR_NO_MEM;
}
bootloader_sha256_data(sha_handle, partition_bin, size);
bootloader_sha256_finish(sha_handle, out_sha_256);
bootloader_munmap(partition_bin);
return ESP_OK;
}
int bootloader_common_select_otadata(const esp_ota_select_entry_t *two_otadata, bool *valid_two_otadata, bool max)
{
if (two_otadata == NULL || valid_two_otadata == NULL) {
return -1;
}
int active_otadata = -1;
if (valid_two_otadata[0] && valid_two_otadata[1]) {
int condition = (max == true) ? MAX(two_otadata[0].ota_seq, two_otadata[1].ota_seq) : MIN(two_otadata[0].ota_seq, two_otadata[1].ota_seq);
if (condition == two_otadata[0].ota_seq) {
active_otadata = 0;
} else {
active_otadata = 1;
}
ESP_LOGD(TAG, "Both OTA copies are valid");
} else {
for (int i = 0; i < 2; ++i) {
if (valid_two_otadata[i]) {
active_otadata = i;
ESP_LOGD(TAG, "Only otadata[%d] is valid", i);
break;
}
}
}
return active_otadata;
}
int bootloader_common_get_active_otadata(esp_ota_select_entry_t *two_otadata)
{
if (two_otadata == NULL) {
return -1;
}
bool valid_two_otadata[2];
valid_two_otadata[0] = bootloader_common_ota_select_valid(&two_otadata[0]);
valid_two_otadata[1] = bootloader_common_ota_select_valid(&two_otadata[1]);
return bootloader_common_select_otadata(two_otadata, valid_two_otadata, true);
}
esp_err_t bootloader_common_get_partition_description(const esp_partition_pos_t *partition, esp_app_desc_t *app_desc)
{
if (partition == NULL || app_desc == NULL || partition->offset == 0) {
return ESP_ERR_INVALID_ARG;
}
const uint8_t *image = bootloader_mmap(partition->offset, partition->size);
if (image == NULL) {
ESP_LOGE(TAG, "bootloader_mmap(0x%x, 0x%x) failed", partition->offset, partition->size);
return ESP_FAIL;
}
memcpy(app_desc, image + sizeof(esp_image_header_t) + sizeof(esp_image_segment_header_t), sizeof(esp_app_desc_t));
bootloader_munmap(image);
if (app_desc->magic_word != ESP_APP_DESC_MAGIC_WORD) {
return ESP_ERR_NOT_FOUND;
}
return ESP_OK;
}
void bootloader_common_vddsdio_configure(void)
{
#if CONFIG_BOOTLOADER_VDDSDIO_BOOST_1_9V
rtc_vddsdio_config_t cfg = rtc_vddsdio_get_config();
if (cfg.enable == 1 && cfg.tieh == RTC_VDDSDIO_TIEH_1_8V) { // VDDSDIO regulator is enabled @ 1.8V
cfg.drefh = 3;
cfg.drefm = 3;
cfg.drefl = 3;
cfg.force = 1;
rtc_vddsdio_set_config(cfg);
ets_delay_us(10); // wait for regulator to become stable
}
#endif // CONFIG_BOOTLOADER_VDDSDIO_BOOST
}
#ifdef CONFIG_IDF_TARGET_ESP32
uint8_t bootloader_common_get_chip_revision(void)
{
uint8_t eco_bit0, eco_bit1, eco_bit2;
eco_bit0 = (REG_READ(EFUSE_BLK0_RDATA3_REG) & 0xF000) >> 15;
eco_bit1 = (REG_READ(EFUSE_BLK0_RDATA5_REG) & 0x100000) >> 20;
eco_bit2 = (REG_READ(APB_CTRL_DATE_REG) & 0x80000000) >> 31;
uint32_t combine_value = (eco_bit2 << 2) | (eco_bit1 << 1) | eco_bit0;
uint8_t chip_ver = 0;
switch (combine_value) {
case 0:
chip_ver = 0;
break;
case 1:
chip_ver = 1;
break;
case 3:
chip_ver = 2;
break;
case 7:
chip_ver = 3;
break;
default:
chip_ver = 0;
break;
}
return chip_ver;
}
#endif
esp_err_t bootloader_common_check_chip_validity(const esp_image_header_t* img_hdr)
{
esp_err_t err = ESP_OK;
esp_chip_id_t chip_id = CONFIG_IDF_FIRMWARE_CHIP_ID;
if (chip_id != img_hdr->chip_id) {
ESP_LOGE(TAG, "mismatch chip ID, expect %d, found %d", chip_id, img_hdr->chip_id);
err = ESP_FAIL;
}
uint8_t revision = bootloader_common_get_chip_revision();
if (revision < img_hdr->min_chip_rev) {
ESP_LOGE(TAG, "can't run on lower chip revision, expect %d, found %d", revision, img_hdr->min_chip_rev);
err = ESP_FAIL;
} else if (revision != img_hdr->min_chip_rev) {
ESP_LOGI(TAG, "mismatch chip revision, expect %d, found %d", revision, img_hdr->min_chip_rev);
}
return err;
}
#if defined( CONFIG_BOOTLOADER_SKIP_VALIDATE_IN_DEEP_SLEEP ) || defined( CONFIG_BOOTLOADER_CUSTOM_RESERVE_RTC )
rtc_retain_mem_t *const rtc_retain_mem = (rtc_retain_mem_t *)(SOC_RTC_DRAM_HIGH - sizeof(rtc_retain_mem_t));
static bool check_rtc_retain_mem(void)
{
return crc32_le(UINT32_MAX, (uint8_t*)rtc_retain_mem, sizeof(rtc_retain_mem_t) - sizeof(rtc_retain_mem->crc)) == rtc_retain_mem->crc && rtc_retain_mem->crc != UINT32_MAX;
}
static void update_rtc_retain_mem_crc(void)
{
rtc_retain_mem->crc = crc32_le(UINT32_MAX, (uint8_t*)rtc_retain_mem, sizeof(rtc_retain_mem_t) - sizeof(rtc_retain_mem->crc));
}
void bootloader_common_reset_rtc_retain_mem(void)
{
memset(rtc_retain_mem, 0, sizeof(rtc_retain_mem_t));
}
uint16_t bootloader_common_get_rtc_retain_mem_reboot_counter(void)
{
if (check_rtc_retain_mem()) {
return rtc_retain_mem->reboot_counter;
}
return 0;
}
esp_partition_pos_t* bootloader_common_get_rtc_retain_mem_partition(void)
{
if (check_rtc_retain_mem()) {
return &rtc_retain_mem->partition;
}
return NULL;
}
void bootloader_common_update_rtc_retain_mem(esp_partition_pos_t* partition, bool reboot_counter)
{
if (reboot_counter) {
if (!check_rtc_retain_mem()) {
bootloader_common_reset_rtc_retain_mem();
}
if (++rtc_retain_mem->reboot_counter == 0) {
// do not allow to overflow. Stop it.
--rtc_retain_mem->reboot_counter;
}
}
if (partition != NULL) {
rtc_retain_mem->partition.offset = partition->offset;
rtc_retain_mem->partition.size = partition->size;
}
update_rtc_retain_mem_crc();
}
rtc_retain_mem_t* bootloader_common_get_rtc_retain_mem(void)
{
return rtc_retain_mem;
}
#endif