esp-idf/components/spi_flash/test/test_spi_flash.c

358 lines
11 KiB
C
Raw Normal View History

#include <stdio.h>
#include <sys/param.h>
#include <freertos/FreeRTOS.h>
#include <freertos/task.h>
#include <freertos/semphr.h>
#include <unity.h>
#include <esp_spi_flash.h>
#include <esp_attr.h>
#include "esp_intr_alloc.h"
#include "test_utils.h"
#include "ccomp_timer.h"
#include "esp_log.h"
#include "esp_rom_sys.h"
#include "esp_rom_spiflash.h"
#include "esp_timer.h"
#include "bootloader_flash.h" //for bootloader_flash_xmc_startup
2020-03-18 12:21:08 +08:00
#include "sdkconfig.h"
2022-01-18 10:32:56 +08:00
#if !TEMPORARY_DISABLED_FOR_TARGETS(ESP32C2)
// TODO: SPI_FLASH IDF-4025
struct flash_test_ctx {
uint32_t offset;
bool fail;
SemaphoreHandle_t done;
};
/* Base offset in flash for tests. */
static size_t start;
static void setup_tests(void)
{
if (start == 0) {
const esp_partition_t *part = get_test_data_partition();
start = part->address;
printf("Test data partition @ 0x%x\n", start);
}
}
static void flash_test_task(void *arg)
{
struct flash_test_ctx *ctx = (struct flash_test_ctx *) arg;
vTaskDelay(100 / portTICK_PERIOD_MS);
const uint32_t sector = start / SPI_FLASH_SEC_SIZE + ctx->offset;
printf("t%d\n", sector);
printf("es%d\n", sector);
if (spi_flash_erase_sector(sector) != ESP_OK) {
ctx->fail = true;
printf("Erase failed\r\n");
xSemaphoreGive(ctx->done);
vTaskDelete(NULL);
}
printf("ed%d\n", sector);
vTaskDelay(0 / portTICK_PERIOD_MS);
uint32_t val = 0xabcd1234;
for (uint32_t offset = 0; offset < SPI_FLASH_SEC_SIZE; offset += 4) {
if (spi_flash_write(sector * SPI_FLASH_SEC_SIZE + offset, (const uint8_t *) &val, 4) != ESP_OK) {
printf("Write failed at offset=%d\r\n", offset);
ctx->fail = true;
break;
}
}
printf("wd%d\n", sector);
vTaskDelay(0 / portTICK_PERIOD_MS);
uint32_t val_read;
for (uint32_t offset = 0; offset < SPI_FLASH_SEC_SIZE; offset += 4) {
if (spi_flash_read(sector * SPI_FLASH_SEC_SIZE + offset, (uint8_t *) &val_read, 4) != ESP_OK) {
printf("Read failed at offset=%d\r\n", offset);
ctx->fail = true;
break;
}
if (val_read != val) {
printf("Read invalid value=%08x at offset=%d\r\n", val_read, offset);
ctx->fail = true;
break;
}
}
printf("td%d\n", sector);
xSemaphoreGive(ctx->done);
vTaskDelete(NULL);
}
TEST_CASE("flash write and erase work both on PRO CPU and on APP CPU", "[spi_flash][ignore]")
{
setup_tests();
SemaphoreHandle_t done = xSemaphoreCreateCounting(4, 0);
struct flash_test_ctx ctx[] = {
{ .offset = 0x10 + 6, .done = done },
{ .offset = 0x10 + 7, .done = done },
{ .offset = 0x10 + 8, .done = done },
#ifndef CONFIG_FREERTOS_UNICORE
{ .offset = 0x10 + 9, .done = done }
#endif
};
xTaskCreatePinnedToCore(flash_test_task, "t0", 2048, &ctx[0], 3, NULL, 0);
xTaskCreatePinnedToCore(flash_test_task, "t1", 2048, &ctx[1], 3, NULL, tskNO_AFFINITY);
xTaskCreatePinnedToCore(flash_test_task, "t2", 2048, &ctx[2], 3, NULL, tskNO_AFFINITY);
#ifndef CONFIG_FREERTOS_UNICORE
xTaskCreatePinnedToCore(flash_test_task, "t3", 2048, &ctx[3], 3, NULL, 1);
#endif
const size_t task_count = sizeof(ctx)/sizeof(ctx[0]);
for (int i = 0; i < task_count; ++i) {
xSemaphoreTake(done, portMAX_DELAY);
TEST_ASSERT_FALSE(ctx[i].fail);
}
vSemaphoreDelete(done);
}
#if !TEMPORARY_DISABLED_FOR_TARGETS(ESP32S3)
// TODO ESP32-S3 IDF-2021
static const char TAG[] = "test_spi_flash";
typedef struct {
uint32_t us_start;
size_t len;
const char* name;
} time_meas_ctx_t;
static void time_measure_start(time_meas_ctx_t* ctx)
{
ctx->us_start = esp_timer_get_time();
ccomp_timer_start();
}
static uint32_t time_measure_end(time_meas_ctx_t* ctx)
{
uint32_t c_time_us = ccomp_timer_stop();
uint32_t time_us = esp_timer_get_time() - ctx->us_start;
ESP_LOGI(TAG, "%s: compensated: %.2lf kB/s, typical: %.2lf kB/s", ctx->name, ctx->len / (c_time_us/1000.), ctx->len / (time_us/1000.));
return ctx->len * 1000 / (c_time_us / 1000);
}
#define TEST_TIMES 20
#define TEST_SECTORS 4
static uint32_t measure_erase(const esp_partition_t* part)
{
const int total_len = SPI_FLASH_SEC_SIZE * TEST_SECTORS;
time_meas_ctx_t time_ctx = {.name = "erase", .len = total_len};
time_measure_start(&time_ctx);
esp_err_t err = spi_flash_erase_range(part->address, total_len);
TEST_ESP_OK(err);
return time_measure_end(&time_ctx);
}
// should called after measure_erase
static uint32_t measure_write(const char* name, const esp_partition_t* part, const uint8_t* data_to_write, int seg_len)
{
const int total_len = SPI_FLASH_SEC_SIZE;
time_meas_ctx_t time_ctx = {.name = name, .len = total_len * TEST_TIMES};
time_measure_start(&time_ctx);
for (int i = 0; i < TEST_TIMES; i ++) {
// Erase one time, but write 100 times the same data
size_t len = total_len;
int offset = 0;
while (len) {
int len_write = MIN(seg_len, len);
esp_err_t err = spi_flash_write(part->address + offset, data_to_write + offset, len_write);
TEST_ESP_OK(err);
offset += len_write;
len -= len_write;
}
}
return time_measure_end(&time_ctx);
}
static uint32_t measure_read(const char* name, const esp_partition_t* part, uint8_t* data_read, int seg_len)
{
const int total_len = SPI_FLASH_SEC_SIZE;
time_meas_ctx_t time_ctx = {.name = name, .len = total_len * TEST_TIMES};
time_measure_start(&time_ctx);
for (int i = 0; i < TEST_TIMES; i ++) {
size_t len = total_len;
int offset = 0;
while (len) {
int len_read = MIN(seg_len, len);
esp_err_t err = spi_flash_read(part->address + offset, data_read + offset, len_read);
TEST_ESP_OK(err);
offset += len_read;
len -= len_read;
}
}
return time_measure_end(&time_ctx);
}
#define MEAS_WRITE(n) (measure_write("write in "#n"-byte chunks", part, data_to_write, n))
#define MEAS_READ(n) (measure_read("read in "#n"-byte chunks", part, data_read, n))
TEST_CASE("Test spi_flash read/write performance", "[spi_flash]")
{
const esp_partition_t *part = get_test_data_partition();
const int total_len = SPI_FLASH_SEC_SIZE;
uint8_t *data_to_write = heap_caps_malloc(total_len, MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
uint8_t *data_read = heap_caps_malloc(total_len, MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
srand(777);
for (int i = 0; i < total_len; i++) {
data_to_write[i] = rand();
}
uint32_t erase_1 = measure_erase(part);
uint32_t speed_WR_4B = MEAS_WRITE(4);
uint32_t speed_RD_4B = MEAS_READ(4);
uint32_t erase_2 = measure_erase(part);
uint32_t speed_WR_2KB = MEAS_WRITE(2048);
uint32_t speed_RD_2KB = MEAS_READ(2048);
TEST_ASSERT_EQUAL_HEX8_ARRAY(data_to_write, data_read, total_len);
#define LOG_DATA(suffix) IDF_LOG_PERFORMANCE("FLASH_SPEED_BYTE_PER_SEC_LEGACY_"#suffix, "%d", speed_##suffix)
#define LOG_ERASE(var) IDF_LOG_PERFORMANCE("FLASH_SPEED_BYTE_PER_SEC_LEGACY_ERASE", "%d", var)
LOG_DATA(WR_4B);
LOG_DATA(RD_4B);
LOG_DATA(WR_2KB);
LOG_DATA(RD_2KB);
// Erase time may vary a lot, can increase threshold if this fails with a reasonable speed
LOG_ERASE(erase_1);
LOG_ERASE(erase_2);
free(data_to_write);
free(data_read);
}
#endif //!TEMPORARY_DISABLED_FOR_TARGETS(ESP32S3)
// TODO: This test is disabled on S3 with legacy impl - IDF-3505
#if !TEMPORARY_DISABLED_FOR_TARGETS(ESP32, ESP32S2, ESP32S3, ESP32C3)
#if portNUM_PROCESSORS > 1
TEST_CASE("spi_flash deadlock with high priority busy-waiting task", "[spi_flash][esp_flash]")
{
typedef struct {
QueueHandle_t queue;
volatile bool done;
} deadlock_test_arg_t;
/* Create two tasks: high-priority consumer on CPU0, low-priority producer on CPU1.
* Consumer polls the queue until it gets some data, then yields.
* Run flash operation on CPU0. Check that when IPC1 task blocks out the producer,
* the task which does flash operation does not get blocked by the consumer.
*/
void producer_task(void* varg)
{
int dummy = 0;
deadlock_test_arg_t* arg = (deadlock_test_arg_t*) varg;
while (!arg->done) {
xQueueSend(arg->queue, &dummy, 0);
vTaskDelay(1);
}
vTaskDelete(NULL);
}
void consumer_task(void* varg)
{
int dummy;
deadlock_test_arg_t* arg = (deadlock_test_arg_t*) varg;
while (!arg->done) {
if (xQueueReceive(arg->queue, &dummy, 0) == pdTRUE) {
vTaskDelay(1);
}
}
vTaskDelete(NULL);
}
deadlock_test_arg_t arg = {
.queue = xQueueCreate(32, sizeof(int)),
.done = false
};
TEST_ASSERT(xTaskCreatePinnedToCore(&producer_task, "producer", 4096, &arg, 5, NULL, 1));
TEST_ASSERT(xTaskCreatePinnedToCore(&consumer_task, "consumer", 4096, &arg, 10, NULL, 0));
for (int i = 0; i < 1000; i++) {
uint32_t dummy;
TEST_ESP_OK(spi_flash_read(0, &dummy, sizeof(dummy)));
}
arg.done = true;
vTaskDelay(5);
vQueueDelete(arg.queue);
/* Check that current task priority is still correct */
TEST_ASSERT_EQUAL_INT(uxTaskPriorityGet(NULL), UNITY_FREERTOS_PRIORITY);
}
#endif // portNUM_PROCESSORS > 1
2020-03-18 12:21:08 +08:00
#endif // !TEMPORARY_DISABLED_FOR_TARGETS(ESP32, ESP32S2, ESP32S3, ESP32C3)
2020-03-18 12:21:08 +08:00
TEST_CASE("WEL is cleared after boot", "[spi_flash]")
{
esp_rom_spiflash_chip_t *legacy_chip = &g_rom_flashchip;
2020-03-18 12:21:08 +08:00
uint32_t status;
esp_rom_spiflash_read_status(legacy_chip, &status);
2020-03-18 12:21:08 +08:00
TEST_ASSERT((status & 0x2) == 0);
}
#if CONFIG_ESPTOOLPY_FLASHMODE_QIO
// ISSI chip has its QE bit on other chips' BP4, which may get cleared by accident
TEST_CASE("rom unlock will not erase QE bit", "[spi_flash]")
{
esp_rom_spiflash_chip_t *legacy_chip = &g_rom_flashchip;
2020-03-18 12:21:08 +08:00
uint32_t status;
printf("dev_id: %08X \n", legacy_chip->device_id);
2020-03-18 12:21:08 +08:00
if (((legacy_chip->device_id >> 16) & 0xff) != 0x9D) {
2020-03-18 12:21:08 +08:00
TEST_IGNORE_MESSAGE("This test is only for ISSI chips. Ignore.");
}
bootloader_flash_unlock();
esp_rom_spiflash_read_status(legacy_chip, &status);
2020-03-18 12:21:08 +08:00
printf("status: %08x\n", status);
TEST_ASSERT(status & 0x40);
}
#endif
static IRAM_ATTR NOINLINE_ATTR void test_xmc_startup(void)
{
extern void spi_flash_disable_interrupts_caches_and_other_cpu(void);
extern void spi_flash_enable_interrupts_caches_and_other_cpu(void);
esp_err_t ret = ESP_OK;
spi_flash_disable_interrupts_caches_and_other_cpu();
ret = bootloader_flash_xmc_startup();
spi_flash_enable_interrupts_caches_and_other_cpu();
TEST_ASSERT_EQUAL(ESP_OK, ret);
}
TEST_CASE("bootloader_flash_xmc_startup can be called when cache disabled", "[spi_flash]")
{
test_xmc_startup();
}
2022-01-18 10:32:56 +08:00
#endif //#if !TEMPORARY_DISABLED_FOR_TARGETS(ESP32C2)