esp-idf/components/hal/spi_slave_hd_hal.c

405 lines
15 KiB
C
Raw Normal View History

// Copyright 2015-2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// The HAL layer for SPI Slave HD
#include <string.h>
#include "esp_types.h"
#include "esp_attr.h"
#include "esp_err.h"
#include "sdkconfig.h"
#include "soc/spi_periph.h"
#include "soc/lldesc.h"
#include "hal/spi_slave_hd_hal.h"
#include "soc/soc_caps.h"
2020-09-08 05:05:49 -04:00
//This GDMA related part will be introduced by GDMA dedicated APIs in the future. Here we temporarily use macros.
#if SOC_GDMA_SUPPORTED
#include "soc/gdma_struct.h"
#include "hal/gdma_ll.h"
#define spi_dma_ll_rx_reset(dev) gdma_ll_rx_reset_channel(&GDMA, SOC_GDMA_SPI3_DMA_CHANNEL)
#define spi_dma_ll_tx_reset(dev) gdma_ll_tx_reset_channel(&GDMA, SOC_GDMA_SPI3_DMA_CHANNEL);
#define spi_dma_ll_rx_enable_burst_data(dev, enable) gdma_ll_rx_enable_data_burst(&GDMA, SOC_GDMA_SPI3_DMA_CHANNEL, enable);
#define spi_dma_ll_tx_enable_burst_data(dev, enable) gdma_ll_tx_enable_data_burst(&GDMA, SOC_GDMA_SPI3_DMA_CHANNEL, enable);
#define spi_dma_ll_rx_enable_burst_desc(dev, enable) gdma_ll_rx_enable_descriptor_burst(&GDMA, SOC_GDMA_SPI3_DMA_CHANNEL, enable);
#define spi_dma_ll_tx_enable_burst_desc(dev, enable) gdma_ll_tx_enable_descriptor_burst(&GDMA, SOC_GDMA_SPI3_DMA_CHANNEL, enable);
#define spi_dma_ll_enable_out_auto_wrback(dev, enable) gdma_ll_tx_enable_auto_write_back(&GDMA, SOC_GDMA_SPI3_DMA_CHANNEL, enable);
#define spi_dma_ll_set_out_eof_generation(dev, enable) gdma_ll_tx_set_eof_mode(&GDMA, SOC_GDMA_SPI3_DMA_CHANNEL, enable);
#define spi_dma_ll_rx_start(dev, addr) do {\
gdma_ll_rx_set_desc_addr(&GDMA, SOC_GDMA_SPI3_DMA_CHANNEL, (uint32_t)addr);\
gdma_ll_rx_start(&GDMA, SOC_GDMA_SPI3_DMA_CHANNEL);\
} while (0)
#define spi_dma_ll_tx_start(dev, addr) do {\
gdma_ll_tx_set_desc_addr(&GDMA, SOC_GDMA_SPI3_DMA_CHANNEL, (uint32_t)addr);\
gdma_ll_tx_start(&GDMA, SOC_GDMA_SPI3_DMA_CHANNEL);\
} while (0)
#endif
static void s_spi_slave_hd_hal_dma_init_config(const spi_slave_hd_hal_context_t *hal)
{
spi_dma_ll_rx_enable_burst_data(hal->dma_in, 1);
spi_dma_ll_tx_enable_burst_data(hal->dma_out, 1);
spi_dma_ll_rx_enable_burst_desc(hal->dma_in, 1);
spi_dma_ll_tx_enable_burst_desc(hal->dma_out, 1);
spi_dma_ll_enable_out_auto_wrback(hal->dma_out, 1);
}
void spi_slave_hd_hal_init(spi_slave_hd_hal_context_t *hal, const spi_slave_hd_hal_config_t *hal_config)
{
spi_dev_t* hw = SPI_LL_GET_HW(hal_config->host_id);
hal->dev = hw;
hal->dma_in = hal_config->dma_in;
hal->dma_out = hal_config->dma_out;
hal->append_mode = hal_config->append_mode;
hal->rx_cur_desc = hal->dmadesc_rx;
hal->tx_cur_desc = hal->dmadesc_tx;
//Configure slave
s_spi_slave_hd_hal_dma_init_config(hal);
spi_ll_slave_hd_init(hw);
spi_ll_set_addr_bitlen(hw, hal_config->address_bits);
spi_ll_set_command_bitlen(hw, hal_config->command_bits);
spi_ll_set_dummy(hw, hal_config->dummy_bits);
spi_ll_set_rx_lsbfirst(hw, hal_config->rx_lsbfirst);
spi_ll_set_tx_lsbfirst(hw, hal_config->tx_lsbfirst);
spi_ll_slave_set_mode(hw, hal_config->mode, (hal_config->dma_chan != 0));
spi_ll_disable_intr(hw, UINT32_MAX);
spi_ll_clear_intr(hw, UINT32_MAX);
if (!hal_config->append_mode) {
spi_ll_set_intr(hw, SPI_LL_INTR_CMD7 | SPI_LL_INTR_CMD8);
bool workaround_required = false;
if (!spi_ll_get_intr(hw, SPI_LL_INTR_CMD7)) {
hal->intr_not_triggered |= SPI_EV_RECV;
workaround_required = true;
}
if (!spi_ll_get_intr(hw, SPI_LL_INTR_CMD8)) {
hal->intr_not_triggered |= SPI_EV_SEND;
workaround_required = true;
}
if (workaround_required) {
//Workaround if the previous interrupts are not writable
spi_ll_set_intr(hw, SPI_LL_INTR_TRANS_DONE);
}
}
#if CONFIG_IDF_TARGET_ESP32S2
//Append mode is only supported on ESP32S2 now
else {
spi_ll_enable_intr(hw, SPI_LL_INTR_OUT_EOF | SPI_LL_INTR_CMD7);
}
#endif
spi_ll_slave_hd_set_len_cond(hw, SPI_LL_TRANS_LEN_COND_WRBUF |
SPI_LL_TRANS_LEN_COND_WRDMA |
SPI_LL_TRANS_LEN_COND_RDBUF |
SPI_LL_TRANS_LEN_COND_RDDMA);
spi_ll_slave_set_seg_mode(hal->dev, true);
}
uint32_t spi_salve_hd_hal_get_max_bus_size(spi_slave_hd_hal_context_t *hal)
{
return hal->dma_desc_num * LLDESC_MAX_NUM_PER_DESC;
}
uint32_t spi_slave_hd_hal_get_total_desc_size(spi_slave_hd_hal_context_t *hal, uint32_t bus_size)
{
//See how many dma descriptors we need
int dma_desc_ct = (bus_size + LLDESC_MAX_NUM_PER_DESC - 1) / LLDESC_MAX_NUM_PER_DESC;
if (dma_desc_ct == 0) {
dma_desc_ct = 1; //default to 4k when max is not given
}
hal->dma_desc_num = dma_desc_ct;
return hal->dma_desc_num * sizeof(spi_slave_hd_hal_desc_append_t);
}
void spi_slave_hd_hal_rxdma(spi_slave_hd_hal_context_t *hal, uint8_t *out_buf, size_t len)
{
lldesc_setup_link(&hal->dmadesc_rx->desc, out_buf, len, true);
spi_ll_dma_rx_fifo_reset(hal->dev);
spi_dma_ll_rx_reset(hal->dma_in);
2020-09-08 05:05:49 -04:00
spi_ll_slave_reset(hal->dev);
spi_ll_infifo_full_clr(hal->dev);
spi_ll_clear_intr(hal->dev, SPI_LL_INTR_CMD7);
2020-09-08 05:05:49 -04:00
spi_ll_slave_set_rx_bitlen(hal->dev, len * 8);
spi_ll_dma_rx_enable(hal->dev, 1);
spi_dma_ll_rx_start(hal->dma_in, &hal->dmadesc_rx->desc);
}
void spi_slave_hd_hal_txdma(spi_slave_hd_hal_context_t *hal, uint8_t *data, size_t len)
{
lldesc_setup_link(&hal->dmadesc_tx->desc, data, len, false);
spi_ll_dma_tx_fifo_reset(hal->dev);
spi_dma_ll_tx_reset(hal->dma_out);
2020-09-08 05:05:49 -04:00
spi_ll_slave_reset(hal->dev);
spi_ll_outfifo_empty_clr(hal->dev);
spi_ll_clear_intr(hal->dev, SPI_LL_INTR_CMD8);
spi_ll_dma_tx_enable(hal->dev, 1);
spi_dma_ll_tx_start(hal->dma_out, &hal->dmadesc_tx->desc);
}
static spi_ll_intr_t get_event_intr(spi_slave_hd_hal_context_t *hal, spi_event_t ev)
{
spi_ll_intr_t intr = 0;
#if CONFIG_IDF_TARGET_ESP32S2
//Append mode is only supported on ESP32S2 now
if ((ev & SPI_EV_SEND) && hal->append_mode) intr |= SPI_LL_INTR_OUT_EOF;
#endif
if ((ev & SPI_EV_SEND) && !hal->append_mode) intr |= SPI_LL_INTR_CMD8;
if (ev & SPI_EV_RECV) intr |= SPI_LL_INTR_CMD7;
if (ev & SPI_EV_BUF_TX) intr |= SPI_LL_INTR_RDBUF;
if (ev & SPI_EV_BUF_RX) intr |= SPI_LL_INTR_WRBUF;
if (ev & SPI_EV_CMD9) intr |= SPI_LL_INTR_CMD9;
if (ev & SPI_EV_CMDA) intr |= SPI_LL_INTR_CMDA;
if (ev & SPI_EV_TRANS) intr |= SPI_LL_INTR_TRANS_DONE;
return intr;
}
bool spi_slave_hd_hal_check_clear_event(spi_slave_hd_hal_context_t *hal, spi_event_t ev)
{
spi_ll_intr_t intr = get_event_intr(hal, ev);
if (spi_ll_get_intr(hal->dev, intr)) {
spi_ll_clear_intr(hal->dev, intr);
return true;
}
return false;
}
bool spi_slave_hd_hal_check_disable_event(spi_slave_hd_hal_context_t *hal, spi_event_t ev)
{
//The trans_done interrupt is used for the workaround when some interrupt is not writable
spi_ll_intr_t intr = get_event_intr(hal, ev);
// Workaround for these interrupts not writable
uint32_t missing_intr = hal->intr_not_triggered & ev;
if (missing_intr) {
if ((missing_intr & SPI_EV_RECV) && spi_ll_get_intr(hal->dev, SPI_LL_INTR_CMD7)) {
hal->intr_not_triggered &= ~SPI_EV_RECV;
}
if ((missing_intr & SPI_EV_SEND) && spi_ll_get_intr(hal->dev, SPI_LL_INTR_CMD8)) {
hal->intr_not_triggered &= ~SPI_EV_SEND;
}
if (spi_ll_get_intr(hal->dev, SPI_LL_INTR_TRANS_DONE)) {
spi_ll_disable_intr(hal->dev, SPI_LL_INTR_TRANS_DONE);
}
}
if (spi_ll_get_intr(hal->dev, intr)) {
spi_ll_disable_intr(hal->dev, intr);
return true;
}
return false;
}
void spi_slave_hd_hal_enable_event_intr(spi_slave_hd_hal_context_t* hal, spi_event_t ev)
{
spi_ll_intr_t intr = get_event_intr(hal, ev);
spi_ll_enable_intr(hal->dev, intr);
}
void spi_slave_hd_hal_invoke_event_intr(spi_slave_hd_hal_context_t* hal, spi_event_t ev)
{
spi_ll_intr_t intr = get_event_intr(hal, ev);
// Workaround for these interrupts not writable
if (hal->intr_not_triggered & ev & (SPI_EV_RECV | SPI_EV_SEND)) {
intr |= SPI_LL_INTR_TRANS_DONE;
}
spi_ll_enable_intr(hal->dev, intr);
}
void spi_slave_hd_hal_read_buffer(spi_slave_hd_hal_context_t *hal, int addr, uint8_t *out_data, size_t len)
{
spi_ll_read_buffer_byte(hal->dev, addr, out_data, len);
}
void spi_slave_hd_hal_write_buffer(spi_slave_hd_hal_context_t *hal, int addr, uint8_t *data, size_t len)
{
spi_ll_write_buffer_byte(hal->dev, addr, data, len);
}
int spi_slave_hd_hal_get_last_addr(spi_slave_hd_hal_context_t *hal)
{
return spi_ll_slave_hd_get_last_addr(hal->dev);
}
int spi_slave_hd_hal_get_rxlen(spi_slave_hd_hal_context_t *hal)
{
//this is by -byte
return spi_ll_slave_get_rx_byte_len(hal->dev);
}
int spi_slave_hd_hal_rxdma_seg_get_len(spi_slave_hd_hal_context_t *hal)
{
lldesc_t* desc = &hal->dmadesc_rx->desc;
return lldesc_get_received_len(desc, NULL);
}
bool spi_slave_hd_hal_get_tx_finished_trans(spi_slave_hd_hal_context_t *hal, void **out_trans)
{
if (!hal->tx_dma_head || hal->tx_dma_head->desc.owner) {
return false;
}
*out_trans = hal->tx_dma_head->arg;
hal->tx_recycled_desc_cnt++;
hal->tx_dma_head = (spi_slave_hd_hal_desc_append_t *)STAILQ_NEXT(&hal->tx_dma_head->desc, qe);
return true;
}
bool spi_slave_hd_hal_get_rx_finished_trans(spi_slave_hd_hal_context_t *hal, void **out_trans, size_t *out_len)
{
if (!hal->rx_dma_head || hal->rx_dma_head->desc.owner) {
return false;
}
*out_trans = hal->rx_dma_head->arg;
*out_len = hal->rx_dma_head->desc.length;
hal->rx_recycled_desc_cnt++;
hal->rx_dma_head = (spi_slave_hd_hal_desc_append_t *)STAILQ_NEXT(&hal->rx_dma_head->desc, qe);
return true;
}
#if CONFIG_IDF_TARGET_ESP32S2
//Append mode is only supported on ESP32S2 now
static void spi_slave_hd_hal_link_append_desc(spi_slave_hd_hal_desc_append_t *dmadesc, const void *data, int len, bool isrx, void *arg)
{
assert(len <= LLDESC_MAX_NUM_PER_DESC); //TODO: Add support for transaction with length larger than 4092, IDF-2660
int n = 0;
while (len) {
int dmachunklen = len;
if (dmachunklen > LLDESC_MAX_NUM_PER_DESC) {
dmachunklen = LLDESC_MAX_NUM_PER_DESC;
}
if (isrx) {
//Receive needs DMA length rounded to next 32-bit boundary
dmadesc[n].desc.size = (dmachunklen + 3) & (~3);
dmadesc[n].desc.length = (dmachunklen + 3) & (~3);
} else {
dmadesc[n].desc.size = dmachunklen;
dmadesc[n].desc.length = dmachunklen;
}
dmadesc[n].desc.buf = (uint8_t *)data;
dmadesc[n].desc.eof = 0;
dmadesc[n].desc.sosf = 0;
dmadesc[n].desc.owner = 1;
dmadesc[n].desc.qe.stqe_next = &dmadesc[n + 1].desc;
dmadesc[n].arg = arg;
len -= dmachunklen;
data += dmachunklen;
n++;
}
dmadesc[n - 1].desc.eof = 1; //Mark last DMA desc as end of stream.
dmadesc[n - 1].desc.qe.stqe_next = NULL;
}
esp_err_t spi_slave_hd_hal_txdma_append(spi_slave_hd_hal_context_t *hal, uint8_t *data, size_t len, void *arg)
{
//Check if there are enough available DMA descriptors for software to use
int num_required = (len + LLDESC_MAX_NUM_PER_DESC - 1) / LLDESC_MAX_NUM_PER_DESC;
int not_recycled_desc_num = hal->tx_used_desc_cnt - hal->tx_recycled_desc_cnt;
int available_desc_num = hal->dma_desc_num - not_recycled_desc_num;
if (num_required > available_desc_num) {
return ESP_ERR_INVALID_STATE;
}
spi_slave_hd_hal_link_append_desc(hal->tx_cur_desc, data, len, false, arg);
if (!hal->tx_dma_head) {
//start a new link
hal->tx_dma_head = hal->tx_cur_desc;
hal->tx_dma_tail = hal->tx_cur_desc;
spi_dma_ll_tx_reset(hal->dma_out);
spi_ll_outfifo_empty_clr(hal->dev);
spi_ll_clear_intr(hal->dev, SPI_LL_INTR_OUT_EOF);
spi_ll_dma_tx_enable(hal->dev, 1);
spi_dma_ll_tx_start(hal->dma_out, &hal->tx_dma_head->desc);
} else {
//there is already a link
STAILQ_NEXT(&hal->tx_dma_tail->desc, qe) = &hal->tx_cur_desc->desc;
hal->tx_dma_tail = hal->tx_cur_desc;
spi_dma_ll_tx_restart(hal->dma_out);
}
//Move the current descriptor pointer according to the number of the linked descriptors
for (int i = 0; i < num_required; i++) {
hal->tx_used_desc_cnt++;
hal->tx_cur_desc++;
if (hal->tx_cur_desc == hal->dmadesc_tx + hal->dma_desc_num) {
hal->tx_cur_desc = hal->dmadesc_tx;
}
}
return ESP_OK;
}
esp_err_t spi_slave_hd_hal_rxdma_append(spi_slave_hd_hal_context_t *hal, uint8_t *data, size_t len, void *arg)
{
//Check if there are enough available dma descriptors for software to use
int num_required = (len + LLDESC_MAX_NUM_PER_DESC - 1) / LLDESC_MAX_NUM_PER_DESC;
int not_recycled_desc_num = hal->rx_used_desc_cnt - hal->rx_recycled_desc_cnt;
int available_desc_num = hal->dma_desc_num - not_recycled_desc_num;
if (num_required > available_desc_num) {
return ESP_ERR_INVALID_STATE;
}
spi_slave_hd_hal_link_append_desc(hal->rx_cur_desc, data, len, false, arg);
if (!hal->rx_dma_head) {
//start a new link
hal->rx_dma_head = hal->rx_cur_desc;
hal->rx_dma_tail = hal->rx_cur_desc;
spi_dma_ll_rx_reset(hal->dma_in);
spi_ll_infifo_full_clr(hal->dev);
spi_ll_clear_intr(hal->dev, SPI_LL_INTR_CMD7);
spi_ll_dma_rx_enable(hal->dev, 1);
spi_dma_ll_rx_start(hal->dma_in, &hal->rx_dma_head->desc);
} else {
//there is already a link
STAILQ_NEXT(&hal->rx_dma_tail->desc, qe) = &hal->rx_cur_desc->desc;
hal->rx_dma_tail = hal->rx_cur_desc;
spi_dma_ll_rx_restart(hal->dma_in);
}
//Move the current descriptor pointer according to the number of the linked descriptors
for (int i = 0; i < num_required; i++) {
hal->rx_used_desc_cnt++;
hal->rx_cur_desc++;
if (hal->rx_cur_desc == hal->dmadesc_rx + hal->dma_desc_num) {
hal->rx_cur_desc = hal->dmadesc_rx;
}
}
return ESP_OK;
}
#endif //#if CONFIG_IDF_TARGET_ESP32S2