2023-09-08 18:23:10 +08:00
|
|
|
/*
|
2024-01-12 15:09:51 +08:00
|
|
|
* SPDX-FileCopyrightText: 2023-2024 Espressif Systems (Shanghai) CO LTD
|
2023-09-08 18:23:10 +08:00
|
|
|
*
|
|
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "hal/hal_utils.h"
|
2023-09-11 12:58:38 +08:00
|
|
|
#include "hal/assert.h"
|
2023-09-08 18:23:10 +08:00
|
|
|
|
2024-06-01 01:48:40 +08:00
|
|
|
#ifndef BIT
|
|
|
|
#define BIT(n) (1UL << (n))
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifndef BIT_MASK
|
|
|
|
#define BIT_MASK(n) (BIT(n) - 1)
|
|
|
|
#endif
|
|
|
|
|
2023-09-08 18:23:10 +08:00
|
|
|
__attribute__((always_inline))
|
|
|
|
static inline uint32_t _sub_abs(uint32_t a, uint32_t b)
|
|
|
|
{
|
|
|
|
return a > b ? a - b : b - a;
|
|
|
|
}
|
|
|
|
|
2023-09-11 12:58:38 +08:00
|
|
|
uint32_t hal_utils_calc_clk_div_frac_fast(const hal_utils_clk_info_t *clk_info, hal_utils_clk_div_t *clk_div)
|
2023-09-08 18:23:10 +08:00
|
|
|
{
|
2023-09-11 12:58:38 +08:00
|
|
|
HAL_ASSERT(clk_info->max_fract > 2);
|
|
|
|
uint32_t div_denom = 2;
|
2023-09-08 18:23:10 +08:00
|
|
|
uint32_t div_numer = 0;
|
|
|
|
uint32_t div_integ = clk_info->src_freq_hz / clk_info->exp_freq_hz;
|
|
|
|
uint32_t freq_error = clk_info->src_freq_hz % clk_info->exp_freq_hz;
|
|
|
|
|
|
|
|
// fractional divider
|
|
|
|
if (freq_error) {
|
2023-09-11 12:58:38 +08:00
|
|
|
// Carry bit if the decimal is greater than 1.0 - 1.0 / ((max_fract - 1) * 2)
|
|
|
|
if (freq_error < clk_info->exp_freq_hz - clk_info->exp_freq_hz / (clk_info->max_fract - 1) * 2) {
|
|
|
|
// Calculate the Greatest Common Divisor, time complexity O(log n)
|
2024-03-29 11:36:27 +08:00
|
|
|
uint32_t gcd = hal_utils_gcd(clk_info->exp_freq_hz, freq_error);
|
2023-09-11 12:58:38 +08:00
|
|
|
// divide by the Greatest Common Divisor to get the accurate fraction before normalization
|
|
|
|
div_denom = clk_info->exp_freq_hz / gcd;
|
|
|
|
div_numer = freq_error / gcd;
|
|
|
|
// normalize div_denom and div_numer
|
|
|
|
uint32_t d = div_denom / clk_info->max_fract + 1;
|
|
|
|
// divide by the normalization coefficient to get the denominator and numerator within range of clk_info->max_fract
|
|
|
|
div_denom /= d;
|
|
|
|
div_numer /= d;
|
|
|
|
} else {
|
|
|
|
div_integ++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// If the expect frequency is too high or too low to satisfy the integral division range, failed and return 0
|
|
|
|
if (div_integ < clk_info->min_integ || div_integ >= clk_info->max_integ || div_integ == 0) {
|
|
|
|
return 0;
|
2023-09-08 18:23:10 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
// Assign result
|
2023-09-11 12:58:38 +08:00
|
|
|
clk_div->integer = div_integ;
|
|
|
|
clk_div->denominator = div_denom;
|
|
|
|
clk_div->numerator = div_numer;
|
2023-09-08 18:23:10 +08:00
|
|
|
|
|
|
|
// Return the actual frequency
|
|
|
|
if (div_numer) {
|
|
|
|
uint32_t temp = div_integ * div_denom + div_numer;
|
|
|
|
return (uint32_t)(((uint64_t)clk_info->src_freq_hz * div_denom + temp / 2) / temp);
|
|
|
|
}
|
|
|
|
return clk_info->src_freq_hz / div_integ;
|
|
|
|
}
|
|
|
|
|
2023-09-11 12:58:38 +08:00
|
|
|
uint32_t hal_utils_calc_clk_div_frac_accurate(const hal_utils_clk_info_t *clk_info, hal_utils_clk_div_t *clk_div)
|
2023-09-08 18:23:10 +08:00
|
|
|
{
|
2023-09-11 12:58:38 +08:00
|
|
|
HAL_ASSERT(clk_info->max_fract > 2);
|
|
|
|
uint32_t div_denom = 2;
|
2023-09-08 18:23:10 +08:00
|
|
|
uint32_t div_numer = 0;
|
|
|
|
uint32_t div_integ = clk_info->src_freq_hz / clk_info->exp_freq_hz;
|
|
|
|
uint32_t freq_error = clk_info->src_freq_hz % clk_info->exp_freq_hz;
|
|
|
|
|
|
|
|
if (freq_error) {
|
2023-09-11 12:58:38 +08:00
|
|
|
// Carry bit if the decimal is greater than 1.0 - 1.0 / ((max_fract - 1) * 2)
|
|
|
|
if (freq_error < clk_info->exp_freq_hz - clk_info->exp_freq_hz / (clk_info->max_fract - 1) * 2) {
|
2023-09-08 18:23:10 +08:00
|
|
|
// Search the closest fraction, time complexity O(n)
|
2023-09-11 12:58:38 +08:00
|
|
|
for (uint32_t sub = 0, a = 2, b = 0, min = UINT32_MAX; min && a < clk_info->max_fract; a++) {
|
2023-09-08 18:23:10 +08:00
|
|
|
b = (a * freq_error + clk_info->exp_freq_hz / 2) / clk_info->exp_freq_hz;
|
|
|
|
sub = _sub_abs(clk_info->exp_freq_hz * b, freq_error * a);
|
|
|
|
if (sub < min) {
|
|
|
|
div_denom = a;
|
|
|
|
div_numer = b;
|
|
|
|
min = sub;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
div_integ++;
|
|
|
|
}
|
|
|
|
}
|
2023-09-11 12:58:38 +08:00
|
|
|
|
|
|
|
// If the expect frequency is too high or too low to satisfy the integral division range, failed and return 0
|
|
|
|
if (div_integ < clk_info->min_integ || div_integ >= clk_info->max_integ || div_integ == 0) {
|
2023-09-08 18:23:10 +08:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Assign result
|
2023-09-11 12:58:38 +08:00
|
|
|
clk_div->integer = div_integ;
|
|
|
|
clk_div->denominator = div_denom;
|
|
|
|
clk_div->numerator = div_numer;
|
2023-09-08 18:23:10 +08:00
|
|
|
|
|
|
|
// Return the actual frequency
|
|
|
|
if (div_numer) {
|
|
|
|
uint32_t temp = div_integ * div_denom + div_numer;
|
|
|
|
return (uint32_t)(((uint64_t)clk_info->src_freq_hz * div_denom + temp / 2) / temp);
|
|
|
|
}
|
|
|
|
return clk_info->src_freq_hz / div_integ;
|
|
|
|
}
|
2023-09-11 12:58:38 +08:00
|
|
|
|
|
|
|
uint32_t hal_utils_calc_clk_div_integer(const hal_utils_clk_info_t *clk_info, uint32_t *int_div)
|
|
|
|
{
|
|
|
|
uint32_t div_integ = clk_info->src_freq_hz / clk_info->exp_freq_hz;
|
|
|
|
uint32_t freq_error = clk_info->src_freq_hz % clk_info->exp_freq_hz;
|
|
|
|
|
|
|
|
/* If there is error and always round up,
|
|
|
|
Or, do the normal rounding and error >= (src/n + src/(n+1)) / 2,
|
|
|
|
then carry the bit */
|
|
|
|
if ((freq_error && clk_info->round_opt == HAL_DIV_ROUND_UP) || (clk_info->round_opt == HAL_DIV_ROUND &&
|
|
|
|
(freq_error >= clk_info->src_freq_hz / (2 * div_integ * (div_integ + 1))))) {
|
|
|
|
div_integ++;
|
|
|
|
}
|
2024-01-12 15:09:51 +08:00
|
|
|
/* Check the integral division whether in range [min_integ, max_integ) */
|
|
|
|
/* If the result is less than the minimum, set the division to the minimum but return 0 */
|
|
|
|
if (div_integ < clk_info->min_integ) {
|
|
|
|
*int_div = clk_info->min_integ;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
/* if the result is greater or equal to the maximum , set the division to the maximum but return 0 */
|
|
|
|
if (div_integ >= clk_info->max_integ) {
|
|
|
|
*int_div = clk_info->max_integ - 1;
|
|
|
|
return 0;
|
|
|
|
}
|
2023-09-11 12:58:38 +08:00
|
|
|
|
|
|
|
// Assign result
|
|
|
|
*int_div = div_integ;
|
|
|
|
// Return the actual frequency
|
|
|
|
return clk_info->src_freq_hz / div_integ;
|
|
|
|
}
|
2024-06-01 01:48:40 +08:00
|
|
|
|
|
|
|
typedef union {
|
|
|
|
struct {
|
|
|
|
uint32_t mantissa: 23;
|
|
|
|
uint32_t exponent: 8;
|
|
|
|
uint32_t sign: 1;
|
|
|
|
};
|
|
|
|
uint32_t val;
|
|
|
|
} hal_utils_ieee754_float_t;
|
|
|
|
|
|
|
|
int hal_utils_float_to_fixed_point_32b(float flt, const hal_utils_fixed_point_t *fp_cfg, uint32_t *fp_out)
|
|
|
|
{
|
|
|
|
int ret = 0;
|
|
|
|
uint32_t output = 0;
|
|
|
|
const hal_utils_ieee754_float_t *f = (const hal_utils_ieee754_float_t *)&flt;
|
|
|
|
if (fp_cfg->int_bit + fp_cfg->frac_bit > 31) {
|
|
|
|
// Not supported
|
|
|
|
return -3;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (f->val == 0) { // Zero case
|
|
|
|
*fp_out = 0;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
if (f->exponent != 0xFF) { // Normal case
|
|
|
|
int real_exp = (int)f->exponent - 127;
|
|
|
|
uint32_t real_mant = f->mantissa | BIT(23); // Add the hidden bit
|
|
|
|
// Overflow check
|
|
|
|
if (real_exp >= (int)fp_cfg->int_bit) {
|
|
|
|
ret = -1;
|
|
|
|
}
|
|
|
|
// Determine sign
|
|
|
|
output |= f->sign << (fp_cfg->int_bit + fp_cfg->frac_bit);
|
|
|
|
// Determine integer and fraction part
|
|
|
|
int shift = 23 - fp_cfg->frac_bit - real_exp;
|
|
|
|
output |= shift >= 0 ? real_mant >> shift : real_mant << -shift;
|
|
|
|
} else {
|
|
|
|
if (f->mantissa && f->mantissa < BIT(23) - 1) { // NaN (Not-a-Number) case
|
|
|
|
return -2;
|
|
|
|
} else { // Infinity or Largest Number case
|
|
|
|
output = f->sign ? ~(uint32_t)0 : BIT(31) - 1;
|
|
|
|
ret = -1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (ret != 0 && fp_cfg->saturation) {
|
|
|
|
*fp_out = (f->sign << (fp_cfg->int_bit + fp_cfg->frac_bit)) |
|
|
|
|
(BIT_MASK(fp_cfg->int_bit + fp_cfg->frac_bit));
|
|
|
|
} else {
|
|
|
|
*fp_out = output;
|
|
|
|
}
|
|
|
|
return ret;
|
|
|
|
}
|