esp-idf/components/bootloader_support/src/bootloader_common.c

260 lines
9.4 KiB
C
Raw Normal View History

// Copyright 2018 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdbool.h>
#include <assert.h>
#include "string.h"
#include "sdkconfig.h"
#include "esp_err.h"
#include "esp_log.h"
#include "esp32/rom/spi_flash.h"
#include "esp32/rom/crc.h"
#include "esp32/rom/ets_sys.h"
#include "esp32/rom/gpio.h"
#include "esp_secure_boot.h"
#include "esp_flash_partitions.h"
#include "bootloader_flash.h"
#include "bootloader_common.h"
#include "soc/gpio_periph.h"
global: move the soc component out of the common list This MR removes the common dependency from every IDF components to the SOC component. Currently, in the ``idf_functions.cmake`` script, we include the header path of SOC component by default for all components. But for better code organization (or maybe also benifits to the compiling speed), we may remove the dependency to SOC components for most components except the driver and kernel related components. In CMAKE, we have two kinds of header visibilities (set by include path visibility): (Assume component A --(depends on)--> B, B is the current component) 1. public (``COMPONENT_ADD_INCLUDEDIRS``): means this path is visible to other depending components (A) (visible to A and B) 2. private (``COMPONENT_PRIV_INCLUDEDIRS``): means this path is only visible to source files inside the component (visible to B only) and we have two kinds of depending ways: (Assume component A --(depends on)--> B --(depends on)--> C, B is the current component) 1. public (```COMPONENT_REQUIRES```): means B can access to public include path of C. All other components rely on you (A) will also be available for the public headers. (visible to A, B) 2. private (``COMPONENT_PRIV_REQUIRES``): means B can access to public include path of C, but don't propagate this relation to other components (A). (visible to B) 1. remove the common requirement in ``idf_functions.cmake``, this makes the SOC components invisible to all other components by default. 2. if a component (for example, DRIVER) really needs the dependency to SOC, add a private dependency to SOC for it. 3. some other components that don't really depends on the SOC may still meet some errors saying "can't find header soc/...", this is because it's depended component (DRIVER) incorrectly include the header of SOC in its public headers. Moving all this kind of #include into source files, or private headers 4. Fix the include requirements for some file which miss sufficient #include directives. (Previously they include some headers by the long long long header include link) This is a breaking change. Previous code may depends on the long include chain. You may need to include the following headers for some files after this commit: - soc/soc.h - soc/soc_memory_layout.h - driver/gpio.h - esp_sleep.h The major broken include chain includes: 1. esp_system.h no longer includes esp_sleep.h. The latter includes driver/gpio.h and driver/touch_pad.h. 2. ets_sys.h no longer includes soc/soc.h 3. freertos/portmacro.h no longer includes soc/soc_memory_layout.h some peripheral headers no longer includes their hw related headers, e.g. rom/gpio.h no longer includes soc/gpio_pins.h and soc/gpio_reg.h BREAKING CHANGE
2019-04-03 01:17:38 -04:00
#include "soc/efuse_reg.h"
#include "esp_image_format.h"
#include "bootloader_sha.h"
#include "sys/param.h"
#define ESP_PARTITION_HASH_LEN 32 /* SHA-256 digest length */
static const char* TAG = "boot_comm";
uint32_t bootloader_common_ota_select_crc(const esp_ota_select_entry_t *s)
{
return crc32_le(UINT32_MAX, (uint8_t*)&s->ota_seq, 4);
}
bool bootloader_common_ota_select_invalid(const esp_ota_select_entry_t *s)
{
return s->ota_seq == UINT32_MAX || s->ota_state == ESP_OTA_IMG_INVALID || s->ota_state == ESP_OTA_IMG_ABORTED;
}
bool bootloader_common_ota_select_valid(const esp_ota_select_entry_t *s)
{
return bootloader_common_ota_select_invalid(s) == false && s->crc == bootloader_common_ota_select_crc(s);
}
esp_comm_gpio_hold_t bootloader_common_check_long_hold_gpio(uint32_t num_pin, uint32_t delay_sec)
{
gpio_pad_select_gpio(num_pin);
if (GPIO_PIN_MUX_REG[num_pin]) {
PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[num_pin]);
}
gpio_pad_pullup(num_pin);
uint32_t tm_start = esp_log_early_timestamp();
if (GPIO_INPUT_GET(num_pin) == 1) {
return GPIO_NOT_HOLD;
}
do {
if (GPIO_INPUT_GET(num_pin) != 0) {
return GPIO_SHORT_HOLD;
}
} while (delay_sec > ((esp_log_early_timestamp() - tm_start) / 1000L));
return GPIO_LONG_HOLD;
}
// Search for a label in the list. list = "nvs1, nvs2, otadata, nvs"; label = "nvs".
bool bootloader_common_label_search(const char *list, char *label)
{
if (list == NULL || label == NULL) {
return false;
}
const char *sub_list_start_like_label = strstr(list, label);
while (sub_list_start_like_label != NULL) {
// ["," or " "] + label + ["," or " " or "\0"]
// first character before the label found there must be a delimiter ["," or " "].
int idx_first = sub_list_start_like_label - list;
if (idx_first == 0 || (idx_first != 0 && (list[idx_first - 1] == ',' || list[idx_first - 1] == ' '))) {
// next character after the label found there must be a delimiter ["," or " " or "\0"].
int len_label = strlen(label);
if (sub_list_start_like_label[len_label] == 0 ||
sub_list_start_like_label[len_label] == ',' ||
sub_list_start_like_label[len_label] == ' ') {
return true;
}
}
// [start_delim] + label + [end_delim] was not found.
// Position is moving to next delimiter if it is not the end of list.
int pos_delim = strcspn(sub_list_start_like_label, ", ");
if (pos_delim == strlen(sub_list_start_like_label)) {
break;
}
sub_list_start_like_label = strstr(&sub_list_start_like_label[pos_delim], label);
}
return false;
}
bool bootloader_common_erase_part_type_data(const char *list_erase, bool ota_data_erase)
{
const esp_partition_info_t *partitions;
const char *marker;
esp_err_t err;
int num_partitions;
bool ret = true;
partitions = bootloader_mmap(ESP_PARTITION_TABLE_OFFSET, ESP_PARTITION_TABLE_MAX_LEN);
if (!partitions) {
ESP_LOGE(TAG, "bootloader_mmap(0x%x, 0x%x) failed", ESP_PARTITION_TABLE_OFFSET, ESP_PARTITION_TABLE_MAX_LEN);
return false;
}
ESP_LOGD(TAG, "mapped partition table 0x%x at 0x%x", ESP_PARTITION_TABLE_OFFSET, (intptr_t)partitions);
err = esp_partition_table_verify(partitions, true, &num_partitions);
if (err != ESP_OK) {
ESP_LOGE(TAG, "Failed to verify partition table");
ret = false;
} else {
ESP_LOGI(TAG, "## Label Usage Offset Length Cleaned");
for (int i = 0; i < num_partitions; i++) {
const esp_partition_info_t *partition = &partitions[i];
char label[sizeof(partition->label) + 1] = {0};
if (partition->type == PART_TYPE_DATA) {
bool fl_ota_data_erase = false;
if (ota_data_erase == true && partition->subtype == PART_SUBTYPE_DATA_OTA) {
fl_ota_data_erase = true;
}
// partition->label is not null-terminated string.
strncpy(label, (char *)&partition->label, sizeof(label) - 1);
if (fl_ota_data_erase == true || (bootloader_common_label_search(list_erase, label) == true)) {
err = bootloader_flash_erase_range(partition->pos.offset, partition->pos.size);
if (err != ESP_OK) {
ret = false;
marker = "err";
} else {
marker = "yes";
}
} else {
marker = "no";
}
ESP_LOGI(TAG, "%2d %-16s data %08x %08x [%s]", i, partition->label,
partition->pos.offset, partition->pos.size, marker);
}
}
}
bootloader_munmap(partitions);
return ret;
}
esp_err_t bootloader_common_get_sha256_of_partition (uint32_t address, uint32_t size, int type, uint8_t *out_sha_256)
{
if (out_sha_256 == NULL || size == 0) {
return ESP_ERR_INVALID_ARG;
}
if (type == PART_TYPE_APP) {
const esp_partition_pos_t partition_pos = {
.offset = address,
.size = size,
};
esp_image_metadata_t data;
// Function esp_image_verify() verifies and fills the structure data.
// here important to get: image_digest, image_len, hash_appended.
if (esp_image_verify(ESP_IMAGE_VERIFY_SILENT, &partition_pos, &data) != ESP_OK) {
return ESP_ERR_IMAGE_INVALID;
}
if (data.image.hash_appended) {
memcpy(out_sha_256, data.image_digest, ESP_PARTITION_HASH_LEN);
return ESP_OK;
}
// If image doesn't have a appended hash then hash calculates for entire image.
size = data.image_len;
}
// If image is type by data then hash is calculated for entire image.
const void *partition_bin = bootloader_mmap(address, size);
if (partition_bin == NULL) {
ESP_LOGE(TAG, "bootloader_mmap(0x%x, 0x%x) failed", address, size);
return ESP_FAIL;
}
bootloader_sha256_handle_t sha_handle = bootloader_sha256_start();
if (sha_handle == NULL) {
bootloader_munmap(partition_bin);
return ESP_ERR_NO_MEM;
}
bootloader_sha256_data(sha_handle, partition_bin, size);
bootloader_sha256_finish(sha_handle, out_sha_256);
bootloader_munmap(partition_bin);
return ESP_OK;
}
int bootloader_common_select_otadata(const esp_ota_select_entry_t *two_otadata, bool *valid_two_otadata, bool max)
{
if (two_otadata == NULL || valid_two_otadata == NULL) {
return -1;
}
int active_otadata = -1;
if (valid_two_otadata[0] && valid_two_otadata[1]) {
int condition = (max == true) ? MAX(two_otadata[0].ota_seq, two_otadata[1].ota_seq) : MIN(two_otadata[0].ota_seq, two_otadata[1].ota_seq);
if (condition == two_otadata[0].ota_seq) {
active_otadata = 0;
} else {
active_otadata = 1;
}
ESP_LOGD(TAG, "Both OTA copies are valid");
} else {
for (int i = 0; i < 2; ++i) {
if (valid_two_otadata[i]) {
active_otadata = i;
ESP_LOGD(TAG, "Only otadata[%d] is valid", i);
break;
}
}
}
return active_otadata;
}
int bootloader_common_get_active_otadata(esp_ota_select_entry_t *two_otadata)
{
if (two_otadata == NULL) {
return -1;
}
bool valid_two_otadata[2];
valid_two_otadata[0] = bootloader_common_ota_select_valid(&two_otadata[0]);
valid_two_otadata[1] = bootloader_common_ota_select_valid(&two_otadata[1]);
return bootloader_common_select_otadata(two_otadata, valid_two_otadata, true);
}
esp_err_t bootloader_common_get_partition_description(const esp_partition_pos_t *partition, esp_app_desc_t *app_desc)
{
if (partition == NULL || app_desc == NULL || partition->offset == 0) {
return ESP_ERR_INVALID_ARG;
}
const uint8_t *image = bootloader_mmap(partition->offset, partition->size);
if (image == NULL) {
ESP_LOGE(TAG, "bootloader_mmap(0x%x, 0x%x) failed", partition->offset, partition->size);
return ESP_FAIL;
}
memcpy(app_desc, image + sizeof(esp_image_header_t) + sizeof(esp_image_segment_header_t), sizeof(esp_app_desc_t));
bootloader_munmap(image);
if (app_desc->magic_word != ESP_APP_DESC_MAGIC_WORD) {
return ESP_ERR_NOT_FOUND;
}
return ESP_OK;
}