2019-04-17 08:19:44 -04:00
// Copyright 2015-2019 Espressif Systems (Shanghai) PTE LTD
2016-12-14 20:45:40 -05:00
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
# include <string.h>
# include "esp_types.h"
# include "esp_attr.h"
2019-03-26 04:30:43 -04:00
# include "esp_intr_alloc.h"
2016-12-14 20:45:40 -05:00
# include "esp_log.h"
# include "esp_err.h"
# include "malloc.h"
# include "freertos/FreeRTOS.h"
# include "freertos/semphr.h"
# include "freertos/xtensa_api.h"
# include "freertos/ringbuf.h"
2019-04-17 08:19:44 -04:00
# include "hal/uart_hal.h"
2019-05-13 06:02:45 -04:00
# include "soc/uart_periph.h"
2020-11-23 06:31:50 -05:00
# include "soc/rtc_cntl_reg.h"
2016-12-14 20:45:40 -05:00
# include "driver/uart.h"
# include "driver/gpio.h"
2018-05-03 04:41:10 -04:00
# include "driver/uart_select.h"
2019-04-17 08:19:44 -04:00
# include "driver/periph_ctrl.h"
2019-06-05 22:57:29 -04:00
# include "sdkconfig.h"
2020-06-19 00:00:58 -04:00
# include "esp_rom_gpio.h"
2019-08-26 05:14:15 -04:00
2019-06-05 22:57:29 -04:00
# if CONFIG_IDF_TARGET_ESP32
# include "esp32/clk.h"
2020-01-16 22:47:08 -05:00
# elif CONFIG_IDF_TARGET_ESP32S2
# include "esp32s2/clk.h"
2020-07-29 01:13:51 -04:00
# elif CONFIG_IDF_TARGET_ESP32S3
# include "esp32s3/clk.h"
2019-06-05 22:57:29 -04:00
# endif
2016-12-14 20:45:40 -05:00
2019-08-26 05:14:15 -04:00
# ifdef CONFIG_UART_ISR_IN_IRAM
# define UART_ISR_ATTR IRAM_ATTR
# else
# define UART_ISR_ATTR
# endif
2019-06-13 23:01:30 -04:00
2019-04-17 08:19:44 -04:00
# define XOFF (0x13)
# define XON (0x11)
2017-08-01 11:02:44 -04:00
2019-04-17 08:19:44 -04:00
static const char * UART_TAG = " uart " ;
2016-12-14 20:45:40 -05:00
# define UART_CHECK(a, str, ret_val) \
if ( ! ( a ) ) { \
ESP_LOGE ( UART_TAG , " %s(%d): %s " , __FUNCTION__ , __LINE__ , str ) ; \
return ( ret_val ) ; \
}
2020-03-27 04:20:21 -04:00
# define UART_EMPTY_THRESH_DEFAULT (10)
# define UART_FULL_THRESH_DEFAULT (120)
# define UART_TOUT_THRESH_DEFAULT (10)
# define UART_CLKDIV_FRAG_BIT_WIDTH (3)
# define UART_TX_IDLE_NUM_DEFAULT (0)
# define UART_PATTERN_DET_QLEN_DEFAULT (10)
2020-09-09 22:37:58 -04:00
# define UART_MIN_WAKEUP_THRESH (UART_LL_MIN_WAKEUP_THRESH)
2017-08-25 09:04:13 -04:00
2019-11-18 08:36:40 -05:00
# define UART_INTR_CONFIG_FLAG ((UART_INTR_RXFIFO_FULL) \
| ( UART_INTR_RXFIFO_TOUT ) \
| ( UART_INTR_RXFIFO_OVF ) \
| ( UART_INTR_BRK_DET ) \
| ( UART_INTR_PARITY_ERR ) )
2016-12-14 20:45:40 -05:00
# define UART_ENTER_CRITICAL_ISR(mux) portENTER_CRITICAL_ISR(mux)
# define UART_EXIT_CRITICAL_ISR(mux) portEXIT_CRITICAL_ISR(mux)
# define UART_ENTER_CRITICAL(mux) portENTER_CRITICAL(mux)
# define UART_EXIT_CRITICAL(mux) portEXIT_CRITICAL(mux)
2019-04-17 08:19:44 -04:00
2018-04-11 02:56:00 -04:00
// Check actual UART mode set
# define UART_IS_MODE_SET(uart_number, mode) ((p_uart_obj[uart_number]->uart_mode == mode))
2019-04-17 08:19:44 -04:00
# define UART_CONTEX_INIT_DEF(uart_num) {\
. hal . dev = UART_LL_GET_HW ( uart_num ) , \
. spinlock = portMUX_INITIALIZER_UNLOCKED , \
. hw_enabled = false , \
}
2020-11-23 06:31:50 -05:00
# if SOC_UART_SUPPORT_RTC_CLK
# define RTC_ENABLED(uart_num) (BIT(uart_num))
# endif
2016-12-14 20:45:40 -05:00
typedef struct {
uart_event_type_t type ; /*!< UART TX data type */
struct {
int brk_len ;
size_t size ;
uint8_t data [ 0 ] ;
} tx_data ;
} uart_tx_data_t ;
2017-08-25 09:04:13 -04:00
typedef struct {
int wr ;
int rd ;
int len ;
2019-04-17 08:19:44 -04:00
int * data ;
2017-08-25 09:04:13 -04:00
} uart_pat_rb_t ;
2016-12-14 20:45:40 -05:00
typedef struct {
uart_port_t uart_num ; /*!< UART port number*/
int queue_size ; /*!< UART event queue size*/
QueueHandle_t xQueueUart ; /*!< UART queue handler*/
intr_handle_t intr_handle ; /*!< UART interrupt handle*/
2018-04-11 02:56:00 -04:00
uart_mode_t uart_mode ; /*!< UART controller actual mode set by uart_set_mode() */
bool coll_det_flg ; /*!< UART collision detection flag */
2020-03-30 10:05:48 -04:00
bool rx_always_timeout_flg ; /*!< UART always detect rx timeout flag */
2019-06-05 22:57:29 -04:00
2016-12-14 20:45:40 -05:00
//rx parameters
2016-12-18 23:52:10 -05:00
int rx_buffered_len ; /*!< UART cached data length */
2016-12-14 20:45:40 -05:00
SemaphoreHandle_t rx_mux ; /*!< UART RX data mutex*/
int rx_buf_size ; /*!< RX ring buffer size */
RingbufHandle_t rx_ring_buf ; /*!< RX ring buffer handler*/
bool rx_buffer_full_flg ; /*!< RX ring buffer full flag. */
int rx_cur_remain ; /*!< Data number that waiting to be read out in ring buffer item*/
2019-04-17 08:19:44 -04:00
uint8_t * rx_ptr ; /*!< pointer to the current data in ring buffer*/
uint8_t * rx_head_ptr ; /*!< pointer to the head of RX item*/
2020-09-09 22:37:58 -04:00
uint8_t rx_data_buf [ SOC_UART_FIFO_LEN ] ; /*!< Data buffer to stash FIFO data*/
2016-12-14 20:45:40 -05:00
uint8_t rx_stash_len ; /*!< stashed data length.(When using flow control, after reading out FIFO data, if we fail to push to buffer, we can just stash them.) */
2017-08-25 09:04:13 -04:00
uart_pat_rb_t rx_pattern_pos ;
2016-12-14 20:45:40 -05:00
//tx parameters
SemaphoreHandle_t tx_fifo_sem ; /*!< UART TX FIFO semaphore*/
SemaphoreHandle_t tx_mux ; /*!< UART TX mutex*/
SemaphoreHandle_t tx_done_sem ; /*!< UART TX done semaphore*/
SemaphoreHandle_t tx_brk_sem ; /*!< UART TX send break done semaphore*/
int tx_buf_size ; /*!< TX ring buffer size */
RingbufHandle_t tx_ring_buf ; /*!< TX ring buffer handler*/
bool tx_waiting_fifo ; /*!< this flag indicates that some task is waiting for FIFO empty interrupt, used to send all data without any data buffer*/
2019-04-17 08:19:44 -04:00
uint8_t * tx_ptr ; /*!< TX data pointer to push to FIFO in TX buffer mode*/
uart_tx_data_t * tx_head ; /*!< TX data pointer to head of the current buffer in TX ring buffer*/
2016-12-14 20:45:40 -05:00
uint32_t tx_len_tot ; /*!< Total length of current item in ring buffer*/
uint32_t tx_len_cur ;
uint8_t tx_brk_flg ; /*!< Flag to indicate to send a break signal in the end of the item sending procedure */
uint8_t tx_brk_len ; /*!< TX break signal cycle length/number */
uint8_t tx_waiting_brk ; /*!< Flag to indicate that TX FIFO is ready to send break signal after FIFO is empty, do not push data into TX FIFO right now.*/
2018-05-03 04:41:10 -04:00
uart_select_notif_callback_t uart_select_notif_callback ; /*!< Notification about select() events */
2016-12-14 20:45:40 -05:00
} uart_obj_t ;
2019-04-17 08:19:44 -04:00
typedef struct {
uart_hal_context_t hal ; /*!< UART hal context*/
portMUX_TYPE spinlock ;
bool hw_enabled ;
} uart_context_t ;
2016-12-14 20:45:40 -05:00
static uart_obj_t * p_uart_obj [ UART_NUM_MAX ] = { 0 } ;
2019-04-17 08:19:44 -04:00
static uart_context_t uart_context [ UART_NUM_MAX ] = {
UART_CONTEX_INIT_DEF ( UART_NUM_0 ) ,
UART_CONTEX_INIT_DEF ( UART_NUM_1 ) ,
# if UART_NUM_MAX > 2
UART_CONTEX_INIT_DEF ( UART_NUM_2 ) ,
2019-06-13 23:01:30 -04:00
# endif
} ;
2019-04-17 08:19:44 -04:00
2018-05-03 04:41:10 -04:00
static portMUX_TYPE uart_selectlock = portMUX_INITIALIZER_UNLOCKED ;
2016-12-14 20:45:40 -05:00
2020-11-23 06:31:50 -05:00
# if SOC_UART_SUPPORT_RTC_CLK
static uint8_t rtc_enabled = 0 ;
static portMUX_TYPE rtc_num_spinlock = portMUX_INITIALIZER_UNLOCKED ;
static void rtc_clk_enable ( uart_port_t uart_num )
{
portENTER_CRITICAL ( & rtc_num_spinlock ) ;
if ( ! ( rtc_enabled & RTC_ENABLED ( uart_num ) ) ) {
rtc_enabled | = RTC_ENABLED ( uart_num ) ;
}
SET_PERI_REG_MASK ( RTC_CNTL_CLK_CONF_REG , RTC_CNTL_DIG_CLK8M_EN_M ) ;
portEXIT_CRITICAL ( & rtc_num_spinlock ) ;
}
static void rtc_clk_disable ( uart_port_t uart_num )
{
assert ( rtc_enabled & RTC_ENABLED ( uart_num ) ) ;
portENTER_CRITICAL ( & rtc_num_spinlock ) ;
rtc_enabled & = ~ RTC_ENABLED ( uart_num ) ;
if ( rtc_enabled = = 0 ) {
CLEAR_PERI_REG_MASK ( RTC_CNTL_CLK_CONF_REG , RTC_CNTL_DIG_CLK8M_EN_M ) ;
}
portEXIT_CRITICAL ( & rtc_num_spinlock ) ;
}
# endif
2019-04-17 08:19:44 -04:00
static void uart_module_enable ( uart_port_t uart_num )
{
UART_ENTER_CRITICAL ( & ( uart_context [ uart_num ] . spinlock ) ) ;
if ( uart_context [ uart_num ] . hw_enabled ! = true ) {
if ( uart_num ! = CONFIG_ESP_CONSOLE_UART_NUM ) {
periph_module_reset ( uart_periph_signal [ uart_num ] . module ) ;
}
periph_module_enable ( uart_periph_signal [ uart_num ] . module ) ;
uart_context [ uart_num ] . hw_enabled = true ;
}
UART_EXIT_CRITICAL ( & ( uart_context [ uart_num ] . spinlock ) ) ;
}
static void uart_module_disable ( uart_port_t uart_num )
{
UART_ENTER_CRITICAL ( & ( uart_context [ uart_num ] . spinlock ) ) ;
if ( uart_context [ uart_num ] . hw_enabled ! = false ) {
if ( uart_num ! = CONFIG_ESP_CONSOLE_UART_NUM ) {
periph_module_disable ( uart_periph_signal [ uart_num ] . module ) ;
}
uart_context [ uart_num ] . hw_enabled = false ;
}
UART_EXIT_CRITICAL ( & ( uart_context [ uart_num ] . spinlock ) ) ;
}
2016-12-14 20:45:40 -05:00
esp_err_t uart_set_word_length ( uart_port_t uart_num , uart_word_length_t data_bit )
{
UART_CHECK ( ( uart_num < UART_NUM_MAX ) , " uart_num error " , ESP_FAIL ) ;
UART_CHECK ( ( data_bit < UART_DATA_BITS_MAX ) , " data bit error " , ESP_FAIL ) ;
2019-04-17 08:19:44 -04:00
UART_ENTER_CRITICAL ( & ( uart_context [ uart_num ] . spinlock ) ) ;
uart_hal_set_data_bit_num ( & ( uart_context [ uart_num ] . hal ) , data_bit ) ;
UART_EXIT_CRITICAL ( & ( uart_context [ uart_num ] . spinlock ) ) ;
2016-12-14 20:45:40 -05:00
return ESP_OK ;
}
2019-04-17 08:19:44 -04:00
esp_err_t uart_get_word_length ( uart_port_t uart_num , uart_word_length_t * data_bit )
2016-12-14 20:45:40 -05:00
{
UART_CHECK ( ( uart_num < UART_NUM_MAX ) , " uart_num error " , ESP_FAIL ) ;
2019-04-17 08:19:44 -04:00
uart_hal_get_data_bit_num ( & ( uart_context [ uart_num ] . hal ) , data_bit ) ;
2016-12-14 20:45:40 -05:00
return ESP_OK ;
}
esp_err_t uart_set_stop_bits ( uart_port_t uart_num , uart_stop_bits_t stop_bit )
{
UART_CHECK ( ( uart_num < UART_NUM_MAX ) , " uart_num error " , ESP_FAIL ) ;
UART_CHECK ( ( stop_bit < UART_STOP_BITS_MAX ) , " stop bit error " , ESP_FAIL ) ;
2019-04-17 08:19:44 -04:00
UART_ENTER_CRITICAL ( & ( uart_context [ uart_num ] . spinlock ) ) ;
uart_hal_set_stop_bits ( & ( uart_context [ uart_num ] . hal ) , stop_bit ) ;
UART_EXIT_CRITICAL ( & ( uart_context [ uart_num ] . spinlock ) ) ;
2016-12-14 20:45:40 -05:00
return ESP_OK ;
}
2019-04-17 08:19:44 -04:00
esp_err_t uart_get_stop_bits ( uart_port_t uart_num , uart_stop_bits_t * stop_bit )
2016-12-14 20:45:40 -05:00
{
UART_CHECK ( ( uart_num < UART_NUM_MAX ) , " uart_num error " , ESP_FAIL ) ;
2019-04-17 08:19:44 -04:00
uart_hal_get_stop_bits ( & ( uart_context [ uart_num ] . hal ) , stop_bit ) ;
2016-12-14 20:45:40 -05:00
return ESP_OK ;
}
esp_err_t uart_set_parity ( uart_port_t uart_num , uart_parity_t parity_mode )
{
UART_CHECK ( ( uart_num < UART_NUM_MAX ) , " uart_num error " , ESP_FAIL ) ;
2019-04-17 08:19:44 -04:00
UART_ENTER_CRITICAL ( & ( uart_context [ uart_num ] . spinlock ) ) ;
uart_hal_set_parity ( & ( uart_context [ uart_num ] . hal ) , parity_mode ) ;
UART_EXIT_CRITICAL ( & ( uart_context [ uart_num ] . spinlock ) ) ;
2016-12-14 20:45:40 -05:00
return ESP_OK ;
}
2019-04-17 08:19:44 -04:00
esp_err_t uart_get_parity ( uart_port_t uart_num , uart_parity_t * parity_mode )
2016-12-14 20:45:40 -05:00
{
UART_CHECK ( ( uart_num < UART_NUM_MAX ) , " uart_num error " , ESP_FAIL ) ;
2019-04-17 08:19:44 -04:00
uart_hal_get_parity ( & ( uart_context [ uart_num ] . hal ) , parity_mode ) ;
2016-12-14 20:45:40 -05:00
return ESP_OK ;
}
esp_err_t uart_set_baudrate ( uart_port_t uart_num , uint32_t baud_rate )
{
UART_CHECK ( ( uart_num < UART_NUM_MAX ) , " uart_num error " , ESP_FAIL ) ;
2019-04-17 08:19:44 -04:00
UART_ENTER_CRITICAL ( & ( uart_context [ uart_num ] . spinlock ) ) ;
2020-11-23 06:31:50 -05:00
uart_hal_set_baudrate ( & ( uart_context [ uart_num ] . hal ) , baud_rate ) ;
2019-04-17 08:19:44 -04:00
UART_EXIT_CRITICAL ( & ( uart_context [ uart_num ] . spinlock ) ) ;
return ESP_OK ;
2016-12-14 20:45:40 -05:00
}
2019-07-01 06:00:10 -04:00
esp_err_t uart_get_baudrate ( uart_port_t uart_num , uint32_t * baudrate )
2016-12-14 20:45:40 -05:00
{
UART_CHECK ( ( uart_num < UART_NUM_MAX ) , " uart_num error " , ESP_FAIL ) ;
2019-04-17 08:19:44 -04:00
UART_ENTER_CRITICAL ( & ( uart_context [ uart_num ] . spinlock ) ) ;
uart_hal_get_baudrate ( & ( uart_context [ uart_num ] . hal ) , baudrate ) ;
UART_EXIT_CRITICAL ( & ( uart_context [ uart_num ] . spinlock ) ) ;
2016-12-14 20:45:40 -05:00
return ESP_OK ;
}
esp_err_t uart_set_line_inverse ( uart_port_t uart_num , uint32_t inverse_mask )
{
UART_CHECK ( ( uart_num < UART_NUM_MAX ) , " uart_num error " , ESP_FAIL ) ;
2019-04-17 08:19:44 -04:00
UART_ENTER_CRITICAL ( & ( uart_context [ uart_num ] . spinlock ) ) ;
uart_hal_inverse_signal ( & ( uart_context [ uart_num ] . hal ) , inverse_mask ) ;
UART_EXIT_CRITICAL ( & ( uart_context [ uart_num ] . spinlock ) ) ;
2016-12-14 20:45:40 -05:00
return ESP_OK ;
}
2017-08-01 11:02:44 -04:00
esp_err_t uart_set_sw_flow_ctrl ( uart_port_t uart_num , bool enable , uint8_t rx_thresh_xon , uint8_t rx_thresh_xoff )
{
UART_CHECK ( ( uart_num < UART_NUM_MAX ) , " uart_num error " , ESP_FAIL ) ;
2020-09-09 22:37:58 -04:00
UART_CHECK ( ( rx_thresh_xon < SOC_UART_FIFO_LEN ) , " rx flow xon thresh error " , ESP_FAIL ) ;
UART_CHECK ( ( rx_thresh_xoff < SOC_UART_FIFO_LEN ) , " rx flow xon thresh error " , ESP_FAIL ) ;
2019-04-17 08:19:44 -04:00
uart_sw_flowctrl_t sw_flow_ctl = {
. xon_char = XON ,
. xoff_char = XOFF ,
. xon_thrd = rx_thresh_xon ,
. xoff_thrd = rx_thresh_xoff ,
} ;
UART_ENTER_CRITICAL ( & ( uart_context [ uart_num ] . spinlock ) ) ;
uart_hal_set_sw_flow_ctrl ( & ( uart_context [ uart_num ] . hal ) , & sw_flow_ctl , enable ) ;
UART_EXIT_CRITICAL ( & ( uart_context [ uart_num ] . spinlock ) ) ;
2017-08-01 11:02:44 -04:00
return ESP_OK ;
}
2016-12-14 20:45:40 -05:00
esp_err_t uart_set_hw_flow_ctrl ( uart_port_t uart_num , uart_hw_flowcontrol_t flow_ctrl , uint8_t rx_thresh )
{
UART_CHECK ( ( uart_num < UART_NUM_MAX ) , " uart_num error " , ESP_FAIL ) ;
2020-09-09 22:37:58 -04:00
UART_CHECK ( ( rx_thresh < SOC_UART_FIFO_LEN ) , " rx flow thresh error " , ESP_FAIL ) ;
2016-12-14 20:45:40 -05:00
UART_CHECK ( ( flow_ctrl < UART_HW_FLOWCTRL_MAX ) , " hw_flowctrl mode error " , ESP_FAIL ) ;
2019-04-17 08:19:44 -04:00
UART_ENTER_CRITICAL ( & ( uart_context [ uart_num ] . spinlock ) ) ;
uart_hal_set_hw_flow_ctrl ( & ( uart_context [ uart_num ] . hal ) , flow_ctrl , rx_thresh ) ;
UART_EXIT_CRITICAL ( & ( uart_context [ uart_num ] . spinlock ) ) ;
2016-12-14 20:45:40 -05:00
return ESP_OK ;
}
2019-04-17 08:19:44 -04:00
esp_err_t uart_get_hw_flow_ctrl ( uart_port_t uart_num , uart_hw_flowcontrol_t * flow_ctrl )
2016-12-14 20:45:40 -05:00
{
2019-04-17 08:19:44 -04:00
UART_CHECK ( ( uart_num < UART_NUM_MAX ) , " uart_num error " , ESP_FAIL )
UART_ENTER_CRITICAL ( & ( uart_context [ uart_num ] . spinlock ) ) ;
uart_hal_get_hw_flow_ctrl ( & ( uart_context [ uart_num ] . hal ) , flow_ctrl ) ;
UART_EXIT_CRITICAL ( & ( uart_context [ uart_num ] . spinlock ) ) ;
2016-12-14 20:45:40 -05:00
return ESP_OK ;
}
2019-08-26 05:14:15 -04:00
esp_err_t UART_ISR_ATTR uart_clear_intr_status ( uart_port_t uart_num , uint32_t clr_mask )
2016-12-14 20:45:40 -05:00
{
UART_CHECK ( ( uart_num < UART_NUM_MAX ) , " uart_num error " , ESP_FAIL ) ;
2019-04-17 08:19:44 -04:00
uart_hal_clr_intsts_mask ( & ( uart_context [ uart_num ] . hal ) , clr_mask ) ;
2016-12-14 20:45:40 -05:00
return ESP_OK ;
}
esp_err_t uart_enable_intr_mask ( uart_port_t uart_num , uint32_t enable_mask )
{
UART_CHECK ( ( uart_num < UART_NUM_MAX ) , " uart_num error " , ESP_FAIL ) ;
2019-04-17 08:19:44 -04:00
UART_ENTER_CRITICAL ( & ( uart_context [ uart_num ] . spinlock ) ) ;
uart_hal_clr_intsts_mask ( & ( uart_context [ uart_num ] . hal ) , enable_mask ) ;
uart_hal_ena_intr_mask ( & ( uart_context [ uart_num ] . hal ) , enable_mask ) ;
UART_EXIT_CRITICAL ( & ( uart_context [ uart_num ] . spinlock ) ) ;
2016-12-14 20:45:40 -05:00
return ESP_OK ;
}
esp_err_t uart_disable_intr_mask ( uart_port_t uart_num , uint32_t disable_mask )
{
UART_CHECK ( ( uart_num < UART_NUM_MAX ) , " uart_num error " , ESP_FAIL ) ;
2019-04-17 08:19:44 -04:00
UART_ENTER_CRITICAL ( & ( uart_context [ uart_num ] . spinlock ) ) ;
uart_hal_disable_intr_mask ( & ( uart_context [ uart_num ] . hal ) , disable_mask ) ;
UART_EXIT_CRITICAL ( & ( uart_context [ uart_num ] . spinlock ) ) ;
2016-12-14 20:45:40 -05:00
return ESP_OK ;
}
2017-08-25 09:04:13 -04:00
static esp_err_t uart_pattern_link_free ( uart_port_t uart_num )
{
if ( p_uart_obj [ uart_num ] - > rx_pattern_pos . data ! = NULL ) {
2019-04-17 08:19:44 -04:00
int * pdata = p_uart_obj [ uart_num ] - > rx_pattern_pos . data ;
UART_ENTER_CRITICAL ( & ( uart_context [ uart_num ] . spinlock ) ) ;
2017-08-25 09:04:13 -04:00
p_uart_obj [ uart_num ] - > rx_pattern_pos . data = NULL ;
p_uart_obj [ uart_num ] - > rx_pattern_pos . wr = 0 ;
p_uart_obj [ uart_num ] - > rx_pattern_pos . rd = 0 ;
2019-04-17 08:19:44 -04:00
UART_EXIT_CRITICAL ( & ( uart_context [ uart_num ] . spinlock ) ) ;
2017-08-25 09:04:13 -04:00
free ( pdata ) ;
}
return ESP_OK ;
}
2019-08-26 05:14:15 -04:00
static esp_err_t UART_ISR_ATTR uart_pattern_enqueue ( uart_port_t uart_num , int pos )
2017-08-25 09:04:13 -04:00
{
esp_err_t ret = ESP_OK ;
2019-04-17 08:19:44 -04:00
uart_pat_rb_t * p_pos = & p_uart_obj [ uart_num ] - > rx_pattern_pos ;
2017-08-25 09:04:13 -04:00
int next = p_pos - > wr + 1 ;
if ( next > = p_pos - > len ) {
next = 0 ;
}
if ( next = = p_pos - > rd ) {
ESP_EARLY_LOGW ( UART_TAG , " Fail to enqueue pattern position, pattern queue is full. " ) ;
ret = ESP_FAIL ;
} else {
p_pos - > data [ p_pos - > wr ] = pos ;
p_pos - > wr = next ;
ret = ESP_OK ;
}
return ret ;
}
static esp_err_t uart_pattern_dequeue ( uart_port_t uart_num )
{
2019-04-17 08:19:44 -04:00
if ( p_uart_obj [ uart_num ] - > rx_pattern_pos . data = = NULL ) {
2017-08-25 09:04:13 -04:00
return ESP_ERR_INVALID_STATE ;
} else {
esp_err_t ret = ESP_OK ;
2019-04-17 08:19:44 -04:00
uart_pat_rb_t * p_pos = & p_uart_obj [ uart_num ] - > rx_pattern_pos ;
2017-08-25 09:04:13 -04:00
if ( p_pos - > rd = = p_pos - > wr ) {
ret = ESP_FAIL ;
} else {
p_pos - > rd + + ;
}
if ( p_pos - > rd > = p_pos - > len ) {
p_pos - > rd = 0 ;
}
return ret ;
}
}
static esp_err_t uart_pattern_queue_update ( uart_port_t uart_num , int diff_len )
{
2019-04-17 08:19:44 -04:00
uart_pat_rb_t * p_pos = & p_uart_obj [ uart_num ] - > rx_pattern_pos ;
2017-08-25 09:04:13 -04:00
int rd = p_pos - > rd ;
2019-04-17 08:19:44 -04:00
while ( rd ! = p_pos - > wr ) {
2017-08-25 09:04:13 -04:00
p_pos - > data [ rd ] - = diff_len ;
int rd_rec = rd ;
rd + + ;
if ( rd > = p_pos - > len ) {
rd = 0 ;
}
if ( p_pos - > data [ rd_rec ] < 0 ) {
p_pos - > rd = rd ;
}
}
return ESP_OK ;
}
int uart_pattern_pop_pos ( uart_port_t uart_num )
{
UART_CHECK ( ( p_uart_obj [ uart_num ] ) , " uart driver error " , ( - 1 ) ) ;
2019-04-17 08:19:44 -04:00
UART_ENTER_CRITICAL ( & ( uart_context [ uart_num ] . spinlock ) ) ;
uart_pat_rb_t * pat_pos = & p_uart_obj [ uart_num ] - > rx_pattern_pos ;
2017-08-25 09:04:13 -04:00
int pos = - 1 ;
if ( pat_pos ! = NULL & & pat_pos - > rd ! = pat_pos - > wr ) {
pos = pat_pos - > data [ pat_pos - > rd ] ;
uart_pattern_dequeue ( uart_num ) ;
}
2019-04-17 08:19:44 -04:00
UART_EXIT_CRITICAL ( & ( uart_context [ uart_num ] . spinlock ) ) ;
2017-08-25 09:04:13 -04:00
return pos ;
}
2018-04-03 00:34:16 -04:00
int uart_pattern_get_pos ( uart_port_t uart_num )
{
UART_CHECK ( ( p_uart_obj [ uart_num ] ) , " uart driver error " , ( - 1 ) ) ;
2019-04-17 08:19:44 -04:00
UART_ENTER_CRITICAL ( & ( uart_context [ uart_num ] . spinlock ) ) ;
uart_pat_rb_t * pat_pos = & p_uart_obj [ uart_num ] - > rx_pattern_pos ;
2018-04-03 00:34:16 -04:00
int pos = - 1 ;
if ( pat_pos ! = NULL & & pat_pos - > rd ! = pat_pos - > wr ) {
pos = pat_pos - > data [ pat_pos - > rd ] ;
}
2019-04-17 08:19:44 -04:00
UART_EXIT_CRITICAL ( & ( uart_context [ uart_num ] . spinlock ) ) ;
2018-04-03 00:34:16 -04:00
return pos ;
}
2017-08-25 09:04:13 -04:00
esp_err_t uart_pattern_queue_reset ( uart_port_t uart_num , int queue_length )
{
UART_CHECK ( ( uart_num < UART_NUM_MAX ) , " uart_num error " , ESP_FAIL ) ;
UART_CHECK ( ( p_uart_obj [ uart_num ] ) , " uart driver error " , ESP_ERR_INVALID_STATE ) ;
2019-04-17 08:19:44 -04:00
int * pdata = ( int * ) malloc ( queue_length * sizeof ( int ) ) ;
if ( pdata = = NULL ) {
2017-08-25 09:04:13 -04:00
return ESP_ERR_NO_MEM ;
}
2019-04-17 08:19:44 -04:00
UART_ENTER_CRITICAL ( & ( uart_context [ uart_num ] . spinlock ) ) ;
int * ptmp = p_uart_obj [ uart_num ] - > rx_pattern_pos . data ;
2017-08-25 09:04:13 -04:00
p_uart_obj [ uart_num ] - > rx_pattern_pos . data = pdata ;
p_uart_obj [ uart_num ] - > rx_pattern_pos . len = queue_length ;
p_uart_obj [ uart_num ] - > rx_pattern_pos . rd = 0 ;
p_uart_obj [ uart_num ] - > rx_pattern_pos . wr = 0 ;
2019-04-17 08:19:44 -04:00
UART_EXIT_CRITICAL ( & ( uart_context [ uart_num ] . spinlock ) ) ;
2017-08-25 09:04:13 -04:00
free ( ptmp ) ;
return ESP_OK ;
}
2019-07-01 06:00:10 -04:00
# if CONFIG_IDF_TARGET_ESP32
2016-12-18 23:52:10 -05:00
esp_err_t uart_enable_pattern_det_intr ( uart_port_t uart_num , char pattern_chr , uint8_t chr_num , int chr_tout , int post_idle , int pre_idle )
2019-07-01 06:00:10 -04:00
{
UART_CHECK ( ( uart_num < UART_NUM_MAX ) , " uart_num error " , ESP_FAIL ) ;
UART_CHECK ( chr_tout > = 0 & & chr_tout < = UART_RX_GAP_TOUT_V , " uart pattern set error \n " , ESP_FAIL ) ;
UART_CHECK ( post_idle > = 0 & & post_idle < = UART_POST_IDLE_NUM_V , " uart pattern set error \n " , ESP_FAIL ) ;
UART_CHECK ( pre_idle > = 0 & & pre_idle < = UART_PRE_IDLE_NUM_V , " uart pattern set error \n " , ESP_FAIL ) ;
2019-04-17 08:19:44 -04:00
uart_at_cmd_t at_cmd = { 0 } ;
at_cmd . cmd_char = pattern_chr ;
at_cmd . char_num = chr_num ;
at_cmd . gap_tout = chr_tout ;
at_cmd . pre_idle = pre_idle ;
at_cmd . post_idle = post_idle ;
uart_hal_clr_intsts_mask ( & ( uart_context [ uart_num ] . hal ) , UART_INTR_CMD_CHAR_DET ) ;
UART_ENTER_CRITICAL ( & ( uart_context [ uart_num ] . spinlock ) ) ;
uart_hal_set_at_cmd_char ( & ( uart_context [ uart_num ] . hal ) , & at_cmd ) ;
uart_hal_ena_intr_mask ( & ( uart_context [ uart_num ] . hal ) , UART_INTR_CMD_CHAR_DET ) ;
UART_EXIT_CRITICAL ( & ( uart_context [ uart_num ] . spinlock ) ) ;
return ESP_OK ;
2019-07-01 06:00:10 -04:00
}
# endif
esp_err_t uart_enable_pattern_det_baud_intr ( uart_port_t uart_num , char pattern_chr , uint8_t chr_num , int chr_tout , int post_idle , int pre_idle )
2016-12-18 23:52:10 -05:00
{
UART_CHECK ( ( uart_num < UART_NUM_MAX ) , " uart_num error " , ESP_FAIL ) ;
UART_CHECK ( chr_tout > = 0 & & chr_tout < = UART_RX_GAP_TOUT_V , " uart pattern set error \n " , ESP_FAIL ) ;
UART_CHECK ( post_idle > = 0 & & post_idle < = UART_POST_IDLE_NUM_V , " uart pattern set error \n " , ESP_FAIL ) ;
UART_CHECK ( pre_idle > = 0 & & pre_idle < = UART_PRE_IDLE_NUM_V , " uart pattern set error \n " , ESP_FAIL ) ;
2019-04-17 08:19:44 -04:00
uart_at_cmd_t at_cmd = { 0 } ;
at_cmd . cmd_char = pattern_chr ;
at_cmd . char_num = chr_num ;
2019-07-01 06:00:10 -04:00
# if CONFIG_IDF_TARGET_ESP32
int apb_clk_freq = 0 ;
uint32_t uart_baud = 0 ;
uint32_t uart_div = 0 ;
uart_get_baudrate ( uart_num , & uart_baud ) ;
apb_clk_freq = esp_clk_apb_freq ( ) ;
uart_div = apb_clk_freq / uart_baud ;
2019-04-17 08:19:44 -04:00
at_cmd . gap_tout = chr_tout * uart_div ;
at_cmd . pre_idle = pre_idle * uart_div ;
at_cmd . post_idle = post_idle * uart_div ;
2020-01-16 22:47:08 -05:00
# elif CONFIG_IDF_TARGET_ESP32S2
2019-04-17 08:19:44 -04:00
at_cmd . gap_tout = chr_tout ;
at_cmd . pre_idle = pre_idle ;
at_cmd . post_idle = post_idle ;
2019-07-01 06:00:10 -04:00
# endif
2019-04-17 08:19:44 -04:00
uart_hal_clr_intsts_mask ( & ( uart_context [ uart_num ] . hal ) , UART_INTR_CMD_CHAR_DET ) ;
UART_ENTER_CRITICAL ( & ( uart_context [ uart_num ] . spinlock ) ) ;
uart_hal_set_at_cmd_char ( & ( uart_context [ uart_num ] . hal ) , & at_cmd ) ;
uart_hal_ena_intr_mask ( & ( uart_context [ uart_num ] . hal ) , UART_INTR_CMD_CHAR_DET ) ;
UART_EXIT_CRITICAL ( & ( uart_context [ uart_num ] . spinlock ) ) ;
return ESP_OK ;
2016-12-18 23:52:10 -05:00
}
2019-04-17 08:19:44 -04:00
2016-12-18 23:52:10 -05:00
esp_err_t uart_disable_pattern_det_intr ( uart_port_t uart_num )
{
2019-04-17 08:19:44 -04:00
return uart_disable_intr_mask ( uart_num , UART_INTR_CMD_CHAR_DET ) ;
2016-12-18 23:52:10 -05:00
}
2016-12-14 20:45:40 -05:00
esp_err_t uart_enable_rx_intr ( uart_port_t uart_num )
{
2019-04-17 08:19:44 -04:00
return uart_enable_intr_mask ( uart_num , UART_INTR_RXFIFO_FULL | UART_INTR_RXFIFO_TOUT ) ;
2016-12-14 20:45:40 -05:00
}
esp_err_t uart_disable_rx_intr ( uart_port_t uart_num )
{
2019-04-17 08:19:44 -04:00
return uart_disable_intr_mask ( uart_num , UART_INTR_RXFIFO_FULL | UART_INTR_RXFIFO_TOUT ) ;
2016-12-14 20:45:40 -05:00
}
esp_err_t uart_disable_tx_intr ( uart_port_t uart_num )
{
2019-04-17 08:19:44 -04:00
return uart_disable_intr_mask ( uart_num , UART_INTR_TXFIFO_EMPTY ) ;
2016-12-14 20:45:40 -05:00
}
esp_err_t uart_enable_tx_intr ( uart_port_t uart_num , int enable , int thresh )
{
UART_CHECK ( ( uart_num < UART_NUM_MAX ) , " uart_num error " , ESP_FAIL ) ;
2020-09-09 22:37:58 -04:00
UART_CHECK ( ( thresh < SOC_UART_FIFO_LEN ) , " empty intr threshold error " , ESP_FAIL ) ;
2019-04-17 08:19:44 -04:00
uart_hal_clr_intsts_mask ( & ( uart_context [ uart_num ] . hal ) , UART_INTR_TXFIFO_EMPTY ) ;
UART_ENTER_CRITICAL ( & ( uart_context [ uart_num ] . spinlock ) ) ;
uart_hal_set_txfifo_empty_thr ( & ( uart_context [ uart_num ] . hal ) , thresh ) ;
uart_hal_ena_intr_mask ( & ( uart_context [ uart_num ] . hal ) , UART_INTR_TXFIFO_EMPTY ) ;
UART_EXIT_CRITICAL ( & ( uart_context [ uart_num ] . spinlock ) ) ;
2016-12-14 20:45:40 -05:00
return ESP_OK ;
}
2019-04-17 08:19:44 -04:00
esp_err_t uart_isr_register ( uart_port_t uart_num , void ( * fn ) ( void * ) , void * arg , int intr_alloc_flags , uart_isr_handle_t * handle )
2016-12-14 20:45:40 -05:00
{
2016-11-25 04:33:51 -05:00
int ret ;
2016-12-14 20:45:40 -05:00
UART_CHECK ( ( uart_num < UART_NUM_MAX ) , " uart_num error " , ESP_FAIL ) ;
2019-04-17 08:19:44 -04:00
UART_ENTER_CRITICAL ( & ( uart_context [ uart_num ] . spinlock ) ) ;
ret = esp_intr_alloc ( uart_periph_signal [ uart_num ] . irq , intr_alloc_flags , fn , arg , handle ) ;
UART_EXIT_CRITICAL ( & ( uart_context [ uart_num ] . spinlock ) ) ;
2016-12-14 20:45:40 -05:00
return ret ;
}
esp_err_t uart_isr_free ( uart_port_t uart_num )
{
2016-12-07 23:38:22 -05:00
esp_err_t ret ;
2016-12-14 20:45:40 -05:00
UART_CHECK ( ( uart_num < UART_NUM_MAX ) , " uart_num error " , ESP_FAIL ) ;
2019-04-17 08:19:44 -04:00
UART_CHECK ( ( p_uart_obj [ uart_num ] ) , " uart driver error " , ESP_FAIL ) ;
UART_CHECK ( ( p_uart_obj [ uart_num ] - > intr_handle ! = NULL ) , " uart driver error " , ESP_ERR_INVALID_ARG ) ;
UART_ENTER_CRITICAL ( & ( uart_context [ uart_num ] . spinlock ) ) ;
ret = esp_intr_free ( p_uart_obj [ uart_num ] - > intr_handle ) ;
p_uart_obj [ uart_num ] - > intr_handle = NULL ;
UART_EXIT_CRITICAL ( & ( uart_context [ uart_num ] . spinlock ) ) ;
2016-12-14 20:45:40 -05:00
return ret ;
}
//internal signal can be output to multiple GPIO pads
//only one GPIO pad can connect with input signal
esp_err_t uart_set_pin ( uart_port_t uart_num , int tx_io_num , int rx_io_num , int rts_io_num , int cts_io_num )
{
UART_CHECK ( ( uart_num < UART_NUM_MAX ) , " uart_num error " , ESP_FAIL ) ;
UART_CHECK ( ( tx_io_num < 0 | | ( GPIO_IS_VALID_OUTPUT_GPIO ( tx_io_num ) ) ) , " tx_io_num error " , ESP_FAIL ) ;
UART_CHECK ( ( rx_io_num < 0 | | ( GPIO_IS_VALID_GPIO ( rx_io_num ) ) ) , " rx_io_num error " , ESP_FAIL ) ;
UART_CHECK ( ( rts_io_num < 0 | | ( GPIO_IS_VALID_OUTPUT_GPIO ( rts_io_num ) ) ) , " rts_io_num error " , ESP_FAIL ) ;
UART_CHECK ( ( cts_io_num < 0 | | ( GPIO_IS_VALID_GPIO ( cts_io_num ) ) ) , " cts_io_num error " , ESP_FAIL ) ;
2019-04-17 08:19:44 -04:00
if ( tx_io_num > = 0 ) {
2016-12-14 20:45:40 -05:00
PIN_FUNC_SELECT ( GPIO_PIN_MUX_REG [ tx_io_num ] , PIN_FUNC_GPIO ) ;
2017-07-20 02:34:11 -04:00
gpio_set_level ( tx_io_num , 1 ) ;
2020-06-19 00:00:58 -04:00
esp_rom_gpio_connect_out_signal ( tx_io_num , uart_periph_signal [ uart_num ] . tx_sig , 0 , 0 ) ;
2016-12-14 20:45:40 -05:00
}
2019-04-17 08:19:44 -04:00
if ( rx_io_num > = 0 ) {
2016-12-14 20:45:40 -05:00
PIN_FUNC_SELECT ( GPIO_PIN_MUX_REG [ rx_io_num ] , PIN_FUNC_GPIO ) ;
2016-12-21 23:08:15 -05:00
gpio_set_pull_mode ( rx_io_num , GPIO_PULLUP_ONLY ) ;
2016-12-14 20:45:40 -05:00
gpio_set_direction ( rx_io_num , GPIO_MODE_INPUT ) ;
2020-06-19 00:00:58 -04:00
esp_rom_gpio_connect_in_signal ( rx_io_num , uart_periph_signal [ uart_num ] . rx_sig , 0 ) ;
2016-12-14 20:45:40 -05:00
}
2019-04-17 08:19:44 -04:00
if ( rts_io_num > = 0 ) {
2016-12-14 20:45:40 -05:00
PIN_FUNC_SELECT ( GPIO_PIN_MUX_REG [ rts_io_num ] , PIN_FUNC_GPIO ) ;
gpio_set_direction ( rts_io_num , GPIO_MODE_OUTPUT ) ;
2020-06-19 00:00:58 -04:00
esp_rom_gpio_connect_out_signal ( rts_io_num , uart_periph_signal [ uart_num ] . rts_sig , 0 , 0 ) ;
2016-12-14 20:45:40 -05:00
}
2019-04-17 08:19:44 -04:00
if ( cts_io_num > = 0 ) {
2016-12-14 20:45:40 -05:00
PIN_FUNC_SELECT ( GPIO_PIN_MUX_REG [ cts_io_num ] , PIN_FUNC_GPIO ) ;
2016-12-21 23:08:15 -05:00
gpio_set_pull_mode ( cts_io_num , GPIO_PULLUP_ONLY ) ;
2016-12-14 20:45:40 -05:00
gpio_set_direction ( cts_io_num , GPIO_MODE_INPUT ) ;
2020-06-19 00:00:58 -04:00
esp_rom_gpio_connect_in_signal ( cts_io_num , uart_periph_signal [ uart_num ] . cts_sig , 0 ) ;
2016-12-14 20:45:40 -05:00
}
return ESP_OK ;
}
esp_err_t uart_set_rts ( uart_port_t uart_num , int level )
{
UART_CHECK ( ( uart_num < UART_NUM_MAX ) , " uart_num error " , ESP_FAIL ) ;
2019-04-17 08:19:44 -04:00
UART_CHECK ( ( ! uart_hal_is_hw_rts_en ( & ( uart_context [ uart_num ] . hal ) ) ) , " disable hw flowctrl before using sw control " , ESP_FAIL ) ;
UART_ENTER_CRITICAL ( & ( uart_context [ uart_num ] . spinlock ) ) ;
uart_hal_set_rts ( & ( uart_context [ uart_num ] . hal ) , level ) ;
UART_EXIT_CRITICAL ( & ( uart_context [ uart_num ] . spinlock ) ) ;
2016-12-14 20:45:40 -05:00
return ESP_OK ;
}
esp_err_t uart_set_dtr ( uart_port_t uart_num , int level )
{
UART_CHECK ( ( uart_num < UART_NUM_MAX ) , " uart_num error " , ESP_FAIL ) ;
2019-04-17 08:19:44 -04:00
UART_ENTER_CRITICAL ( & ( uart_context [ uart_num ] . spinlock ) ) ;
uart_hal_set_dtr ( & ( uart_context [ uart_num ] . hal ) , level ) ;
UART_EXIT_CRITICAL ( & ( uart_context [ uart_num ] . spinlock ) ) ;
2016-12-14 20:45:40 -05:00
return ESP_OK ;
}
2017-10-18 00:04:59 -04:00
esp_err_t uart_set_tx_idle_num ( uart_port_t uart_num , uint16_t idle_num )
{
UART_CHECK ( ( uart_num < UART_NUM_MAX ) , " uart_num error " , ESP_FAIL ) ;
UART_CHECK ( ( idle_num < = UART_TX_IDLE_NUM_V ) , " uart idle num error " , ESP_FAIL ) ;
2019-04-17 08:19:44 -04:00
UART_ENTER_CRITICAL ( & ( uart_context [ uart_num ] . spinlock ) ) ;
uart_hal_set_tx_idle_num ( & ( uart_context [ uart_num ] . hal ) , idle_num ) ;
UART_EXIT_CRITICAL ( & ( uart_context [ uart_num ] . spinlock ) ) ;
2017-10-18 00:04:59 -04:00
return ESP_OK ;
}
2016-12-14 20:45:40 -05:00
esp_err_t uart_param_config ( uart_port_t uart_num , const uart_config_t * uart_config )
{
UART_CHECK ( ( uart_num < UART_NUM_MAX ) , " uart_num error " , ESP_FAIL ) ;
UART_CHECK ( ( uart_config ) , " param null " , ESP_FAIL ) ;
2020-09-09 22:37:58 -04:00
UART_CHECK ( ( uart_config - > rx_flow_ctrl_thresh < SOC_UART_FIFO_LEN ) , " rx flow thresh error " , ESP_FAIL ) ;
2019-04-17 08:19:44 -04:00
UART_CHECK ( ( uart_config - > flow_ctrl < UART_HW_FLOWCTRL_MAX ) , " hw_flowctrl mode error " , ESP_FAIL ) ;
UART_CHECK ( ( uart_config - > data_bits < UART_DATA_BITS_MAX ) , " data bit error " , ESP_FAIL ) ;
uart_module_enable ( uart_num ) ;
2020-11-23 06:31:50 -05:00
# if SOC_UART_SUPPORT_RTC_CLK
if ( uart_config - > source_clk = = UART_SCLK_RTC ) {
rtc_clk_enable ( uart_num ) ;
}
# endif
2019-04-17 08:19:44 -04:00
UART_ENTER_CRITICAL ( & ( uart_context [ uart_num ] . spinlock ) ) ;
uart_hal_init ( & ( uart_context [ uart_num ] . hal ) , uart_num ) ;
2020-11-19 04:03:10 -05:00
uart_hal_set_sclk ( & ( uart_context [ uart_num ] . hal ) , uart_config - > source_clk ) ;
2020-11-23 06:31:50 -05:00
uart_hal_set_baudrate ( & ( uart_context [ uart_num ] . hal ) , uart_config - > baud_rate ) ;
2019-04-17 08:19:44 -04:00
uart_hal_set_parity ( & ( uart_context [ uart_num ] . hal ) , uart_config - > parity ) ;
uart_hal_set_data_bit_num ( & ( uart_context [ uart_num ] . hal ) , uart_config - > data_bits ) ;
uart_hal_set_stop_bits ( & ( uart_context [ uart_num ] . hal ) , uart_config - > stop_bits ) ;
uart_hal_set_tx_idle_num ( & ( uart_context [ uart_num ] . hal ) , UART_TX_IDLE_NUM_DEFAULT ) ;
uart_hal_set_hw_flow_ctrl ( & ( uart_context [ uart_num ] . hal ) , uart_config - > flow_ctrl , uart_config - > rx_flow_ctrl_thresh ) ;
UART_EXIT_CRITICAL ( & ( uart_context [ uart_num ] . spinlock ) ) ;
uart_hal_rxfifo_rst ( & ( uart_context [ uart_num ] . hal ) ) ;
2020-03-16 08:37:12 -04:00
uart_hal_txfifo_rst ( & ( uart_context [ uart_num ] . hal ) ) ;
2019-04-17 08:19:44 -04:00
return ESP_OK ;
2016-12-14 20:45:40 -05:00
}
esp_err_t uart_intr_config ( uart_port_t uart_num , const uart_intr_config_t * intr_conf )
{
UART_CHECK ( ( uart_num < UART_NUM_MAX ) , " uart_num error " , ESP_FAIL ) ;
UART_CHECK ( ( intr_conf ) , " param null " , ESP_FAIL ) ;
2020-09-09 22:37:58 -04:00
uart_hal_clr_intsts_mask ( & ( uart_context [ uart_num ] . hal ) , UART_LL_INTR_MASK ) ;
2019-04-17 08:19:44 -04:00
UART_ENTER_CRITICAL ( & ( uart_context [ uart_num ] . spinlock ) ) ;
if ( intr_conf - > intr_enable_mask & UART_INTR_RXFIFO_TOUT ) {
uart_hal_set_rx_timeout ( & ( uart_context [ uart_num ] . hal ) , intr_conf - > rx_timeout_thresh ) ;
2016-12-14 20:45:40 -05:00
} else {
2019-04-17 08:19:44 -04:00
//Disable rx_tout intr
uart_hal_set_rx_timeout ( & ( uart_context [ uart_num ] . hal ) , 0 ) ;
2016-12-14 20:45:40 -05:00
}
2019-04-17 08:19:44 -04:00
if ( intr_conf - > intr_enable_mask & UART_INTR_RXFIFO_FULL ) {
uart_hal_set_rxfifo_full_thr ( & ( uart_context [ uart_num ] . hal ) , intr_conf - > rxfifo_full_thresh ) ;
2016-12-14 20:45:40 -05:00
}
2019-04-17 08:19:44 -04:00
if ( intr_conf - > intr_enable_mask & UART_INTR_TXFIFO_EMPTY ) {
uart_hal_set_txfifo_empty_thr ( & ( uart_context [ uart_num ] . hal ) , intr_conf - > txfifo_empty_intr_thresh ) ;
2016-12-14 20:45:40 -05:00
}
2019-04-17 08:19:44 -04:00
uart_hal_ena_intr_mask ( & ( uart_context [ uart_num ] . hal ) , intr_conf - > intr_enable_mask ) ;
UART_EXIT_CRITICAL ( & ( uart_context [ uart_num ] . spinlock ) ) ;
2016-12-16 17:27:45 -05:00
return ESP_OK ;
2016-12-14 20:45:40 -05:00
}
2019-04-17 08:19:44 -04:00
static int UART_ISR_ATTR uart_find_pattern_from_last ( uint8_t * buf , int length , uint8_t pat_chr , uint8_t pat_num )
2017-08-25 09:04:13 -04:00
{
int cnt = 0 ;
int len = length ;
while ( len > = 0 ) {
if ( buf [ len ] = = pat_chr ) {
cnt + + ;
} else {
cnt = 0 ;
}
if ( cnt > = pat_num ) {
break ;
}
len - - ;
}
return len ;
}
2016-12-14 20:45:40 -05:00
//internal isr handler for default driver code.
2019-08-26 05:14:15 -04:00
static void UART_ISR_ATTR uart_rx_intr_handler_default ( void * param )
2016-12-14 20:45:40 -05:00
{
2019-04-17 08:19:44 -04:00
uart_obj_t * p_uart = ( uart_obj_t * ) param ;
2016-12-14 20:45:40 -05:00
uint8_t uart_num = p_uart - > uart_num ;
2019-06-12 04:20:19 -04:00
int rx_fifo_len = 0 ;
uint32_t uart_intr_status = 0 ;
2016-12-14 20:45:40 -05:00
uart_event_t uart_event ;
portBASE_TYPE HPTaskAwoken = 0 ;
2017-08-25 09:04:13 -04:00
static uint8_t pat_flg = 0 ;
2019-06-12 04:20:19 -04:00
while ( 1 ) {
// The `continue statement` may cause the interrupt to loop infinitely
// we exit the interrupt here
2019-04-17 08:19:44 -04:00
uart_intr_status = uart_hal_get_intsts_mask ( & ( uart_context [ uart_num ] . hal ) ) ;
//Exit form while loop
if ( uart_intr_status = = 0 ) {
2019-06-12 04:20:19 -04:00
break ;
}
2016-12-14 20:45:40 -05:00
uart_event . type = UART_EVENT_MAX ;
2019-04-17 08:19:44 -04:00
if ( uart_intr_status & UART_INTR_TXFIFO_EMPTY ) {
UART_ENTER_CRITICAL_ISR ( & ( uart_context [ uart_num ] . spinlock ) ) ;
uart_hal_disable_intr_mask ( & ( uart_context [ uart_num ] . hal ) , UART_INTR_TXFIFO_EMPTY ) ;
UART_EXIT_CRITICAL_ISR ( & ( uart_context [ uart_num ] . spinlock ) ) ;
uart_hal_clr_intsts_mask ( & ( uart_context [ uart_num ] . hal ) , UART_INTR_TXFIFO_EMPTY ) ;
if ( p_uart - > tx_waiting_brk ) {
2016-12-14 20:45:40 -05:00
continue ;
}
//TX semaphore will only be used when tx_buf_size is zero.
2019-04-17 08:19:44 -04:00
if ( p_uart - > tx_waiting_fifo = = true & & p_uart - > tx_buf_size = = 0 ) {
2016-12-14 20:45:40 -05:00
p_uart - > tx_waiting_fifo = false ;
xSemaphoreGiveFromISR ( p_uart - > tx_fifo_sem , & HPTaskAwoken ) ;
2017-08-25 09:04:13 -04:00
} else {
2016-12-14 20:45:40 -05:00
//We don't use TX ring buffer, because the size is zero.
2019-04-17 08:19:44 -04:00
if ( p_uart - > tx_buf_size = = 0 ) {
2016-12-14 20:45:40 -05:00
continue ;
}
bool en_tx_flg = false ;
2019-04-17 08:19:44 -04:00
int tx_fifo_rem = uart_hal_get_txfifo_len ( & ( uart_context [ uart_num ] . hal ) ) ;
2016-12-14 20:45:40 -05:00
//We need to put a loop here, in case all the buffer items are very short.
//That would cause a watch_dog reset because empty interrupt happens so often.
//Although this is a loop in ISR, this loop will execute at most 128 turns.
2019-04-17 08:19:44 -04:00
while ( tx_fifo_rem ) {
if ( p_uart - > tx_len_tot = = 0 | | p_uart - > tx_ptr = = NULL | | p_uart - > tx_len_cur = = 0 ) {
2016-12-14 20:45:40 -05:00
size_t size ;
2019-04-17 08:19:44 -04:00
p_uart - > tx_head = ( uart_tx_data_t * ) xRingbufferReceiveFromISR ( p_uart - > tx_ring_buf , & size ) ;
if ( p_uart - > tx_head ) {
2016-12-14 20:45:40 -05:00
//The first item is the data description
//Get the first item to get the data information
2019-04-17 08:19:44 -04:00
if ( p_uart - > tx_len_tot = = 0 ) {
2016-12-14 20:45:40 -05:00
p_uart - > tx_ptr = NULL ;
p_uart - > tx_len_tot = p_uart - > tx_head - > tx_data . size ;
2019-04-17 08:19:44 -04:00
if ( p_uart - > tx_head - > type = = UART_DATA_BREAK ) {
2016-12-14 20:45:40 -05:00
p_uart - > tx_brk_flg = 1 ;
p_uart - > tx_brk_len = p_uart - > tx_head - > tx_data . brk_len ;
}
//We have saved the data description from the 1st item, return buffer.
vRingbufferReturnItemFromISR ( p_uart - > tx_ring_buf , p_uart - > tx_head , & HPTaskAwoken ) ;
2019-04-17 08:19:44 -04:00
} else if ( p_uart - > tx_ptr = = NULL ) {
2016-12-14 20:45:40 -05:00
//Update the TX item pointer, we will need this to return item to buffer.
2019-04-17 08:19:44 -04:00
p_uart - > tx_ptr = ( uint8_t * ) p_uart - > tx_head ;
2016-12-14 20:45:40 -05:00
en_tx_flg = true ;
p_uart - > tx_len_cur = size ;
}
2019-07-01 06:00:10 -04:00
} else {
2016-12-14 20:45:40 -05:00
//Can not get data from ring buffer, return;
break ;
}
}
2017-08-25 09:04:13 -04:00
if ( p_uart - > tx_len_tot > 0 & & p_uart - > tx_ptr & & p_uart - > tx_len_cur > 0 ) {
2016-12-14 20:45:40 -05:00
//To fill the TX FIFO.
2019-04-17 08:19:44 -04:00
uint32_t send_len = 0 ;
2018-04-11 02:56:00 -04:00
// Set RS485 RTS pin before transmission if the half duplex mode is enabled
if ( UART_IS_MODE_SET ( uart_num , UART_MODE_RS485_HALF_DUPLEX ) ) {
2019-04-17 08:19:44 -04:00
UART_ENTER_CRITICAL_ISR ( & ( uart_context [ uart_num ] . spinlock ) ) ;
uart_hal_set_rts ( & ( uart_context [ uart_num ] . hal ) , 0 ) ;
uart_hal_ena_intr_mask ( & ( uart_context [ uart_num ] . hal ) , UART_INTR_TX_DONE ) ;
UART_EXIT_CRITICAL_ISR ( & ( uart_context [ uart_num ] . spinlock ) ) ;
2016-12-14 20:45:40 -05:00
}
2019-04-17 08:19:44 -04:00
uart_hal_write_txfifo ( & ( uart_context [ uart_num ] . hal ) ,
( const uint8_t * ) p_uart - > tx_ptr ,
( p_uart - > tx_len_cur > tx_fifo_rem ) ? tx_fifo_rem : p_uart - > tx_len_cur ,
& send_len ) ;
p_uart - > tx_ptr + = send_len ;
2016-12-14 20:45:40 -05:00
p_uart - > tx_len_tot - = send_len ;
p_uart - > tx_len_cur - = send_len ;
tx_fifo_rem - = send_len ;
2017-08-25 09:04:13 -04:00
if ( p_uart - > tx_len_cur = = 0 ) {
2016-12-14 20:45:40 -05:00
//Return item to ring buffer.
vRingbufferReturnItemFromISR ( p_uart - > tx_ring_buf , p_uart - > tx_head , & HPTaskAwoken ) ;
p_uart - > tx_head = NULL ;
p_uart - > tx_ptr = NULL ;
//Sending item done, now we need to send break if there is a record.
//Set TX break signal after FIFO is empty
2019-04-17 08:19:44 -04:00
if ( p_uart - > tx_len_tot = = 0 & & p_uart - > tx_brk_flg = = 1 ) {
uart_hal_clr_intsts_mask ( & ( uart_context [ uart_num ] . hal ) , UART_INTR_TX_BRK_DONE ) ;
UART_ENTER_CRITICAL_ISR ( & ( uart_context [ uart_num ] . spinlock ) ) ;
uart_hal_tx_break ( & ( uart_context [ uart_num ] . hal ) , p_uart - > tx_brk_len ) ;
uart_hal_ena_intr_mask ( & ( uart_context [ uart_num ] . hal ) , UART_INTR_TX_BRK_DONE ) ;
UART_EXIT_CRITICAL_ISR ( & ( uart_context [ uart_num ] . spinlock ) ) ;
2016-12-14 20:45:40 -05:00
p_uart - > tx_waiting_brk = 1 ;
2018-07-19 09:41:35 -04:00
//do not enable TX empty interrupt
en_tx_flg = false ;
2016-12-14 20:45:40 -05:00
} else {
//enable TX empty interrupt
en_tx_flg = true ;
}
} else {
//enable TX empty interrupt
en_tx_flg = true ;
}
}
}
2017-08-25 09:04:13 -04:00
if ( en_tx_flg ) {
2019-04-17 08:19:44 -04:00
uart_hal_clr_intsts_mask ( & ( uart_context [ uart_num ] . hal ) , UART_INTR_TXFIFO_EMPTY ) ;
UART_ENTER_CRITICAL_ISR ( & ( uart_context [ uart_num ] . spinlock ) ) ;
uart_hal_ena_intr_mask ( & ( uart_context [ uart_num ] . hal ) , UART_INTR_TXFIFO_EMPTY ) ;
UART_EXIT_CRITICAL_ISR ( & ( uart_context [ uart_num ] . spinlock ) ) ;
2016-12-14 20:45:40 -05:00
}
}
2019-04-17 08:19:44 -04:00
}
else if ( ( uart_intr_status & UART_INTR_RXFIFO_TOUT )
| | ( uart_intr_status & UART_INTR_RXFIFO_FULL )
| | ( uart_intr_status & UART_INTR_CMD_CHAR_DET )
) {
if ( pat_flg = = 1 ) {
uart_intr_status | = UART_INTR_CMD_CHAR_DET ;
2017-08-25 09:04:13 -04:00
pat_flg = 0 ;
}
if ( p_uart - > rx_buffer_full_flg = = false ) {
2020-03-30 10:05:48 -04:00
rx_fifo_len = uart_hal_get_rxfifo_len ( & ( uart_context [ uart_num ] . hal ) ) ;
if ( ( p_uart_obj [ uart_num ] - > rx_always_timeout_flg ) & & ! ( uart_intr_status & UART_INTR_RXFIFO_TOUT ) ) {
rx_fifo_len - - ; // leave one byte in the fifo in order to trigger uart_intr_rxfifo_tout
}
2019-04-17 08:19:44 -04:00
uart_hal_read_rxfifo ( & ( uart_context [ uart_num ] . hal ) , p_uart - > rx_data_buf , & rx_fifo_len ) ;
uint8_t pat_chr = 0 ;
uint8_t pat_num = 0 ;
2017-08-25 09:04:13 -04:00
int pat_idx = - 1 ;
2019-04-17 08:19:44 -04:00
uart_hal_get_at_cmd_char ( & ( uart_context [ uart_num ] . hal ) , & pat_chr , & pat_num ) ;
2017-08-25 09:04:13 -04:00
//Get the buffer from the FIFO
2019-04-17 08:19:44 -04:00
if ( uart_intr_status & UART_INTR_CMD_CHAR_DET ) {
uart_hal_clr_intsts_mask ( & ( uart_context [ uart_num ] . hal ) , UART_INTR_CMD_CHAR_DET ) ;
2017-08-25 09:04:13 -04:00
uart_event . type = UART_PATTERN_DET ;
uart_event . size = rx_fifo_len ;
pat_idx = uart_find_pattern_from_last ( p_uart - > rx_data_buf , rx_fifo_len - 1 , pat_chr , pat_num ) ;
} else {
//After Copying the Data From FIFO ,Clear intr_status
2019-04-17 08:19:44 -04:00
uart_hal_clr_intsts_mask ( & ( uart_context [ uart_num ] . hal ) , UART_INTR_RXFIFO_TOUT | UART_INTR_RXFIFO_FULL ) ;
2017-08-25 09:04:13 -04:00
uart_event . type = UART_DATA ;
uart_event . size = rx_fifo_len ;
2020-03-30 10:05:48 -04:00
uart_event . timeout_flag = ( uart_intr_status & UART_INTR_RXFIFO_TOUT ) ? true : false ;
2018-05-03 04:41:10 -04:00
UART_ENTER_CRITICAL_ISR ( & uart_selectlock ) ;
if ( p_uart - > uart_select_notif_callback ) {
p_uart - > uart_select_notif_callback ( uart_num , UART_SELECT_READ_NOTIF , & HPTaskAwoken ) ;
}
UART_EXIT_CRITICAL_ISR ( & uart_selectlock ) ;
2017-08-25 09:04:13 -04:00
}
p_uart - > rx_stash_len = rx_fifo_len ;
2016-12-14 20:45:40 -05:00
//If we fail to push data to ring buffer, we will have to stash the data, and send next time.
//Mainly for applications that uses flow control or small ring buffer.
2019-04-17 08:19:44 -04:00
if ( pdFALSE = = xRingbufferSendFromISR ( p_uart - > rx_ring_buf , p_uart - > rx_data_buf , p_uart - > rx_stash_len , & HPTaskAwoken ) ) {
2018-10-19 02:51:28 -04:00
p_uart - > rx_buffer_full_flg = true ;
2019-04-17 08:19:44 -04:00
UART_ENTER_CRITICAL_ISR ( & ( uart_context [ uart_num ] . spinlock ) ) ;
uart_hal_disable_intr_mask ( & ( uart_context [ uart_num ] . hal ) , UART_INTR_RXFIFO_TOUT | UART_INTR_RXFIFO_FULL ) ;
UART_EXIT_CRITICAL_ISR ( & ( uart_context [ uart_num ] . spinlock ) ) ;
2017-08-25 09:04:13 -04:00
if ( uart_event . type = = UART_PATTERN_DET ) {
2019-04-17 08:19:44 -04:00
UART_ENTER_CRITICAL_ISR ( & ( uart_context [ uart_num ] . spinlock ) ) ;
2017-08-25 09:04:13 -04:00
if ( rx_fifo_len < pat_num ) {
//some of the characters are read out in last interrupt
uart_pattern_enqueue ( uart_num , p_uart - > rx_buffered_len - ( pat_num - rx_fifo_len ) ) ;
} else {
uart_pattern_enqueue ( uart_num ,
2019-04-17 08:19:44 -04:00
pat_idx < = - 1 ?
//can not find the pattern in buffer,
p_uart - > rx_buffered_len + p_uart - > rx_stash_len :
// find the pattern in buffer
p_uart - > rx_buffered_len + pat_idx ) ;
2017-08-25 09:04:13 -04:00
}
2019-04-17 08:19:44 -04:00
UART_EXIT_CRITICAL_ISR ( & ( uart_context [ uart_num ] . spinlock ) ) ;
2017-08-25 09:04:13 -04:00
if ( ( p_uart - > xQueueUart ! = NULL ) & & ( pdFALSE = = xQueueSendFromISR ( p_uart - > xQueueUart , ( void * ) & uart_event , & HPTaskAwoken ) ) ) {
2018-03-13 03:57:33 -04:00
ESP_EARLY_LOGV ( UART_TAG , " UART event queue full " ) ;
2017-08-25 09:04:13 -04:00
}
}
2016-12-14 20:45:40 -05:00
uart_event . type = UART_BUFFER_FULL ;
} else {
2019-04-17 08:19:44 -04:00
UART_ENTER_CRITICAL_ISR ( & ( uart_context [ uart_num ] . spinlock ) ) ;
if ( uart_intr_status & UART_INTR_CMD_CHAR_DET ) {
2017-08-25 09:04:13 -04:00
if ( rx_fifo_len < pat_num ) {
//some of the characters are read out in last interrupt
uart_pattern_enqueue ( uart_num , p_uart - > rx_buffered_len - ( pat_num - rx_fifo_len ) ) ;
2019-04-17 08:19:44 -04:00
} else if ( pat_idx > = 0 ) {
// find the pattern in stash buffer.
2017-08-25 09:04:13 -04:00
uart_pattern_enqueue ( uart_num , p_uart - > rx_buffered_len + pat_idx ) ;
}
}
2016-12-18 23:52:10 -05:00
p_uart - > rx_buffered_len + = p_uart - > rx_stash_len ;
2019-04-17 08:19:44 -04:00
UART_EXIT_CRITICAL_ISR ( & ( uart_context [ uart_num ] . spinlock ) ) ;
2016-12-14 20:45:40 -05:00
}
} else {
2019-04-17 08:19:44 -04:00
UART_ENTER_CRITICAL_ISR ( & ( uart_context [ uart_num ] . spinlock ) ) ;
uart_hal_disable_intr_mask ( & ( uart_context [ uart_num ] . hal ) , UART_INTR_RXFIFO_FULL | UART_INTR_RXFIFO_TOUT ) ;
UART_EXIT_CRITICAL_ISR ( & ( uart_context [ uart_num ] . spinlock ) ) ;
uart_hal_clr_intsts_mask ( & ( uart_context [ uart_num ] . hal ) , UART_INTR_RXFIFO_FULL | UART_INTR_RXFIFO_TOUT ) ;
if ( uart_intr_status & UART_INTR_CMD_CHAR_DET ) {
uart_hal_clr_intsts_mask ( & ( uart_context [ uart_num ] . hal ) , UART_INTR_CMD_CHAR_DET ) ;
2017-08-25 09:04:13 -04:00
uart_event . type = UART_PATTERN_DET ;
uart_event . size = rx_fifo_len ;
pat_flg = 1 ;
}
}
2019-04-17 08:19:44 -04:00
} else if ( uart_intr_status & UART_INTR_RXFIFO_OVF ) {
2017-08-25 09:04:13 -04:00
// When fifo overflows, we reset the fifo.
2019-04-17 08:19:44 -04:00
UART_ENTER_CRITICAL_ISR ( & ( uart_context [ uart_num ] . spinlock ) ) ;
uart_hal_rxfifo_rst ( & ( uart_context [ uart_num ] . hal ) ) ;
2019-11-27 08:32:52 -05:00
UART_EXIT_CRITICAL_ISR ( & ( uart_context [ uart_num ] . spinlock ) ) ;
UART_ENTER_CRITICAL_ISR ( & uart_selectlock ) ;
2018-05-03 04:41:10 -04:00
if ( p_uart - > uart_select_notif_callback ) {
p_uart - > uart_select_notif_callback ( uart_num , UART_SELECT_ERROR_NOTIF , & HPTaskAwoken ) ;
}
UART_EXIT_CRITICAL_ISR ( & uart_selectlock ) ;
2019-04-17 08:19:44 -04:00
uart_hal_clr_intsts_mask ( & ( uart_context [ uart_num ] . hal ) , UART_INTR_RXFIFO_OVF ) ;
uart_event . type = UART_FIFO_OVF ;
} else if ( uart_intr_status & UART_INTR_BRK_DET ) {
uart_hal_clr_intsts_mask ( & ( uart_context [ uart_num ] . hal ) , UART_INTR_BRK_DET ) ;
2016-12-14 20:45:40 -05:00
uart_event . type = UART_BREAK ;
2019-04-17 08:19:44 -04:00
} else if ( uart_intr_status & UART_INTR_FRAM_ERR ) {
2018-05-03 04:41:10 -04:00
UART_ENTER_CRITICAL_ISR ( & uart_selectlock ) ;
if ( p_uart - > uart_select_notif_callback ) {
p_uart - > uart_select_notif_callback ( uart_num , UART_SELECT_ERROR_NOTIF , & HPTaskAwoken ) ;
}
UART_EXIT_CRITICAL_ISR ( & uart_selectlock ) ;
2019-04-17 08:19:44 -04:00
uart_hal_clr_intsts_mask ( & ( uart_context [ uart_num ] . hal ) , UART_INTR_FRAM_ERR ) ;
uart_event . type = UART_FRAME_ERR ;
} else if ( uart_intr_status & UART_INTR_PARITY_ERR ) {
2018-05-03 04:41:10 -04:00
UART_ENTER_CRITICAL_ISR ( & uart_selectlock ) ;
if ( p_uart - > uart_select_notif_callback ) {
p_uart - > uart_select_notif_callback ( uart_num , UART_SELECT_ERROR_NOTIF , & HPTaskAwoken ) ;
}
UART_EXIT_CRITICAL_ISR ( & uart_selectlock ) ;
2019-04-17 08:19:44 -04:00
uart_hal_clr_intsts_mask ( & ( uart_context [ uart_num ] . hal ) , UART_INTR_PARITY_ERR ) ;
uart_event . type = UART_PARITY_ERR ;
} else if ( uart_intr_status & UART_INTR_TX_BRK_DONE ) {
UART_ENTER_CRITICAL_ISR ( & ( uart_context [ uart_num ] . spinlock ) ) ;
uart_hal_tx_break ( & ( uart_context [ uart_num ] . hal ) , 0 ) ;
uart_hal_disable_intr_mask ( & ( uart_context [ uart_num ] . hal ) , UART_INTR_TX_BRK_DONE ) ;
if ( p_uart - > tx_brk_flg = = 1 ) {
uart_hal_ena_intr_mask ( & ( uart_context [ uart_num ] . hal ) , UART_INTR_TXFIFO_EMPTY ) ;
2016-12-14 20:45:40 -05:00
}
2019-04-17 08:19:44 -04:00
UART_EXIT_CRITICAL_ISR ( & ( uart_context [ uart_num ] . spinlock ) ) ;
uart_hal_clr_intsts_mask ( & ( uart_context [ uart_num ] . hal ) , UART_INTR_TX_BRK_DONE ) ;
if ( p_uart - > tx_brk_flg = = 1 ) {
2016-12-14 20:45:40 -05:00
p_uart - > tx_brk_flg = 0 ;
p_uart - > tx_waiting_brk = 0 ;
} else {
xSemaphoreGiveFromISR ( p_uart - > tx_brk_sem , & HPTaskAwoken ) ;
}
2019-04-17 08:19:44 -04:00
} else if ( uart_intr_status & UART_INTR_TX_BRK_IDLE ) {
UART_ENTER_CRITICAL_ISR ( & ( uart_context [ uart_num ] . spinlock ) ) ;
uart_hal_disable_intr_mask ( & ( uart_context [ uart_num ] . hal ) , UART_INTR_TX_BRK_IDLE ) ;
UART_EXIT_CRITICAL_ISR ( & ( uart_context [ uart_num ] . spinlock ) ) ;
uart_hal_clr_intsts_mask ( & ( uart_context [ uart_num ] . hal ) , UART_INTR_TX_BRK_IDLE ) ;
} else if ( uart_intr_status & UART_INTR_CMD_CHAR_DET ) {
uart_hal_clr_intsts_mask ( & ( uart_context [ uart_num ] . hal ) , UART_INTR_CMD_CHAR_DET ) ;
2016-12-18 23:52:10 -05:00
uart_event . type = UART_PATTERN_DET ;
2019-04-17 08:19:44 -04:00
} else if ( ( uart_intr_status & UART_INTR_RS485_PARITY_ERR )
| | ( uart_intr_status & UART_INTR_RS485_FRM_ERR )
| | ( uart_intr_status & UART_INTR_RS485_CLASH ) ) {
2018-04-11 02:56:00 -04:00
// RS485 collision or frame error interrupt triggered
2019-04-17 08:19:44 -04:00
UART_ENTER_CRITICAL_ISR ( & ( uart_context [ uart_num ] . spinlock ) ) ;
uart_hal_rxfifo_rst ( & ( uart_context [ uart_num ] . hal ) ) ;
2018-04-11 02:56:00 -04:00
// Set collision detection flag
2019-06-05 22:57:29 -04:00
p_uart_obj [ uart_num ] - > coll_det_flg = true ;
2019-04-17 08:19:44 -04:00
UART_EXIT_CRITICAL_ISR ( & ( uart_context [ uart_num ] . spinlock ) ) ;
uart_hal_clr_intsts_mask ( & ( uart_context [ uart_num ] . hal ) , UART_INTR_RS485_CLASH | UART_INTR_RS485_FRM_ERR | UART_INTR_RS485_PARITY_ERR ) ;
2018-04-11 02:56:00 -04:00
uart_event . type = UART_EVENT_MAX ;
2019-04-17 08:19:44 -04:00
} else if ( uart_intr_status & UART_INTR_TX_DONE ) {
if ( UART_IS_MODE_SET ( uart_num , UART_MODE_RS485_HALF_DUPLEX ) & & uart_hal_is_tx_idle ( & ( uart_context [ uart_num ] . hal ) ) ! = true ) {
// The TX_DONE interrupt is triggered but transmit is active
// then postpone interrupt processing for next interrupt
uart_event . type = UART_EVENT_MAX ;
} else {
2020-09-09 22:37:58 -04:00
// Workaround for RS485: If the RS485 half duplex mode is active
2019-04-17 08:19:44 -04:00
// and transmitter is in idle state then reset received buffer and reset RTS pin
// skip this behavior for other UART modes
UART_ENTER_CRITICAL_ISR ( & ( uart_context [ uart_num ] . spinlock ) ) ;
uart_hal_disable_intr_mask ( & ( uart_context [ uart_num ] . hal ) , UART_INTR_TX_DONE ) ;
if ( UART_IS_MODE_SET ( uart_num , UART_MODE_RS485_HALF_DUPLEX ) ) {
uart_hal_rxfifo_rst ( & ( uart_context [ uart_num ] . hal ) ) ;
uart_hal_set_rts ( & ( uart_context [ uart_num ] . hal ) , 1 ) ;
}
UART_EXIT_CRITICAL_ISR ( & ( uart_context [ uart_num ] . spinlock ) ) ;
uart_hal_clr_intsts_mask ( & ( uart_context [ uart_num ] . hal ) , UART_INTR_TX_DONE ) ;
xSemaphoreGiveFromISR ( p_uart_obj [ uart_num ] - > tx_done_sem , & HPTaskAwoken ) ;
2018-04-11 02:56:00 -04:00
}
2016-12-18 23:52:10 -05:00
} else {
2019-04-17 08:19:44 -04:00
uart_hal_clr_intsts_mask ( & ( uart_context [ uart_num ] . hal ) , uart_intr_status ) ; /*simply clear all other intr status*/
2016-12-14 20:45:40 -05:00
uart_event . type = UART_EVENT_MAX ;
}
2019-04-17 08:19:44 -04:00
if ( uart_event . type ! = UART_EVENT_MAX & & p_uart - > xQueueUart ) {
2017-08-25 09:04:13 -04:00
if ( pdFALSE = = xQueueSendFromISR ( p_uart - > xQueueUart , ( void * ) & uart_event , & HPTaskAwoken ) ) {
2018-03-13 03:57:33 -04:00
ESP_EARLY_LOGV ( UART_TAG , " UART event queue full " ) ;
2017-08-25 09:04:13 -04:00
}
2016-12-14 20:45:40 -05:00
}
2019-06-12 04:20:19 -04:00
}
if ( HPTaskAwoken = = pdTRUE ) {
portYIELD_FROM_ISR ( ) ;
2016-12-14 20:45:40 -05:00
}
}
/**************************************************************/
esp_err_t uart_wait_tx_done ( uart_port_t uart_num , TickType_t ticks_to_wait )
{
UART_CHECK ( ( uart_num < UART_NUM_MAX ) , " uart_num error " , ESP_FAIL ) ;
UART_CHECK ( ( p_uart_obj [ uart_num ] ) , " uart driver error " , ESP_FAIL ) ;
BaseType_t res ;
2019-05-17 09:29:45 -04:00
portTickType ticks_start = xTaskGetTickCount ( ) ;
2016-12-14 20:45:40 -05:00
//Take tx_mux
res = xSemaphoreTake ( p_uart_obj [ uart_num ] - > tx_mux , ( portTickType ) ticks_to_wait ) ;
2019-04-17 08:19:44 -04:00
if ( res = = pdFALSE ) {
2016-12-14 20:45:40 -05:00
return ESP_ERR_TIMEOUT ;
}
xSemaphoreTake ( p_uart_obj [ uart_num ] - > tx_done_sem , 0 ) ;
2019-04-17 08:19:44 -04:00
if ( uart_hal_is_tx_idle ( & ( uart_context [ uart_num ] . hal ) ) ) {
2016-12-14 20:45:40 -05:00
xSemaphoreGive ( p_uart_obj [ uart_num ] - > tx_mux ) ;
return ESP_OK ;
}
2019-04-17 08:19:44 -04:00
uart_hal_clr_intsts_mask ( & ( uart_context [ uart_num ] . hal ) , UART_INTR_TX_DONE ) ;
UART_ENTER_CRITICAL ( & ( uart_context [ uart_num ] . spinlock ) ) ;
uart_hal_ena_intr_mask ( & ( uart_context [ uart_num ] . hal ) , UART_INTR_TX_DONE ) ;
UART_EXIT_CRITICAL ( & ( uart_context [ uart_num ] . spinlock ) ) ;
2019-05-17 09:29:45 -04:00
TickType_t ticks_end = xTaskGetTickCount ( ) ;
if ( ticks_end - ticks_start > ticks_to_wait ) {
ticks_to_wait = 0 ;
} else {
ticks_to_wait = ticks_to_wait - ( ticks_end - ticks_start ) ;
}
2016-12-14 20:45:40 -05:00
//take 2nd tx_done_sem, wait given from ISR
res = xSemaphoreTake ( p_uart_obj [ uart_num ] - > tx_done_sem , ( portTickType ) ticks_to_wait ) ;
2019-04-17 08:19:44 -04:00
if ( res = = pdFALSE ) {
UART_ENTER_CRITICAL ( & ( uart_context [ uart_num ] . spinlock ) ) ;
uart_hal_disable_intr_mask ( & ( uart_context [ uart_num ] . hal ) , UART_INTR_TX_DONE ) ;
UART_EXIT_CRITICAL ( & ( uart_context [ uart_num ] . spinlock ) ) ;
2016-12-14 20:45:40 -05:00
xSemaphoreGive ( p_uart_obj [ uart_num ] - > tx_mux ) ;
2020-08-28 04:09:46 -04:00
return ESP_ERR_TIMEOUT ;
2016-12-14 20:45:40 -05:00
}
xSemaphoreGive ( p_uart_obj [ uart_num ] - > tx_mux ) ;
return ESP_OK ;
}
2019-04-17 08:19:44 -04:00
int uart_tx_chars ( uart_port_t uart_num , const char * buffer , uint32_t len )
2016-12-14 20:45:40 -05:00
{
UART_CHECK ( ( uart_num < UART_NUM_MAX ) , " uart_num error " , ( - 1 ) ) ;
UART_CHECK ( ( p_uart_obj [ uart_num ] ) , " uart driver error " , ( - 1 ) ) ;
UART_CHECK ( buffer , " buffer null " , ( - 1 ) ) ;
2019-04-17 08:19:44 -04:00
if ( len = = 0 ) {
2016-12-14 20:45:40 -05:00
return 0 ;
}
2019-04-17 08:19:44 -04:00
int tx_len = 0 ;
2016-12-14 20:45:40 -05:00
xSemaphoreTake ( p_uart_obj [ uart_num ] - > tx_mux , ( portTickType ) portMAX_DELAY ) ;
2019-04-17 08:19:44 -04:00
if ( UART_IS_MODE_SET ( uart_num , UART_MODE_RS485_HALF_DUPLEX ) ) {
UART_ENTER_CRITICAL ( & ( uart_context [ uart_num ] . spinlock ) ) ;
uart_hal_set_rts ( & ( uart_context [ uart_num ] . hal ) , 0 ) ;
uart_hal_ena_intr_mask ( & ( uart_context [ uart_num ] . hal ) , UART_INTR_TX_DONE ) ;
UART_EXIT_CRITICAL ( & ( uart_context [ uart_num ] . spinlock ) ) ;
}
uart_hal_write_txfifo ( & ( uart_context [ uart_num ] . hal ) , ( const uint8_t * ) buffer , len , ( uint32_t * ) & tx_len ) ;
2016-12-14 20:45:40 -05:00
xSemaphoreGive ( p_uart_obj [ uart_num ] - > tx_mux ) ;
return tx_len ;
}
2019-04-17 08:19:44 -04:00
static int uart_tx_all ( uart_port_t uart_num , const char * src , size_t size , bool brk_en , int brk_len )
2016-12-14 20:45:40 -05:00
{
2019-04-17 08:19:44 -04:00
if ( size = = 0 ) {
2016-12-14 20:45:40 -05:00
return 0 ;
}
size_t original_size = size ;
//lock for uart_tx
xSemaphoreTake ( p_uart_obj [ uart_num ] - > tx_mux , ( portTickType ) portMAX_DELAY ) ;
2018-04-11 02:56:00 -04:00
p_uart_obj [ uart_num ] - > coll_det_flg = false ;
2019-04-17 08:19:44 -04:00
if ( p_uart_obj [ uart_num ] - > tx_buf_size > 0 ) {
2016-12-14 20:45:40 -05:00
int max_size = xRingbufferGetMaxItemSize ( p_uart_obj [ uart_num ] - > tx_ring_buf ) ;
int offset = 0 ;
uart_tx_data_t evt ;
evt . tx_data . size = size ;
evt . tx_data . brk_len = brk_len ;
2019-04-17 08:19:44 -04:00
if ( brk_en ) {
2016-12-14 20:45:40 -05:00
evt . type = UART_DATA_BREAK ;
} else {
evt . type = UART_DATA ;
}
2019-04-17 08:19:44 -04:00
xRingbufferSend ( p_uart_obj [ uart_num ] - > tx_ring_buf , ( void * ) & evt , sizeof ( uart_tx_data_t ) , portMAX_DELAY ) ;
while ( size > 0 ) {
2016-12-14 20:45:40 -05:00
int send_size = size > max_size / 2 ? max_size / 2 : size ;
2019-04-17 08:19:44 -04:00
xRingbufferSend ( p_uart_obj [ uart_num ] - > tx_ring_buf , ( void * ) ( src + offset ) , send_size , portMAX_DELAY ) ;
2016-12-14 20:45:40 -05:00
size - = send_size ;
offset + = send_size ;
2017-04-12 04:57:37 -04:00
uart_enable_tx_intr ( uart_num , 1 , UART_EMPTY_THRESH_DEFAULT ) ;
2016-12-14 20:45:40 -05:00
}
} else {
2019-04-17 08:19:44 -04:00
while ( size ) {
2016-12-14 20:45:40 -05:00
//semaphore for tx_fifo available
2019-04-17 08:19:44 -04:00
if ( pdTRUE = = xSemaphoreTake ( p_uart_obj [ uart_num ] - > tx_fifo_sem , ( portTickType ) portMAX_DELAY ) ) {
uint32_t sent = 0 ;
if ( UART_IS_MODE_SET ( uart_num , UART_MODE_RS485_HALF_DUPLEX ) ) {
UART_ENTER_CRITICAL ( & ( uart_context [ uart_num ] . spinlock ) ) ;
uart_hal_set_rts ( & ( uart_context [ uart_num ] . hal ) , 0 ) ;
uart_hal_ena_intr_mask ( & ( uart_context [ uart_num ] . hal ) , UART_INTR_TX_DONE ) ;
UART_EXIT_CRITICAL ( & ( uart_context [ uart_num ] . spinlock ) ) ;
}
uart_hal_write_txfifo ( & ( uart_context [ uart_num ] . hal ) , ( const uint8_t * ) src , size , & sent ) ;
if ( sent < size ) {
2016-12-14 20:45:40 -05:00
p_uart_obj [ uart_num ] - > tx_waiting_fifo = true ;
uart_enable_tx_intr ( uart_num , 1 , UART_EMPTY_THRESH_DEFAULT ) ;
}
size - = sent ;
src + = sent ;
}
}
2019-04-17 08:19:44 -04:00
if ( brk_en ) {
uart_hal_clr_intsts_mask ( & ( uart_context [ uart_num ] . hal ) , UART_INTR_TX_BRK_DONE ) ;
UART_ENTER_CRITICAL ( & ( uart_context [ uart_num ] . spinlock ) ) ;
uart_hal_tx_break ( & ( uart_context [ uart_num ] . hal ) , brk_len ) ;
uart_hal_ena_intr_mask ( & ( uart_context [ uart_num ] . hal ) , UART_INTR_TX_BRK_DONE ) ;
UART_EXIT_CRITICAL ( & ( uart_context [ uart_num ] . spinlock ) ) ;
2016-12-14 20:45:40 -05:00
xSemaphoreTake ( p_uart_obj [ uart_num ] - > tx_brk_sem , ( portTickType ) portMAX_DELAY ) ;
}
xSemaphoreGive ( p_uart_obj [ uart_num ] - > tx_fifo_sem ) ;
}
xSemaphoreGive ( p_uart_obj [ uart_num ] - > tx_mux ) ;
return original_size ;
}
2020-05-26 08:30:09 -04:00
int uart_write_bytes ( uart_port_t uart_num , const void * src , size_t size )
2016-12-14 20:45:40 -05:00
{
UART_CHECK ( ( uart_num < UART_NUM_MAX ) , " uart_num error " , ( - 1 ) ) ;
UART_CHECK ( ( p_uart_obj [ uart_num ] ! = NULL ) , " uart driver error " , ( - 1 ) ) ;
UART_CHECK ( src , " buffer null " , ( - 1 ) ) ;
return uart_tx_all ( uart_num , src , size , 0 , 0 ) ;
}
2020-05-26 08:30:09 -04:00
int uart_write_bytes_with_break ( uart_port_t uart_num , const void * src , size_t size , int brk_len )
2016-12-14 20:45:40 -05:00
{
UART_CHECK ( ( uart_num < UART_NUM_MAX ) , " uart_num error " , ( - 1 ) ) ;
UART_CHECK ( ( p_uart_obj [ uart_num ] ) , " uart driver error " , ( - 1 ) ) ;
UART_CHECK ( ( size > 0 ) , " uart size error " , ( - 1 ) ) ;
UART_CHECK ( ( src ) , " uart data null " , ( - 1 ) ) ;
UART_CHECK ( ( brk_len > 0 & & brk_len < 256 ) , " break_num error " , ( - 1 ) ) ;
return uart_tx_all ( uart_num , src , size , 1 , brk_len ) ;
}
2018-10-19 02:51:28 -04:00
static bool uart_check_buf_full ( uart_port_t uart_num )
{
2019-04-17 08:19:44 -04:00
if ( p_uart_obj [ uart_num ] - > rx_buffer_full_flg ) {
2018-10-19 02:51:28 -04:00
BaseType_t res = xRingbufferSend ( p_uart_obj [ uart_num ] - > rx_ring_buf , p_uart_obj [ uart_num ] - > rx_data_buf , p_uart_obj [ uart_num ] - > rx_stash_len , 1 ) ;
2019-04-17 08:19:44 -04:00
if ( res = = pdTRUE ) {
UART_ENTER_CRITICAL ( & ( uart_context [ uart_num ] . spinlock ) ) ;
2018-10-19 02:51:28 -04:00
p_uart_obj [ uart_num ] - > rx_buffered_len + = p_uart_obj [ uart_num ] - > rx_stash_len ;
p_uart_obj [ uart_num ] - > rx_buffer_full_flg = false ;
2019-04-17 08:19:44 -04:00
UART_EXIT_CRITICAL ( & ( uart_context [ uart_num ] . spinlock ) ) ;
2018-10-19 02:51:28 -04:00
uart_enable_rx_intr ( p_uart_obj [ uart_num ] - > uart_num ) ;
return true ;
}
}
return false ;
}
2020-05-26 08:30:09 -04:00
int uart_read_bytes ( uart_port_t uart_num , void * buf , uint32_t length , TickType_t ticks_to_wait )
2016-12-14 20:45:40 -05:00
{
UART_CHECK ( ( uart_num < UART_NUM_MAX ) , " uart_num error " , ( - 1 ) ) ;
2017-09-27 16:03:22 -04:00
UART_CHECK ( ( buf ) , " uart data null " , ( - 1 ) ) ;
2016-12-14 20:45:40 -05:00
UART_CHECK ( ( p_uart_obj [ uart_num ] ) , " uart driver error " , ( - 1 ) ) ;
2019-04-17 08:19:44 -04:00
uint8_t * data = NULL ;
2016-12-14 20:45:40 -05:00
size_t size ;
size_t copy_len = 0 ;
int len_tmp ;
2019-04-17 08:19:44 -04:00
if ( xSemaphoreTake ( p_uart_obj [ uart_num ] - > rx_mux , ( portTickType ) ticks_to_wait ) ! = pdTRUE ) {
2016-12-14 20:45:40 -05:00
return - 1 ;
}
2019-04-17 08:19:44 -04:00
while ( length ) {
if ( p_uart_obj [ uart_num ] - > rx_cur_remain = = 0 ) {
data = ( uint8_t * ) xRingbufferReceive ( p_uart_obj [ uart_num ] - > rx_ring_buf , & size , ( portTickType ) ticks_to_wait ) ;
if ( data ) {
2016-12-14 20:45:40 -05:00
p_uart_obj [ uart_num ] - > rx_head_ptr = data ;
p_uart_obj [ uart_num ] - > rx_ptr = data ;
p_uart_obj [ uart_num ] - > rx_cur_remain = size ;
} else {
2018-10-19 02:51:28 -04:00
//When using dual cores, `rx_buffer_full_flg` may read and write on different cores at same time,
//which may lose synchronization. So we also need to call `uart_check_buf_full` once when ringbuffer is empty
//to solve the possible asynchronous issues.
2019-04-17 08:19:44 -04:00
if ( uart_check_buf_full ( uart_num ) ) {
2018-10-19 02:51:28 -04:00
//This condition will never be true if `uart_read_bytes`
//and `uart_rx_intr_handler_default` are scheduled on the same core.
continue ;
} else {
xSemaphoreGive ( p_uart_obj [ uart_num ] - > rx_mux ) ;
return copy_len ;
}
2016-12-14 20:45:40 -05:00
}
}
2019-04-17 08:19:44 -04:00
if ( p_uart_obj [ uart_num ] - > rx_cur_remain > length ) {
2016-12-14 20:45:40 -05:00
len_tmp = length ;
} else {
len_tmp = p_uart_obj [ uart_num ] - > rx_cur_remain ;
}
2020-05-26 08:30:09 -04:00
memcpy ( ( uint8_t * ) buf + copy_len , p_uart_obj [ uart_num ] - > rx_ptr , len_tmp ) ;
2019-04-17 08:19:44 -04:00
UART_ENTER_CRITICAL ( & ( uart_context [ uart_num ] . spinlock ) ) ;
2017-08-25 09:04:13 -04:00
p_uart_obj [ uart_num ] - > rx_buffered_len - = len_tmp ;
uart_pattern_queue_update ( uart_num , len_tmp ) ;
2016-12-14 20:45:40 -05:00
p_uart_obj [ uart_num ] - > rx_ptr + = len_tmp ;
2019-04-17 08:19:44 -04:00
UART_EXIT_CRITICAL ( & ( uart_context [ uart_num ] . spinlock ) ) ;
2016-12-14 20:45:40 -05:00
p_uart_obj [ uart_num ] - > rx_cur_remain - = len_tmp ;
copy_len + = len_tmp ;
length - = len_tmp ;
2019-04-17 08:19:44 -04:00
if ( p_uart_obj [ uart_num ] - > rx_cur_remain = = 0 ) {
2016-12-14 20:45:40 -05:00
vRingbufferReturnItem ( p_uart_obj [ uart_num ] - > rx_ring_buf , p_uart_obj [ uart_num ] - > rx_head_ptr ) ;
p_uart_obj [ uart_num ] - > rx_head_ptr = NULL ;
p_uart_obj [ uart_num ] - > rx_ptr = NULL ;
2018-10-19 02:51:28 -04:00
uart_check_buf_full ( uart_num ) ;
2016-12-14 20:45:40 -05:00
}
}
2017-08-25 09:04:13 -04:00
2016-12-14 20:45:40 -05:00
xSemaphoreGive ( p_uart_obj [ uart_num ] - > rx_mux ) ;
return copy_len ;
}
2019-04-17 08:19:44 -04:00
esp_err_t uart_get_buffered_data_len ( uart_port_t uart_num , size_t * size )
2016-12-18 23:52:10 -05:00
{
UART_CHECK ( ( uart_num < UART_NUM_MAX ) , " uart_num error " , ESP_FAIL ) ;
UART_CHECK ( ( p_uart_obj [ uart_num ] ) , " uart driver error " , ESP_FAIL ) ;
* size = p_uart_obj [ uart_num ] - > rx_buffered_len ;
return ESP_OK ;
}
2017-08-25 09:04:13 -04:00
esp_err_t uart_flush ( uart_port_t uart_num ) __attribute__ ( ( alias ( " uart_flush_input " ) ) ) ;
esp_err_t uart_flush_input ( uart_port_t uart_num )
2016-12-14 20:45:40 -05:00
{
UART_CHECK ( ( uart_num < UART_NUM_MAX ) , " uart_num error " , ESP_FAIL ) ;
UART_CHECK ( ( p_uart_obj [ uart_num ] ) , " uart driver error " , ESP_FAIL ) ;
2019-04-17 08:19:44 -04:00
uart_obj_t * p_uart = p_uart_obj [ uart_num ] ;
uint8_t * data ;
2016-12-14 20:45:40 -05:00
size_t size ;
//rx sem protect the ring buffer read related functions
xSemaphoreTake ( p_uart - > rx_mux , ( portTickType ) portMAX_DELAY ) ;
2016-12-18 23:52:10 -05:00
uart_disable_rx_intr ( p_uart_obj [ uart_num ] - > uart_num ) ;
2019-04-17 08:19:44 -04:00
while ( true ) {
if ( p_uart - > rx_head_ptr ) {
2016-12-14 20:45:40 -05:00
vRingbufferReturnItem ( p_uart - > rx_ring_buf , p_uart - > rx_head_ptr ) ;
2019-04-17 08:19:44 -04:00
UART_ENTER_CRITICAL ( & ( uart_context [ uart_num ] . spinlock ) ) ;
2016-12-18 23:52:10 -05:00
p_uart_obj [ uart_num ] - > rx_buffered_len - = p_uart - > rx_cur_remain ;
2017-08-25 09:04:13 -04:00
uart_pattern_queue_update ( uart_num , p_uart - > rx_cur_remain ) ;
2019-04-17 08:19:44 -04:00
UART_EXIT_CRITICAL ( & ( uart_context [ uart_num ] . spinlock ) ) ;
2016-12-14 20:45:40 -05:00
p_uart - > rx_ptr = NULL ;
p_uart - > rx_cur_remain = 0 ;
p_uart - > rx_head_ptr = NULL ;
}
2019-04-17 08:19:44 -04:00
data = ( uint8_t * ) xRingbufferReceive ( p_uart - > rx_ring_buf , & size , ( portTickType ) 0 ) ;
if ( data = = NULL ) {
if ( p_uart_obj [ uart_num ] - > rx_buffered_len ! = 0 ) {
2018-05-18 03:47:02 -04:00
ESP_LOGE ( UART_TAG , " rx_buffered_len error " ) ;
p_uart_obj [ uart_num ] - > rx_buffered_len = 0 ;
}
//We also need to clear the `rx_buffer_full_flg` here.
2019-04-17 08:19:44 -04:00
UART_ENTER_CRITICAL ( & ( uart_context [ uart_num ] . spinlock ) ) ;
2018-05-18 03:47:02 -04:00
p_uart_obj [ uart_num ] - > rx_buffer_full_flg = false ;
2019-04-17 08:19:44 -04:00
UART_EXIT_CRITICAL ( & ( uart_context [ uart_num ] . spinlock ) ) ;
2016-12-14 20:45:40 -05:00
break ;
}
2019-04-17 08:19:44 -04:00
UART_ENTER_CRITICAL ( & ( uart_context [ uart_num ] . spinlock ) ) ;
2016-12-18 23:52:10 -05:00
p_uart_obj [ uart_num ] - > rx_buffered_len - = size ;
2017-08-25 09:04:13 -04:00
uart_pattern_queue_update ( uart_num , size ) ;
2019-04-17 08:19:44 -04:00
UART_EXIT_CRITICAL ( & ( uart_context [ uart_num ] . spinlock ) ) ;
2016-12-14 20:45:40 -05:00
vRingbufferReturnItem ( p_uart - > rx_ring_buf , data ) ;
2019-04-17 08:19:44 -04:00
if ( p_uart_obj [ uart_num ] - > rx_buffer_full_flg ) {
2016-12-18 23:52:10 -05:00
BaseType_t res = xRingbufferSend ( p_uart_obj [ uart_num ] - > rx_ring_buf , p_uart_obj [ uart_num ] - > rx_data_buf , p_uart_obj [ uart_num ] - > rx_stash_len , 1 ) ;
2019-04-17 08:19:44 -04:00
if ( res = = pdTRUE ) {
UART_ENTER_CRITICAL ( & ( uart_context [ uart_num ] . spinlock ) ) ;
2016-12-18 23:52:10 -05:00
p_uart_obj [ uart_num ] - > rx_buffered_len + = p_uart_obj [ uart_num ] - > rx_stash_len ;
p_uart_obj [ uart_num ] - > rx_buffer_full_flg = false ;
2019-04-17 08:19:44 -04:00
UART_EXIT_CRITICAL ( & ( uart_context [ uart_num ] . spinlock ) ) ;
2016-12-18 23:52:10 -05:00
}
}
2016-12-14 20:45:40 -05:00
}
p_uart - > rx_ptr = NULL ;
p_uart - > rx_cur_remain = 0 ;
p_uart - > rx_head_ptr = NULL ;
2019-04-17 08:19:44 -04:00
uart_hal_rxfifo_rst ( & ( uart_context [ uart_num ] . hal ) ) ;
2016-12-18 23:52:10 -05:00
uart_enable_rx_intr ( p_uart_obj [ uart_num ] - > uart_num ) ;
xSemaphoreGive ( p_uart - > rx_mux ) ;
2016-12-14 20:45:40 -05:00
return ESP_OK ;
}
2016-12-21 21:43:42 -05:00
esp_err_t uart_driver_install ( uart_port_t uart_num , int rx_buffer_size , int tx_buffer_size , int queue_size , QueueHandle_t * uart_queue , int intr_alloc_flags )
2016-12-14 20:45:40 -05:00
{
2017-08-30 23:29:12 -04:00
esp_err_t r ;
2016-12-14 20:45:40 -05:00
UART_CHECK ( ( uart_num < UART_NUM_MAX ) , " uart_num error " , ESP_FAIL ) ;
2020-09-09 22:37:58 -04:00
UART_CHECK ( ( rx_buffer_size > SOC_UART_FIFO_LEN ) , " uart rx buffer length error " , ESP_FAIL ) ;
UART_CHECK ( ( tx_buffer_size > SOC_UART_FIFO_LEN ) | | ( tx_buffer_size = = 0 ) , " uart tx buffer length error " , ESP_FAIL ) ;
2019-08-26 05:14:15 -04:00
# if CONFIG_UART_ISR_IN_IRAM
2019-11-08 14:27:31 -05:00
if ( ( intr_alloc_flags & ESP_INTR_FLAG_IRAM ) = = 0 ) {
ESP_LOGI ( UART_TAG , " ESP_INTR_FLAG_IRAM flag not set while CONFIG_UART_ISR_IN_IRAM is enabled, flag updated " ) ;
intr_alloc_flags | = ESP_INTR_FLAG_IRAM ;
}
2019-08-26 05:14:15 -04:00
# else
2019-11-08 14:27:31 -05:00
if ( ( intr_alloc_flags & ESP_INTR_FLAG_IRAM ) ! = 0 ) {
ESP_LOGW ( UART_TAG , " ESP_INTR_FLAG_IRAM flag is set while CONFIG_UART_ISR_IN_IRAM is not enabled, flag updated " ) ;
intr_alloc_flags & = ~ ESP_INTR_FLAG_IRAM ;
}
2019-08-26 05:14:15 -04:00
# endif
2017-08-30 23:29:12 -04:00
2019-04-17 08:19:44 -04:00
if ( p_uart_obj [ uart_num ] = = NULL ) {
p_uart_obj [ uart_num ] = ( uart_obj_t * ) heap_caps_calloc ( 1 , sizeof ( uart_obj_t ) , MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT ) ;
if ( p_uart_obj [ uart_num ] = = NULL ) {
2016-12-14 20:45:40 -05:00
ESP_LOGE ( UART_TAG , " UART driver malloc error " ) ;
return ESP_FAIL ;
}
p_uart_obj [ uart_num ] - > uart_num = uart_num ;
2018-04-11 02:56:00 -04:00
p_uart_obj [ uart_num ] - > uart_mode = UART_MODE_UART ;
p_uart_obj [ uart_num ] - > coll_det_flg = false ;
2020-03-30 10:05:48 -04:00
p_uart_obj [ uart_num ] - > rx_always_timeout_flg = false ;
2016-12-14 20:45:40 -05:00
p_uart_obj [ uart_num ] - > tx_fifo_sem = xSemaphoreCreateBinary ( ) ;
xSemaphoreGive ( p_uart_obj [ uart_num ] - > tx_fifo_sem ) ;
p_uart_obj [ uart_num ] - > tx_done_sem = xSemaphoreCreateBinary ( ) ;
p_uart_obj [ uart_num ] - > tx_brk_sem = xSemaphoreCreateBinary ( ) ;
p_uart_obj [ uart_num ] - > tx_mux = xSemaphoreCreateMutex ( ) ;
p_uart_obj [ uart_num ] - > rx_mux = xSemaphoreCreateMutex ( ) ;
p_uart_obj [ uart_num ] - > queue_size = queue_size ;
p_uart_obj [ uart_num ] - > tx_ptr = NULL ;
p_uart_obj [ uart_num ] - > tx_head = NULL ;
p_uart_obj [ uart_num ] - > tx_len_tot = 0 ;
p_uart_obj [ uart_num ] - > tx_brk_flg = 0 ;
p_uart_obj [ uart_num ] - > tx_brk_len = 0 ;
p_uart_obj [ uart_num ] - > tx_waiting_brk = 0 ;
2016-12-18 23:52:10 -05:00
p_uart_obj [ uart_num ] - > rx_buffered_len = 0 ;
2017-08-25 09:04:13 -04:00
uart_pattern_queue_reset ( uart_num , UART_PATTERN_DET_QLEN_DEFAULT ) ;
2016-12-14 20:45:40 -05:00
2019-04-17 08:19:44 -04:00
if ( uart_queue ) {
2016-12-14 20:45:40 -05:00
p_uart_obj [ uart_num ] - > xQueueUart = xQueueCreate ( queue_size , sizeof ( uart_event_t ) ) ;
2016-12-21 21:43:42 -05:00
* uart_queue = p_uart_obj [ uart_num ] - > xQueueUart ;
2016-12-14 20:45:40 -05:00
ESP_LOGI ( UART_TAG , " queue free spaces: %d " , uxQueueSpacesAvailable ( p_uart_obj [ uart_num ] - > xQueueUart ) ) ;
} else {
p_uart_obj [ uart_num ] - > xQueueUart = NULL ;
}
p_uart_obj [ uart_num ] - > rx_buffer_full_flg = false ;
p_uart_obj [ uart_num ] - > tx_waiting_fifo = false ;
p_uart_obj [ uart_num ] - > rx_ptr = NULL ;
p_uart_obj [ uart_num ] - > rx_cur_remain = 0 ;
p_uart_obj [ uart_num ] - > rx_head_ptr = NULL ;
p_uart_obj [ uart_num ] - > rx_ring_buf = xRingbufferCreate ( rx_buffer_size , RINGBUF_TYPE_BYTEBUF ) ;
2019-04-17 08:19:44 -04:00
if ( tx_buffer_size > 0 ) {
2016-12-14 20:45:40 -05:00
p_uart_obj [ uart_num ] - > tx_ring_buf = xRingbufferCreate ( tx_buffer_size , RINGBUF_TYPE_NOSPLIT ) ;
p_uart_obj [ uart_num ] - > tx_buf_size = tx_buffer_size ;
} else {
p_uart_obj [ uart_num ] - > tx_ring_buf = NULL ;
p_uart_obj [ uart_num ] - > tx_buf_size = 0 ;
}
2018-05-03 04:41:10 -04:00
p_uart_obj [ uart_num ] - > uart_select_notif_callback = NULL ;
2016-12-14 20:45:40 -05:00
} else {
ESP_LOGE ( UART_TAG , " UART driver already installed " ) ;
return ESP_FAIL ;
}
2017-02-06 23:05:18 -05:00
2016-12-14 20:45:40 -05:00
uart_intr_config_t uart_intr = {
2019-11-18 08:36:40 -05:00
. intr_enable_mask = UART_INTR_CONFIG_FLAG ,
2016-12-14 20:45:40 -05:00
. rxfifo_full_thresh = UART_FULL_THRESH_DEFAULT ,
. rx_timeout_thresh = UART_TOUT_THRESH_DEFAULT ,
2020-03-30 10:05:48 -04:00
. txfifo_empty_intr_thresh = UART_EMPTY_THRESH_DEFAULT ,
2016-12-14 20:45:40 -05:00
} ;
2019-04-17 08:19:44 -04:00
uart_module_enable ( uart_num ) ;
2020-09-09 22:37:58 -04:00
uart_hal_disable_intr_mask ( & ( uart_context [ uart_num ] . hal ) , UART_LL_INTR_MASK ) ;
uart_hal_clr_intsts_mask ( & ( uart_context [ uart_num ] . hal ) , UART_LL_INTR_MASK ) ;
2019-04-17 08:19:44 -04:00
r = uart_isr_register ( uart_num , uart_rx_intr_handler_default , p_uart_obj [ uart_num ] , intr_alloc_flags , & p_uart_obj [ uart_num ] - > intr_handle ) ;
if ( r ! = ESP_OK ) goto err ;
r = uart_intr_config ( uart_num , & uart_intr ) ;
if ( r ! = ESP_OK ) goto err ;
2017-08-30 23:29:12 -04:00
return r ;
err :
uart_driver_delete ( uart_num ) ;
return r ;
2016-12-14 20:45:40 -05:00
}
//Make sure no other tasks are still using UART before you call this function
esp_err_t uart_driver_delete ( uart_port_t uart_num )
{
UART_CHECK ( ( uart_num < UART_NUM_MAX ) , " uart_num error " , ESP_FAIL ) ;
2019-04-17 08:19:44 -04:00
if ( p_uart_obj [ uart_num ] = = NULL ) {
2016-12-14 20:45:40 -05:00
ESP_LOGI ( UART_TAG , " ALREADY NULL " ) ;
return ESP_OK ;
}
2016-11-25 04:33:51 -05:00
esp_intr_free ( p_uart_obj [ uart_num ] - > intr_handle ) ;
2016-12-14 20:45:40 -05:00
uart_disable_rx_intr ( uart_num ) ;
uart_disable_tx_intr ( uart_num ) ;
2017-08-25 09:04:13 -04:00
uart_pattern_link_free ( uart_num ) ;
2016-12-14 20:45:40 -05:00
2019-04-17 08:19:44 -04:00
if ( p_uart_obj [ uart_num ] - > tx_fifo_sem ) {
2016-12-14 20:45:40 -05:00
vSemaphoreDelete ( p_uart_obj [ uart_num ] - > tx_fifo_sem ) ;
p_uart_obj [ uart_num ] - > tx_fifo_sem = NULL ;
}
2019-04-17 08:19:44 -04:00
if ( p_uart_obj [ uart_num ] - > tx_done_sem ) {
2016-12-14 20:45:40 -05:00
vSemaphoreDelete ( p_uart_obj [ uart_num ] - > tx_done_sem ) ;
p_uart_obj [ uart_num ] - > tx_done_sem = NULL ;
}
2019-04-17 08:19:44 -04:00
if ( p_uart_obj [ uart_num ] - > tx_brk_sem ) {
2016-12-14 20:45:40 -05:00
vSemaphoreDelete ( p_uart_obj [ uart_num ] - > tx_brk_sem ) ;
p_uart_obj [ uart_num ] - > tx_brk_sem = NULL ;
}
2019-04-17 08:19:44 -04:00
if ( p_uart_obj [ uart_num ] - > tx_mux ) {
2016-12-14 20:45:40 -05:00
vSemaphoreDelete ( p_uart_obj [ uart_num ] - > tx_mux ) ;
p_uart_obj [ uart_num ] - > tx_mux = NULL ;
}
2019-04-17 08:19:44 -04:00
if ( p_uart_obj [ uart_num ] - > rx_mux ) {
2016-12-14 20:45:40 -05:00
vSemaphoreDelete ( p_uart_obj [ uart_num ] - > rx_mux ) ;
p_uart_obj [ uart_num ] - > rx_mux = NULL ;
}
2019-04-17 08:19:44 -04:00
if ( p_uart_obj [ uart_num ] - > xQueueUart ) {
2016-12-14 20:45:40 -05:00
vQueueDelete ( p_uart_obj [ uart_num ] - > xQueueUart ) ;
p_uart_obj [ uart_num ] - > xQueueUart = NULL ;
}
2019-04-17 08:19:44 -04:00
if ( p_uart_obj [ uart_num ] - > rx_ring_buf ) {
2016-12-14 20:45:40 -05:00
vRingbufferDelete ( p_uart_obj [ uart_num ] - > rx_ring_buf ) ;
p_uart_obj [ uart_num ] - > rx_ring_buf = NULL ;
}
2019-04-17 08:19:44 -04:00
if ( p_uart_obj [ uart_num ] - > tx_ring_buf ) {
2016-12-14 20:45:40 -05:00
vRingbufferDelete ( p_uart_obj [ uart_num ] - > tx_ring_buf ) ;
p_uart_obj [ uart_num ] - > tx_ring_buf = NULL ;
}
2019-04-17 08:19:44 -04:00
heap_caps_free ( p_uart_obj [ uart_num ] ) ;
2016-12-14 20:45:40 -05:00
p_uart_obj [ uart_num ] = NULL ;
2017-10-18 00:04:59 -04:00
2020-11-23 06:31:50 -05:00
# if SOC_UART_SUPPORT_RTC_CLK
uart_sclk_t sclk = 0 ;
uart_hal_get_sclk ( & ( uart_context [ uart_num ] . hal ) , & sclk ) ;
if ( sclk = = UART_SCLK_RTC ) {
rtc_clk_disable ( uart_num ) ;
}
# endif
2019-04-17 08:19:44 -04:00
uart_module_disable ( uart_num ) ;
2016-12-14 20:45:40 -05:00
return ESP_OK ;
}
2018-05-03 04:41:10 -04:00
2020-01-14 07:48:36 -05:00
bool uart_is_driver_installed ( uart_port_t uart_num )
{
return uart_num < UART_NUM_MAX & & ( p_uart_obj [ uart_num ] ! = NULL ) ;
}
2018-05-03 04:41:10 -04:00
void uart_set_select_notif_callback ( uart_port_t uart_num , uart_select_notif_callback_t uart_select_notif_callback )
{
if ( uart_num < UART_NUM_MAX & & p_uart_obj [ uart_num ] ) {
p_uart_obj [ uart_num ] - > uart_select_notif_callback = ( uart_select_notif_callback_t ) uart_select_notif_callback ;
}
}
2019-07-16 05:33:30 -04:00
portMUX_TYPE * uart_get_selectlock ( void )
2018-05-03 04:41:10 -04:00
{
return & uart_selectlock ;
}
2019-06-13 23:01:30 -04:00
2018-04-11 02:56:00 -04:00
// Set UART mode
2019-06-05 22:57:29 -04:00
esp_err_t uart_set_mode ( uart_port_t uart_num , uart_mode_t mode )
2018-04-11 02:56:00 -04:00
{
UART_CHECK ( ( uart_num < UART_NUM_MAX ) , " uart_num error " , ESP_ERR_INVALID_ARG ) ;
2019-04-17 08:19:44 -04:00
UART_CHECK ( ( p_uart_obj [ uart_num ] ) , " uart driver error " , ESP_ERR_INVALID_STATE ) ;
2019-06-05 22:57:29 -04:00
if ( ( mode = = UART_MODE_RS485_COLLISION_DETECT ) | | ( mode = = UART_MODE_RS485_APP_CTRL )
2018-04-11 02:56:00 -04:00
| | ( mode = = UART_MODE_RS485_HALF_DUPLEX ) ) {
2019-04-17 08:19:44 -04:00
UART_CHECK ( ( ! uart_hal_is_hw_rts_en ( & ( uart_context [ uart_num ] . hal ) ) ) ,
" disable hw flowctrl before using RS485 mode " , ESP_ERR_INVALID_ARG ) ;
2018-04-11 02:56:00 -04:00
}
2019-04-17 08:19:44 -04:00
UART_ENTER_CRITICAL ( & ( uart_context [ uart_num ] . spinlock ) ) ;
uart_hal_set_mode ( & ( uart_context [ uart_num ] . hal ) , mode ) ;
if ( mode = = UART_MODE_RS485_COLLISION_DETECT ) {
2018-04-11 02:56:00 -04:00
// This mode allows read while transmitting that allows collision detection
p_uart_obj [ uart_num ] - > coll_det_flg = false ;
// Enable collision detection interrupts
2019-04-17 08:19:44 -04:00
uart_hal_ena_intr_mask ( & ( uart_context [ uart_num ] . hal ) , UART_INTR_RXFIFO_TOUT
| UART_INTR_RXFIFO_FULL
| UART_INTR_RS485_CLASH
| UART_INTR_RS485_FRM_ERR
| UART_INTR_RS485_PARITY_ERR ) ;
2018-04-11 02:56:00 -04:00
}
p_uart_obj [ uart_num ] - > uart_mode = mode ;
2019-04-17 08:19:44 -04:00
UART_EXIT_CRITICAL ( & ( uart_context [ uart_num ] . spinlock ) ) ;
2018-04-11 02:56:00 -04:00
return ESP_OK ;
}
2019-11-18 08:36:40 -05:00
esp_err_t uart_set_rx_full_threshold ( uart_port_t uart_num , int threshold )
{
UART_CHECK ( ( uart_num < UART_NUM_MAX ) , " uart_num error " , ESP_ERR_INVALID_ARG ) ;
UART_CHECK ( ( threshold < UART_RXFIFO_FULL_THRHD_V ) & & ( threshold > 0 ) ,
" rx fifo full threshold value error " , ESP_ERR_INVALID_ARG ) ;
if ( p_uart_obj [ uart_num ] = = NULL ) {
ESP_LOGE ( UART_TAG , " call uart_driver_install API first " ) ;
return ESP_ERR_INVALID_STATE ;
}
UART_ENTER_CRITICAL ( & ( uart_context [ uart_num ] . spinlock ) ) ;
if ( uart_hal_get_intr_ena_status ( & ( uart_context [ uart_num ] . hal ) ) & UART_INTR_RXFIFO_FULL ) {
uart_hal_set_rxfifo_full_thr ( & ( uart_context [ uart_num ] . hal ) , threshold ) ;
}
UART_EXIT_CRITICAL ( & ( uart_context [ uart_num ] . spinlock ) ) ;
return ESP_OK ;
}
esp_err_t uart_set_tx_empty_threshold ( uart_port_t uart_num , int threshold )
{
UART_CHECK ( ( uart_num < UART_NUM_MAX ) , " uart_num error " , ESP_ERR_INVALID_ARG ) ;
UART_CHECK ( ( threshold < UART_TXFIFO_EMPTY_THRHD_V ) & & ( threshold > 0 ) ,
" tx fifo empty threshold value error " , ESP_ERR_INVALID_ARG ) ;
if ( p_uart_obj [ uart_num ] = = NULL ) {
ESP_LOGE ( UART_TAG , " call uart_driver_install API first " ) ;
return ESP_ERR_INVALID_STATE ;
}
UART_ENTER_CRITICAL ( & ( uart_context [ uart_num ] . spinlock ) ) ;
if ( uart_hal_get_intr_ena_status ( & ( uart_context [ uart_num ] . hal ) ) & UART_INTR_TXFIFO_EMPTY ) {
uart_hal_set_txfifo_empty_thr ( & ( uart_context [ uart_num ] . hal ) , threshold ) ;
}
UART_EXIT_CRITICAL ( & ( uart_context [ uart_num ] . spinlock ) ) ;
return ESP_OK ;
}
2019-06-05 22:57:29 -04:00
esp_err_t uart_set_rx_timeout ( uart_port_t uart_num , const uint8_t tout_thresh )
2018-04-11 02:56:00 -04:00
{
2018-06-27 10:48:14 -04:00
UART_CHECK ( ( uart_num < UART_NUM_MAX ) , " uart_num error " , ESP_ERR_INVALID_ARG ) ;
2020-03-27 04:20:21 -04:00
// get maximum timeout threshold
uint16_t tout_max_thresh = uart_hal_get_max_rx_timeout_thrd ( & ( uart_context [ uart_num ] . hal ) ) ;
if ( tout_thresh > tout_max_thresh ) {
ESP_LOGE ( UART_TAG , " tout_thresh = %d > maximum value = %d " , tout_thresh , tout_max_thresh ) ;
return ESP_ERR_INVALID_ARG ;
}
2019-04-17 08:19:44 -04:00
UART_ENTER_CRITICAL ( & ( uart_context [ uart_num ] . spinlock ) ) ;
uart_hal_set_rx_timeout ( & ( uart_context [ uart_num ] . hal ) , tout_thresh ) ;
UART_EXIT_CRITICAL ( & ( uart_context [ uart_num ] . spinlock ) ) ;
2018-04-11 02:56:00 -04:00
return ESP_OK ;
}
2019-04-17 08:19:44 -04:00
esp_err_t uart_get_collision_flag ( uart_port_t uart_num , bool * collision_flag )
2018-04-11 02:56:00 -04:00
{
2018-06-27 10:48:14 -04:00
UART_CHECK ( ( uart_num < UART_NUM_MAX ) , " uart_num error " , ESP_ERR_INVALID_ARG ) ;
2019-04-17 08:19:44 -04:00
UART_CHECK ( ( p_uart_obj [ uart_num ] ) , " uart driver error " , ESP_FAIL ) ;
2018-06-27 10:48:14 -04:00
UART_CHECK ( ( collision_flag ! = NULL ) , " wrong parameter pointer " , ESP_ERR_INVALID_ARG ) ;
2019-06-05 22:57:29 -04:00
UART_CHECK ( ( UART_IS_MODE_SET ( uart_num , UART_MODE_RS485_HALF_DUPLEX )
2019-05-22 08:21:11 -04:00
| | UART_IS_MODE_SET ( uart_num , UART_MODE_RS485_COLLISION_DETECT ) ) ,
2018-06-27 10:48:14 -04:00
" wrong mode " , ESP_ERR_INVALID_ARG ) ;
2018-04-11 02:56:00 -04:00
* collision_flag = p_uart_obj [ uart_num ] - > coll_det_flg ;
return ESP_OK ;
}
2018-08-13 20:40:31 -04:00
esp_err_t uart_set_wakeup_threshold ( uart_port_t uart_num , int wakeup_threshold )
{
UART_CHECK ( ( uart_num < UART_NUM_MAX ) , " uart_num error " , ESP_ERR_INVALID_ARG ) ;
UART_CHECK ( ( wakeup_threshold < = UART_ACTIVE_THRESHOLD_V & &
wakeup_threshold > UART_MIN_WAKEUP_THRESH ) ,
2019-04-17 08:19:44 -04:00
" wakeup_threshold out of bounds " , ESP_ERR_INVALID_ARG ) ;
UART_ENTER_CRITICAL ( & ( uart_context [ uart_num ] . spinlock ) ) ;
uart_hal_set_wakeup_thrd ( & ( uart_context [ uart_num ] . hal ) , wakeup_threshold ) ;
UART_EXIT_CRITICAL ( & ( uart_context [ uart_num ] . spinlock ) ) ;
2018-08-13 20:40:31 -04:00
return ESP_OK ;
}
2019-04-17 08:19:44 -04:00
esp_err_t uart_get_wakeup_threshold ( uart_port_t uart_num , int * out_wakeup_threshold )
2018-08-13 20:40:31 -04:00
{
UART_CHECK ( ( uart_num < UART_NUM_MAX ) , " uart_num error " , ESP_ERR_INVALID_ARG ) ;
UART_CHECK ( ( out_wakeup_threshold ! = NULL ) , " argument is NULL " , ESP_ERR_INVALID_ARG ) ;
2019-04-17 08:19:44 -04:00
uart_hal_get_wakeup_thrd ( & ( uart_context [ uart_num ] . hal ) , ( uint32_t * ) out_wakeup_threshold ) ;
2018-08-13 20:40:31 -04:00
return ESP_OK ;
}
2019-05-22 08:21:11 -04:00
2019-04-17 08:19:44 -04:00
esp_err_t uart_wait_tx_idle_polling ( uart_port_t uart_num )
2019-05-22 08:21:11 -04:00
{
2019-04-17 08:19:44 -04:00
UART_CHECK ( ( uart_num < UART_NUM_MAX ) , " uart_num error " , ESP_ERR_INVALID_ARG ) ;
while ( ! uart_hal_is_tx_idle ( & ( uart_context [ uart_num ] . hal ) ) ) ;
return ESP_OK ;
2019-05-22 08:21:11 -04:00
}
2019-04-17 08:19:44 -04:00
esp_err_t uart_set_loop_back ( uart_port_t uart_num , bool loop_back_en )
{
UART_CHECK ( ( uart_num < UART_NUM_MAX ) , " uart_num error " , ESP_ERR_INVALID_ARG ) ;
uart_hal_set_loop_back ( & ( uart_context [ uart_num ] . hal ) , loop_back_en ) ;
return ESP_OK ;
2020-01-14 07:48:36 -05:00
}
2020-03-30 10:05:48 -04:00
void uart_set_always_rx_timeout ( uart_port_t uart_num , bool always_rx_timeout )
{
uint16_t rx_tout = uart_hal_get_rx_tout_thr ( & ( uart_context [ uart_num ] . hal ) ) ;
if ( rx_tout ) {
p_uart_obj [ uart_num ] - > rx_always_timeout_flg = always_rx_timeout ;
} else {
p_uart_obj [ uart_num ] - > rx_always_timeout_flg = false ;
}
}