esp-idf/components/esp_lcd/src/esp_lcd_rgb_panel.c

539 lines
25 KiB
C
Raw Normal View History

/*
* SPDX-FileCopyrightText: 2021-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <stdlib.h>
#include <sys/cdefs.h>
#include <sys/param.h>
#include <string.h>
#include "sdkconfig.h"
2022-03-03 02:34:32 -05:00
#if CONFIG_LCD_ENABLE_DEBUG_LOG
// The local log level must be defined before including esp_log.h
// Set the maximum log level for this source file
#define LOG_LOCAL_LEVEL ESP_LOG_DEBUG
#endif
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/semphr.h"
#include "esp_attr.h"
#include "esp_check.h"
2021-08-19 23:48:33 -04:00
#include "esp_pm.h"
#include "esp_lcd_panel_interface.h"
#include "esp_lcd_panel_rgb.h"
#include "esp_lcd_panel_ops.h"
#include "esp_rom_gpio.h"
#include "soc/soc_caps.h"
2021-08-19 23:48:33 -04:00
#include "soc/rtc.h" // for querying XTAL clock
#include "hal/dma_types.h"
#include "hal/gpio_hal.h"
#include "esp_private/gdma.h"
#include "driver/gpio.h"
#include "esp_private/periph_ctrl.h"
#if CONFIG_SPIRAM
#include "spiram.h"
#endif
#include "esp_lcd_common.h"
#include "soc/lcd_periph.h"
#include "hal/lcd_hal.h"
#include "hal/lcd_ll.h"
#if CONFIG_LCD_RGB_ISR_IRAM_SAFE
#define LCD_RGB_INTR_ALLOC_FLAGS (ESP_INTR_FLAG_IRAM | ESP_INTR_FLAG_INTRDISABLED)
#else
#define LCD_RGB_INTR_ALLOC_FLAGS ESP_INTR_FLAG_INTRDISABLED
#endif
static const char *TAG = "lcd_panel.rgb";
typedef struct esp_rgb_panel_t esp_rgb_panel_t;
// This function is located in ROM (also see esp_rom/${target}/ld/${target}.rom.ld)
extern int Cache_WriteBack_Addr(uint32_t addr, uint32_t size);
static esp_err_t rgb_panel_del(esp_lcd_panel_t *panel);
static esp_err_t rgb_panel_reset(esp_lcd_panel_t *panel);
static esp_err_t rgb_panel_init(esp_lcd_panel_t *panel);
static esp_err_t rgb_panel_draw_bitmap(esp_lcd_panel_t *panel, int x_start, int y_start, int x_end, int y_end, const void *color_data);
static esp_err_t rgb_panel_invert_color(esp_lcd_panel_t *panel, bool invert_color_data);
static esp_err_t rgb_panel_mirror(esp_lcd_panel_t *panel, bool mirror_x, bool mirror_y);
static esp_err_t rgb_panel_swap_xy(esp_lcd_panel_t *panel, bool swap_axes);
static esp_err_t rgb_panel_set_gap(esp_lcd_panel_t *panel, int x_gap, int y_gap);
static esp_err_t rgb_panel_disp_off(esp_lcd_panel_t *panel, bool off);
2021-08-19 23:48:33 -04:00
static esp_err_t lcd_rgb_panel_select_periph_clock(esp_rgb_panel_t *panel, lcd_clock_source_t clk_src);
static esp_err_t lcd_rgb_panel_create_trans_link(esp_rgb_panel_t *panel);
static esp_err_t lcd_rgb_panel_configure_gpio(esp_rgb_panel_t *panel, const esp_lcd_rgb_panel_config_t *panel_config);
static void lcd_rgb_panel_start_transmission(esp_rgb_panel_t *rgb_panel);
static void lcd_default_isr_handler(void *args);
struct esp_rgb_panel_t {
esp_lcd_panel_t base; // Base class of generic lcd panel
int panel_id; // LCD panel ID
lcd_hal_context_t hal; // Hal layer object
size_t data_width; // Number of data lines (e.g. for RGB565, the data width is 16)
2021-12-27 21:36:03 -05:00
size_t sram_trans_align; // Alignment for framebuffer that allocated in SRAM
size_t psram_trans_align; // Alignment for framebuffer that allocated in PSRAM
int disp_gpio_num; // Display control GPIO, which is used to perform action like "disp_off"
intr_handle_t intr; // LCD peripheral interrupt handle
2021-08-19 23:48:33 -04:00
esp_pm_lock_handle_t pm_lock; // Power management lock
size_t num_dma_nodes; // Number of DMA descriptors that used to carry the frame buffer
uint8_t *fb; // Frame buffer
size_t fb_size; // Size of frame buffer
int data_gpio_nums[SOC_LCD_RGB_DATA_WIDTH]; // GPIOs used for data lines, we keep these GPIOs for action like "invert_color"
size_t resolution_hz; // Peripheral clock resolution
esp_lcd_rgb_timing_t timings; // RGB timing parameters (e.g. pclk, sync pulse, porch width)
gdma_channel_handle_t dma_chan; // DMA channel handle
2021-09-26 23:32:29 -04:00
esp_lcd_rgb_panel_frame_trans_done_cb_t on_frame_trans_done; // Callback, invoked after frame trans done
void *user_ctx; // Reserved user's data of callback functions
int x_gap; // Extra gap in x coordinate, it's used when calculate the flush window
int y_gap; // Extra gap in y coordinate, it's used when calculate the flush window
struct {
unsigned int disp_en_level: 1; // The level which can turn on the screen by `disp_gpio_num`
unsigned int stream_mode: 1; // If set, the LCD transfers data continuously, otherwise, it stops refreshing the LCD when transaction done
unsigned int fb_in_psram: 1; // Whether the frame buffer is in PSRAM
} flags;
dma_descriptor_t dma_nodes[]; // DMA descriptor pool of size `num_dma_nodes`
};
esp_err_t esp_lcd_new_rgb_panel(const esp_lcd_rgb_panel_config_t *rgb_panel_config, esp_lcd_panel_handle_t *ret_panel)
{
2022-03-03 02:34:32 -05:00
#if CONFIG_LCD_ENABLE_DEBUG_LOG
esp_log_level_set(TAG, ESP_LOG_DEBUG);
#endif
esp_err_t ret = ESP_OK;
esp_rgb_panel_t *rgb_panel = NULL;
2021-08-19 23:48:33 -04:00
ESP_GOTO_ON_FALSE(rgb_panel_config && ret_panel, ESP_ERR_INVALID_ARG, err, TAG, "invalid parameter");
ESP_GOTO_ON_FALSE(rgb_panel_config->data_width == 16, ESP_ERR_NOT_SUPPORTED, err, TAG,
"unsupported data width %d", rgb_panel_config->data_width);
#if CONFIG_LCD_RGB_ISR_IRAM_SAFE
if (rgb_panel_config->on_frame_trans_done) {
ESP_RETURN_ON_FALSE(esp_ptr_in_iram(rgb_panel_config->on_frame_trans_done), ESP_ERR_INVALID_ARG, TAG, "on_frame_trans_done callback not in IRAM");
}
if (rgb_panel_config->user_ctx) {
ESP_RETURN_ON_FALSE(esp_ptr_internal(rgb_panel_config->user_ctx), ESP_ERR_INVALID_ARG, TAG, "user context not in internal RAM");
}
#endif
// calculate the number of DMA descriptors
size_t fb_size = rgb_panel_config->timings.h_res * rgb_panel_config->timings.v_res * rgb_panel_config->data_width / 8;
size_t num_dma_nodes = fb_size / DMA_DESCRIPTOR_BUFFER_MAX_SIZE;
if (fb_size > num_dma_nodes * DMA_DESCRIPTOR_BUFFER_MAX_SIZE) {
num_dma_nodes++;
}
// DMA descriptors must be placed in internal SRAM (requested by DMA)
2021-09-23 00:06:13 -04:00
rgb_panel = heap_caps_calloc(1, sizeof(esp_rgb_panel_t) + num_dma_nodes * sizeof(dma_descriptor_t), MALLOC_CAP_DMA | MALLOC_CAP_INTERNAL);
2021-08-19 23:48:33 -04:00
ESP_GOTO_ON_FALSE(rgb_panel, ESP_ERR_NO_MEM, err, TAG, "no mem for rgb panel");
rgb_panel->num_dma_nodes = num_dma_nodes;
2021-08-19 23:48:33 -04:00
rgb_panel->panel_id = -1;
// register to platform
int panel_id = lcd_com_register_device(LCD_COM_DEVICE_TYPE_RGB, rgb_panel);
ESP_GOTO_ON_FALSE(panel_id >= 0, ESP_ERR_NOT_FOUND, err, TAG, "no free rgb panel slot");
rgb_panel->panel_id = panel_id;
// enable APB to access LCD registers
periph_module_enable(lcd_periph_signals.panels[panel_id].module);
periph_module_reset(lcd_periph_signals.panels[panel_id].module);
// alloc frame buffer
bool alloc_from_psram = false;
// fb_in_psram is only an option, if there's no PSRAM on board, we still alloc from SRAM
if (rgb_panel_config->flags.fb_in_psram) {
#if CONFIG_SPIRAM_USE_MALLOC || CONFIG_SPIRAM_USE_CAPS_ALLOC
if (esp_spiram_is_initialized()) {
alloc_from_psram = true;
}
#endif
}
2021-12-27 21:36:03 -05:00
size_t psram_trans_align = rgb_panel_config->psram_trans_align ? rgb_panel_config->psram_trans_align : 64;
size_t sram_trans_align = rgb_panel_config->sram_trans_align ? rgb_panel_config->sram_trans_align : 4;
if (alloc_from_psram) {
2021-12-27 21:36:03 -05:00
// the low level malloc function will help check the validation of alignment
rgb_panel->fb = heap_caps_aligned_calloc(psram_trans_align, 1, fb_size, MALLOC_CAP_SPIRAM | MALLOC_CAP_8BIT);
} else {
2021-12-27 21:36:03 -05:00
rgb_panel->fb = heap_caps_aligned_calloc(sram_trans_align, 1, fb_size, MALLOC_CAP_INTERNAL | MALLOC_CAP_DMA);
}
2021-08-19 23:48:33 -04:00
ESP_GOTO_ON_FALSE(rgb_panel->fb, ESP_ERR_NO_MEM, err, TAG, "no mem for frame buffer");
2021-12-27 21:36:03 -05:00
rgb_panel->psram_trans_align = psram_trans_align;
rgb_panel->sram_trans_align = sram_trans_align;
rgb_panel->fb_size = fb_size;
rgb_panel->flags.fb_in_psram = alloc_from_psram;
// initialize HAL layer, so we can call LL APIs later
lcd_hal_init(&rgb_panel->hal, panel_id);
2021-08-19 23:48:33 -04:00
// set peripheral clock resolution
ret = lcd_rgb_panel_select_periph_clock(rgb_panel, rgb_panel_config->clk_src);
ESP_GOTO_ON_ERROR(ret, err, TAG, "select periph clock failed");
// install interrupt service, (LCD peripheral shares the interrupt source with Camera by different mask)
int isr_flags = LCD_RGB_INTR_ALLOC_FLAGS | ESP_INTR_FLAG_SHARED;
ret = esp_intr_alloc_intrstatus(lcd_periph_signals.panels[panel_id].irq_id, isr_flags,
2021-06-17 09:41:03 -04:00
(uint32_t)lcd_ll_get_interrupt_status_reg(rgb_panel->hal.dev),
LCD_LL_EVENT_VSYNC_END, lcd_default_isr_handler, rgb_panel, &rgb_panel->intr);
2021-08-19 23:48:33 -04:00
ESP_GOTO_ON_ERROR(ret, err, TAG, "install interrupt failed");
lcd_ll_enable_interrupt(rgb_panel->hal.dev, LCD_LL_EVENT_VSYNC_END, false); // disable all interrupts
lcd_ll_clear_interrupt_status(rgb_panel->hal.dev, UINT32_MAX); // clear pending interrupt
// install DMA service
rgb_panel->flags.stream_mode = !rgb_panel_config->flags.relax_on_idle;
ret = lcd_rgb_panel_create_trans_link(rgb_panel);
2021-08-19 23:48:33 -04:00
ESP_GOTO_ON_ERROR(ret, err, TAG, "install DMA failed");
// configure GPIO
ret = lcd_rgb_panel_configure_gpio(rgb_panel, rgb_panel_config);
2021-08-19 23:48:33 -04:00
ESP_GOTO_ON_ERROR(ret, err, TAG, "configure GPIO failed");
// fill other rgb panel runtime parameters
memcpy(rgb_panel->data_gpio_nums, rgb_panel_config->data_gpio_nums, SOC_LCD_RGB_DATA_WIDTH);
rgb_panel->timings = rgb_panel_config->timings;
rgb_panel->data_width = rgb_panel_config->data_width;
rgb_panel->disp_gpio_num = rgb_panel_config->disp_gpio_num;
rgb_panel->flags.disp_en_level = !rgb_panel_config->flags.disp_active_low;
rgb_panel->on_frame_trans_done = rgb_panel_config->on_frame_trans_done;
2021-09-26 23:32:29 -04:00
rgb_panel->user_ctx = rgb_panel_config->user_ctx;
// fill function table
rgb_panel->base.del = rgb_panel_del;
rgb_panel->base.reset = rgb_panel_reset;
rgb_panel->base.init = rgb_panel_init;
rgb_panel->base.draw_bitmap = rgb_panel_draw_bitmap;
rgb_panel->base.disp_off = rgb_panel_disp_off;
rgb_panel->base.invert_color = rgb_panel_invert_color;
rgb_panel->base.mirror = rgb_panel_mirror;
rgb_panel->base.swap_xy = rgb_panel_swap_xy;
rgb_panel->base.set_gap = rgb_panel_set_gap;
// return base class
*ret_panel = &(rgb_panel->base);
ESP_LOGD(TAG, "new rgb panel(%d) @%p, fb @%p, size=%zu", rgb_panel->panel_id, rgb_panel, rgb_panel->fb, rgb_panel->fb_size);
return ESP_OK;
2021-08-19 23:48:33 -04:00
err:
if (rgb_panel) {
if (rgb_panel->panel_id >= 0) {
periph_module_disable(lcd_periph_signals.panels[rgb_panel->panel_id].module);
lcd_com_remove_device(LCD_COM_DEVICE_TYPE_RGB, rgb_panel->panel_id);
}
if (rgb_panel->fb) {
free(rgb_panel->fb);
}
if (rgb_panel->dma_chan) {
gdma_disconnect(rgb_panel->dma_chan);
gdma_del_channel(rgb_panel->dma_chan);
}
if (rgb_panel->intr) {
esp_intr_free(rgb_panel->intr);
}
if (rgb_panel->pm_lock) {
esp_pm_lock_release(rgb_panel->pm_lock);
esp_pm_lock_delete(rgb_panel->pm_lock);
}
free(rgb_panel);
}
return ret;
}
static esp_err_t rgb_panel_del(esp_lcd_panel_t *panel)
{
esp_rgb_panel_t *rgb_panel = __containerof(panel, esp_rgb_panel_t, base);
int panel_id = rgb_panel->panel_id;
gdma_disconnect(rgb_panel->dma_chan);
gdma_del_channel(rgb_panel->dma_chan);
esp_intr_free(rgb_panel->intr);
periph_module_disable(lcd_periph_signals.panels[panel_id].module);
lcd_com_remove_device(LCD_COM_DEVICE_TYPE_RGB, rgb_panel->panel_id);
free(rgb_panel->fb);
2021-08-19 23:48:33 -04:00
if (rgb_panel->pm_lock) {
esp_pm_lock_release(rgb_panel->pm_lock);
esp_pm_lock_delete(rgb_panel->pm_lock);
}
free(rgb_panel);
ESP_LOGD(TAG, "del rgb panel(%d)", panel_id);
return ESP_OK;
}
static esp_err_t rgb_panel_reset(esp_lcd_panel_t *panel)
{
esp_rgb_panel_t *rgb_panel = __containerof(panel, esp_rgb_panel_t, base);
lcd_ll_fifo_reset(rgb_panel->hal.dev);
lcd_ll_reset(rgb_panel->hal.dev);
return ESP_OK;
}
static esp_err_t rgb_panel_init(esp_lcd_panel_t *panel)
{
esp_err_t ret = ESP_OK;
esp_rgb_panel_t *rgb_panel = __containerof(panel, esp_rgb_panel_t, base);
// configure clock
lcd_ll_enable_clock(rgb_panel->hal.dev, true);
// set PCLK frequency
uint32_t pclk_prescale = rgb_panel->resolution_hz / rgb_panel->timings.pclk_hz;
ESP_GOTO_ON_FALSE(pclk_prescale <= LCD_LL_CLOCK_PRESCALE_MAX, ESP_ERR_NOT_SUPPORTED, err, TAG,
"prescaler can't satisfy PCLK clock %uHz", rgb_panel->timings.pclk_hz);
lcd_ll_set_pixel_clock_prescale(rgb_panel->hal.dev, pclk_prescale);
rgb_panel->timings.pclk_hz = rgb_panel->resolution_hz / pclk_prescale;
// pixel clock phase and polarity
2021-11-29 21:54:35 -05:00
lcd_ll_set_clock_idle_level(rgb_panel->hal.dev, rgb_panel->timings.flags.pclk_idle_high);
lcd_ll_set_pixel_clock_edge(rgb_panel->hal.dev, rgb_panel->timings.flags.pclk_active_neg);
// enable RGB mode and set data width
lcd_ll_enable_rgb_mode(rgb_panel->hal.dev, true);
lcd_ll_set_data_width(rgb_panel->hal.dev, rgb_panel->data_width);
lcd_ll_set_phase_cycles(rgb_panel->hal.dev, 0, 0, 1); // enable data phase only
// number of data cycles is controlled by DMA buffer size
lcd_ll_enable_output_always_on(rgb_panel->hal.dev, true);
// configure HSYNC, VSYNC, DE signal idle state level
lcd_ll_set_idle_level(rgb_panel->hal.dev, !rgb_panel->timings.flags.hsync_idle_low,
!rgb_panel->timings.flags.vsync_idle_low, rgb_panel->timings.flags.de_idle_high);
// configure blank region timing
lcd_ll_set_blank_cycles(rgb_panel->hal.dev, 1, 1); // RGB panel always has a front and back blank (porch region)
lcd_ll_set_horizontal_timing(rgb_panel->hal.dev, rgb_panel->timings.hsync_pulse_width,
rgb_panel->timings.hsync_back_porch, rgb_panel->timings.h_res,
rgb_panel->timings.hsync_front_porch);
lcd_ll_set_vertical_timing(rgb_panel->hal.dev, rgb_panel->timings.vsync_pulse_width,
rgb_panel->timings.vsync_back_porch, rgb_panel->timings.v_res,
rgb_panel->timings.vsync_front_porch);
// output hsync even in porch region
lcd_ll_enable_output_hsync_in_porch_region(rgb_panel->hal.dev, true);
// generate the hsync at the very begining of line
lcd_ll_set_hsync_position(rgb_panel->hal.dev, 0);
// restart flush by hardware has some limitation, instead, the driver will restart the flush in the VSYNC end interrupt by software
lcd_ll_enable_auto_next_frame(rgb_panel->hal.dev, false);
// trigger interrupt on the end of frame
lcd_ll_enable_interrupt(rgb_panel->hal.dev, LCD_LL_EVENT_VSYNC_END, true);
2021-09-23 00:06:13 -04:00
// enable intr
esp_intr_enable(rgb_panel->intr);
// start transmission
if (rgb_panel->flags.stream_mode) {
lcd_rgb_panel_start_transmission(rgb_panel);
}
ESP_LOGD(TAG, "rgb panel(%d) start, pclk=%uHz", rgb_panel->panel_id, rgb_panel->timings.pclk_hz);
err:
return ret;
}
static esp_err_t rgb_panel_draw_bitmap(esp_lcd_panel_t *panel, int x_start, int y_start, int x_end, int y_end, const void *color_data)
{
esp_rgb_panel_t *rgb_panel = __containerof(panel, esp_rgb_panel_t, base);
assert((x_start < x_end) && (y_start < y_end) && "start position must be smaller than end position");
// adjust the flush window by adding extra gap
x_start += rgb_panel->x_gap;
y_start += rgb_panel->y_gap;
x_end += rgb_panel->x_gap;
y_end += rgb_panel->y_gap;
// round the boundary
x_start = MIN(x_start, rgb_panel->timings.h_res);
x_end = MIN(x_end, rgb_panel->timings.h_res);
y_start = MIN(y_start, rgb_panel->timings.v_res);
y_end = MIN(y_end, rgb_panel->timings.v_res);
// convert the frame buffer to 3D array
int bytes_per_pixel = rgb_panel->data_width / 8;
int pixels_per_line = rgb_panel->timings.h_res;
const uint8_t *from = (const uint8_t *)color_data;
uint8_t (*to)[pixels_per_line][bytes_per_pixel] = (uint8_t (*)[pixels_per_line][bytes_per_pixel])rgb_panel->fb;
// manipulate the frame buffer
for (int j = y_start; j < y_end; j++) {
for (int i = x_start; i < x_end; i++) {
for (int k = 0; k < bytes_per_pixel; k++) {
to[j][i][k] = *from++;
}
}
}
if (rgb_panel->flags.fb_in_psram) {
// CPU writes data to PSRAM through DCache, data in PSRAM might not get updated, so write back
Cache_WriteBack_Addr((uint32_t)&to[y_start][0][0], (y_end - y_start) * rgb_panel->timings.h_res * bytes_per_pixel);
}
// restart the new transmission
if (!rgb_panel->flags.stream_mode) {
lcd_rgb_panel_start_transmission(rgb_panel);
}
return ESP_OK;
}
static esp_err_t rgb_panel_invert_color(esp_lcd_panel_t *panel, bool invert_color_data)
{
esp_rgb_panel_t *rgb_panel = __containerof(panel, esp_rgb_panel_t, base);
int panel_id = rgb_panel->panel_id;
// inverting the data line by GPIO matrix
for (int i = 0; i < rgb_panel->data_width; i++) {
esp_rom_gpio_connect_out_signal(rgb_panel->data_gpio_nums[i], lcd_periph_signals.panels[panel_id].data_sigs[i],
invert_color_data, false);
}
return ESP_OK;
}
static esp_err_t rgb_panel_mirror(esp_lcd_panel_t *panel, bool mirror_x, bool mirror_y)
{
return ESP_ERR_NOT_SUPPORTED;
}
static esp_err_t rgb_panel_swap_xy(esp_lcd_panel_t *panel, bool swap_axes)
{
return ESP_ERR_NOT_SUPPORTED;
}
static esp_err_t rgb_panel_set_gap(esp_lcd_panel_t *panel, int x_gap, int y_gap)
{
esp_rgb_panel_t *rgb_panel = __containerof(panel, esp_rgb_panel_t, base);
rgb_panel->x_gap = x_gap;
rgb_panel->x_gap = y_gap;
return ESP_OK;
}
static esp_err_t rgb_panel_disp_off(esp_lcd_panel_t *panel, bool off)
{
esp_rgb_panel_t *rgb_panel = __containerof(panel, esp_rgb_panel_t, base);
if (rgb_panel->disp_gpio_num < 0) {
return ESP_ERR_NOT_SUPPORTED;
}
if (off) { // turn off screen
gpio_set_level(rgb_panel->disp_gpio_num, !rgb_panel->flags.disp_en_level);
} else { // turn on screen
gpio_set_level(rgb_panel->disp_gpio_num, rgb_panel->flags.disp_en_level);
}
return ESP_OK;
}
static esp_err_t lcd_rgb_panel_configure_gpio(esp_rgb_panel_t *panel, const esp_lcd_rgb_panel_config_t *panel_config)
{
int panel_id = panel->panel_id;
// check validation of GPIO number
bool valid_gpio = (panel_config->pclk_gpio_num >= 0);
if (panel_config->de_gpio_num < 0) {
// Hsync and Vsync are required in HV mode
valid_gpio = valid_gpio && (panel_config->hsync_gpio_num >= 0) && (panel_config->vsync_gpio_num >= 0);
}
for (size_t i = 0; i < panel_config->data_width; i++) {
valid_gpio = valid_gpio && (panel_config->data_gpio_nums[i] >= 0);
}
if (!valid_gpio) {
return ESP_ERR_INVALID_ARG;
}
// connect peripheral signals via GPIO matrix
for (size_t i = 0; i < panel_config->data_width; i++) {
gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[panel_config->data_gpio_nums[i]], PIN_FUNC_GPIO);
gpio_set_direction(panel_config->data_gpio_nums[i], GPIO_MODE_OUTPUT);
esp_rom_gpio_connect_out_signal(panel_config->data_gpio_nums[i],
lcd_periph_signals.panels[panel_id].data_sigs[i], false, false);
}
if (panel_config->hsync_gpio_num >= 0) {
gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[panel_config->hsync_gpio_num], PIN_FUNC_GPIO);
gpio_set_direction(panel_config->hsync_gpio_num, GPIO_MODE_OUTPUT);
esp_rom_gpio_connect_out_signal(panel_config->hsync_gpio_num,
lcd_periph_signals.panels[panel_id].hsync_sig, false, false);
}
if (panel_config->vsync_gpio_num >= 0) {
gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[panel_config->vsync_gpio_num], PIN_FUNC_GPIO);
gpio_set_direction(panel_config->vsync_gpio_num, GPIO_MODE_OUTPUT);
esp_rom_gpio_connect_out_signal(panel_config->vsync_gpio_num,
lcd_periph_signals.panels[panel_id].vsync_sig, false, false);
}
gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[panel_config->pclk_gpio_num], PIN_FUNC_GPIO);
gpio_set_direction(panel_config->pclk_gpio_num, GPIO_MODE_OUTPUT);
esp_rom_gpio_connect_out_signal(panel_config->pclk_gpio_num,
lcd_periph_signals.panels[panel_id].pclk_sig, false, false);
// DE signal might not be necessary for some RGB LCD
if (panel_config->de_gpio_num >= 0) {
gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[panel_config->de_gpio_num], PIN_FUNC_GPIO);
gpio_set_direction(panel_config->de_gpio_num, GPIO_MODE_OUTPUT);
esp_rom_gpio_connect_out_signal(panel_config->de_gpio_num,
lcd_periph_signals.panels[panel_id].de_sig, false, false);
}
// disp enable GPIO is optional
if (panel_config->disp_gpio_num >= 0) {
gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[panel_config->disp_gpio_num], PIN_FUNC_GPIO);
gpio_set_direction(panel_config->disp_gpio_num, GPIO_MODE_OUTPUT);
esp_rom_gpio_connect_out_signal(panel_config->disp_gpio_num, SIG_GPIO_OUT_IDX, false, false);
}
return ESP_OK;
}
2021-08-19 23:48:33 -04:00
static esp_err_t lcd_rgb_panel_select_periph_clock(esp_rgb_panel_t *panel, lcd_clock_source_t clk_src)
{
esp_err_t ret = ESP_OK;
// force to use integer division, as fractional division might lead to clock jitter
lcd_ll_set_group_clock_src(panel->hal.dev, clk_src, LCD_PERIPH_CLOCK_PRE_SCALE, 0, 0);
2021-08-19 23:48:33 -04:00
switch (clk_src) {
case LCD_CLK_SRC_PLL160M:
panel->resolution_hz = 160000000 / LCD_PERIPH_CLOCK_PRE_SCALE;
#if CONFIG_PM_ENABLE
ret = esp_pm_lock_create(ESP_PM_APB_FREQ_MAX, 0, "rgb_panel", &panel->pm_lock);
ESP_RETURN_ON_ERROR(ret, TAG, "create ESP_PM_APB_FREQ_MAX lock failed");
// hold the lock during the whole lifecycle of RGB panel
esp_pm_lock_acquire(panel->pm_lock);
ESP_LOGD(TAG, "installed ESP_PM_APB_FREQ_MAX lock and hold the lock during the whole panel lifecycle");
#endif
break;
case LCD_CLK_SRC_XTAL:
panel->resolution_hz = rtc_clk_xtal_freq_get() * 1000000 / LCD_PERIPH_CLOCK_PRE_SCALE;
break;
default:
ESP_RETURN_ON_FALSE(false, ESP_ERR_NOT_SUPPORTED, TAG, "unsupported clock source: %d", clk_src);
break;
}
return ret;
}
static esp_err_t lcd_rgb_panel_create_trans_link(esp_rgb_panel_t *panel)
{
esp_err_t ret = ESP_OK;
// chain DMA descriptors
for (int i = 0; i < panel->num_dma_nodes; i++) {
panel->dma_nodes[i].dw0.owner = DMA_DESCRIPTOR_BUFFER_OWNER_CPU;
panel->dma_nodes[i].next = &panel->dma_nodes[i + 1];
}
// one-off DMA chain
panel->dma_nodes[panel->num_dma_nodes - 1].next = NULL;
// mount the frame buffer to the DMA descriptors
lcd_com_mount_dma_data(panel->dma_nodes, panel->fb, panel->fb_size);
// alloc DMA channel and connect to LCD peripheral
gdma_channel_alloc_config_t dma_chan_config = {
.direction = GDMA_CHANNEL_DIRECTION_TX,
};
ret = gdma_new_channel(&dma_chan_config, &panel->dma_chan);
ESP_GOTO_ON_ERROR(ret, err, TAG, "alloc DMA channel failed");
gdma_connect(panel->dma_chan, GDMA_MAKE_TRIGGER(GDMA_TRIG_PERIPH_LCD, 0));
gdma_transfer_ability_t ability = {
2021-12-27 21:36:03 -05:00
.psram_trans_align = panel->psram_trans_align,
.sram_trans_align = panel->sram_trans_align,
};
gdma_set_transfer_ability(panel->dma_chan, &ability);
// the start of DMA should be prior to the start of LCD engine
gdma_start(panel->dma_chan, (intptr_t)panel->dma_nodes);
err:
return ret;
}
static void lcd_rgb_panel_start_transmission(esp_rgb_panel_t *rgb_panel)
{
// reset FIFO of DMA and LCD, incase there remains old frame data
gdma_reset(rgb_panel->dma_chan);
lcd_ll_stop(rgb_panel->hal.dev);
lcd_ll_fifo_reset(rgb_panel->hal.dev);
gdma_start(rgb_panel->dma_chan, (intptr_t)rgb_panel->dma_nodes);
// delay 1us is sufficient for DMA to pass data to LCD FIFO
// in fact, this is only needed when LCD pixel clock is set too high
esp_rom_delay_us(1);
// start LCD engine
lcd_ll_start(rgb_panel->hal.dev);
}
IRAM_ATTR static void lcd_default_isr_handler(void *args)
{
esp_rgb_panel_t *rgb_panel = (esp_rgb_panel_t *)args;
bool need_yield = false;
uint32_t intr_status = lcd_ll_get_interrupt_status(rgb_panel->hal.dev);
lcd_ll_clear_interrupt_status(rgb_panel->hal.dev, intr_status);
if (intr_status & LCD_LL_EVENT_VSYNC_END) {
// call user registered callback
if (rgb_panel->on_frame_trans_done) {
if (rgb_panel->on_frame_trans_done(&rgb_panel->base, NULL, rgb_panel->user_ctx)) {
need_yield = true;
}
}
// to restart the transmission
if (rgb_panel->flags.stream_mode) {
lcd_rgb_panel_start_transmission(rgb_panel);
}
}
if (need_yield) {
portYIELD_FROM_ISR();
}
}