esp-idf/components/esp_hw_support/sleep_modes.c

1397 lines
48 KiB
C
Raw Normal View History

// Copyright 2015-2017 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stddef.h>
#include <string.h>
#include <sys/lock.h>
#include <sys/param.h>
2016-12-13 00:23:04 -05:00
#include "esp_attr.h"
#include "esp_sleep.h"
#include "esp_private/esp_timer_private.h"
#include "esp_private/system_internal.h"
2016-12-13 00:23:04 -05:00
#include "esp_log.h"
#include "esp_newlib.h"
#include "esp_timer.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "soc/soc_caps.h"
#include "driver/rtc_io.h"
#include "hal/rtc_io_hal.h"
#include "driver/uart.h"
2016-12-13 00:23:04 -05:00
#include "soc/cpu.h"
#include "soc/rtc.h"
#include "soc/soc_caps.h"
#include "hal/wdt_hal.h"
#include "hal/rtc_hal.h"
#include "hal/uart_hal.h"
#if SOC_TOUCH_SENSOR_NUM > 0
#include "hal/touch_sensor_hal.h"
#include "driver/touch_sensor.h"
#include "driver/touch_sensor_common.h"
#endif
#include "hal/clk_gate_ll.h"
#include "sdkconfig.h"
#include "esp_rom_uart.h"
#include "brownout.h"
#ifdef CONFIG_IDF_TARGET_ESP32
#include "esp32/rom/cache.h"
#include "esp32/clk.h"
#include "esp32/rom/rtc.h"
#include "esp_private/gpio.h"
#elif CONFIG_IDF_TARGET_ESP32S2
#include "esp32s2/clk.h"
#include "esp32s2/rom/cache.h"
#include "esp32s2/rom/rtc.h"
#include "soc/extmem_reg.h"
#include "esp_private/gpio.h"
2020-07-29 01:13:51 -04:00
#elif CONFIG_IDF_TARGET_ESP32S3
#include "esp32s3/clk.h"
#include "esp32s3/rom/cache.h"
#include "esp32s3/rom/rtc.h"
#include "soc/extmem_reg.h"
#elif CONFIG_IDF_TARGET_ESP32C3
#include "esp32c3/clk.h"
2021-04-23 06:10:45 -04:00
#include "esp32c3/rom/cache.h"
#include "esp32c3/rom/rtc.h"
#include "soc/extmem_reg.h"
#include "esp_heap_caps.h"
#elif CONFIG_IDF_TARGET_ESP32H2
#include "esp32h2/clk.h"
#include "esp32h2/rom/cache.h"
#include "esp32h2/rom/rtc.h"
#include "soc/extmem_reg.h"
#include "esp_heap_caps.h"
#endif
// If light sleep time is less than that, don't power down flash
#define FLASH_PD_MIN_SLEEP_TIME_US 2000
// Time from VDD_SDIO power up to first flash read in ROM code
#define VDD_SDIO_POWERUP_TO_FLASH_READ_US 700
// Cycles for RTC Timer clock source (internal oscillator) calibrate
#define RTC_CLK_SRC_CAL_CYCLES (10)
#ifdef CONFIG_IDF_TARGET_ESP32
#define DEFAULT_CPU_FREQ_MHZ CONFIG_ESP32_DEFAULT_CPU_FREQ_MHZ
#define DEFAULT_SLEEP_OUT_OVERHEAD_US (212)
#define DEFAULT_HARDWARE_OUT_OVERHEAD_US (60)
#elif CONFIG_IDF_TARGET_ESP32S2
#define DEFAULT_CPU_FREQ_MHZ CONFIG_ESP32S2_DEFAULT_CPU_FREQ_MHZ
#define DEFAULT_SLEEP_OUT_OVERHEAD_US (147)
#define DEFAULT_HARDWARE_OUT_OVERHEAD_US (28)
2020-07-29 01:13:51 -04:00
#elif CONFIG_IDF_TARGET_ESP32S3
#define DEFAULT_CPU_FREQ_MHZ CONFIG_ESP32S3_DEFAULT_CPU_FREQ_MHZ
#define DEFAULT_SLEEP_OUT_OVERHEAD_US (0)
#define DEFAULT_HARDWARE_OUT_OVERHEAD_US (0)
#elif CONFIG_IDF_TARGET_ESP32C3
#define DEFAULT_CPU_FREQ_MHZ CONFIG_ESP32C3_DEFAULT_CPU_FREQ_MHZ
#define DEFAULT_SLEEP_OUT_OVERHEAD_US (105)
#define DEFAULT_HARDWARE_OUT_OVERHEAD_US (37)
#elif CONFIG_IDF_TARGET_ESP32H2
#define DEFAULT_CPU_FREQ_MHZ CONFIG_ESP32H2_DEFAULT_CPU_FREQ_MHZ
#define DEFAULT_SLEEP_OUT_OVERHEAD_US (105)
#define DEFAULT_HARDWARE_OUT_OVERHEAD_US (37)
#endif
#define LIGHT_SLEEP_TIME_OVERHEAD_US DEFAULT_HARDWARE_OUT_OVERHEAD_US
#if defined(CONFIG_ESP32_RTC_CLK_SRC_EXT_CRYS) || \
defined(CONFIG_ESP32S2_RTC_CLK_SRC_EXT_CRYS) || \
defined(CONFIG_ESP32C3_RTC_CLK_SRC_EXT_CRYS) || \
defined(CONFIG_ESP32H2_RTC_CLK_SRC_EXT_CRYS) || \
defined(CONFIG_ESP32S3_RTC_CLK_SRC_EXT_CRYS)
#define DEEP_SLEEP_TIME_OVERHEAD_US (650 + 100 * 240 / DEFAULT_CPU_FREQ_MHZ)
#else
#define DEEP_SLEEP_TIME_OVERHEAD_US (250 + 100 * 240 / DEFAULT_CPU_FREQ_MHZ)
#endif
#if defined(CONFIG_IDF_TARGET_ESP32) && defined(CONFIG_ESP32_DEEP_SLEEP_WAKEUP_DELAY)
#define DEEP_SLEEP_WAKEUP_DELAY CONFIG_ESP32_DEEP_SLEEP_WAKEUP_DELAY
#else
#define DEEP_SLEEP_WAKEUP_DELAY 0
#endif
2020-12-30 03:42:39 -05:00
extern void periph_inform_out_light_sleep_overhead(uint32_t out_light_sleep_time);
// Minimal amount of time we can sleep for
#define LIGHT_SLEEP_MIN_TIME_US 200
#define RTC_MODULE_SLEEP_PREPARE_CYCLES (6)
#define CHECK_SOURCE(source, value, mask) ((s_config.wakeup_triggers & mask) && \
(source == value))
/**
* Internal structure which holds all requested deep sleep parameters
*/
typedef struct {
esp_sleep_pd_option_t pd_options[ESP_PD_DOMAIN_MAX];
uint64_t sleep_duration;
uint32_t wakeup_triggers : 15;
uint32_t ext1_trigger_mode : 1;
uint32_t ext1_rtc_gpio_mask : 18;
uint32_t ext0_trigger_level : 1;
uint32_t ext0_rtc_gpio_num : 5;
uint32_t gpio_wakeup_mask : 6;
uint32_t gpio_trigger_mode : 6;
uint32_t sleep_time_adjustment;
uint32_t ccount_ticks_record;
uint32_t sleep_time_overhead_out;
uint32_t rtc_clk_cal_period;
uint64_t rtc_ticks_at_sleep_start;
#if SOC_PM_SUPPORT_CPU_PD
void *cpu_pd_mem;
#endif
} sleep_config_t;
static sleep_config_t s_config = {
.pd_options = { ESP_PD_OPTION_AUTO, ESP_PD_OPTION_AUTO, ESP_PD_OPTION_AUTO, ESP_PD_OPTION_AUTO, ESP_PD_OPTION_AUTO, ESP_PD_OPTION_AUTO },
.ccount_ticks_record = 0,
.sleep_time_overhead_out = DEFAULT_SLEEP_OUT_OVERHEAD_US,
.wakeup_triggers = 0
};
/* Internal variable used to track if light sleep wakeup sources are to be
expected when determining wakeup cause. */
static bool s_light_sleep_wakeup = false;
/* Updating RTC_MEMORY_CRC_REG register via set_rtc_memory_crc()
is not thread-safe, so we need to disable interrupts before going to deep sleep. */
static portMUX_TYPE spinlock_rtc_deep_sleep = portMUX_INITIALIZER_UNLOCKED;
static const char *TAG = "sleep";
static uint32_t get_power_down_flags(void);
#if SOC_PM_SUPPORT_EXT_WAKEUP
static void ext0_wakeup_prepare(void);
static void ext1_wakeup_prepare(void);
#endif
static void timer_wakeup_prepare(void);
#if CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
static void touch_wakeup_prepare(void);
#endif
#if SOC_GPIO_SUPPORT_DEEPSLEEP_WAKEUP
static void esp_deep_sleep_wakeup_prepare(void);
#endif
#if CONFIG_MAC_BB_PD
#define MAC_BB_POWER_DOWN_CB_NO 2
#define MAC_BB_POWER_UP_CB_NO 2
static DRAM_ATTR mac_bb_power_down_cb_t s_mac_bb_power_down_cb[MAC_BB_POWER_DOWN_CB_NO];
static DRAM_ATTR mac_bb_power_up_cb_t s_mac_bb_power_up_cb[MAC_BB_POWER_UP_CB_NO];
esp_err_t esp_register_mac_bb_pd_callback(mac_bb_power_down_cb_t cb)
{
int index = MAC_BB_POWER_DOWN_CB_NO;
for (int i = MAC_BB_POWER_DOWN_CB_NO - 1; i >= 0; i--) {
if (s_mac_bb_power_down_cb[i] == cb) {
return ESP_OK;
}
if (s_mac_bb_power_down_cb[i] == NULL) {
index = i;
}
}
if (index < MAC_BB_POWER_DOWN_CB_NO) {
s_mac_bb_power_down_cb[index] = cb;
return ESP_OK;
}
return ESP_ERR_NO_MEM;
}
esp_err_t esp_unregister_mac_bb_pd_callback(mac_bb_power_down_cb_t cb)
{
for (int i = MAC_BB_POWER_DOWN_CB_NO - 1; i >= 0; i--) {
if (s_mac_bb_power_down_cb[i] == cb) {
s_mac_bb_power_down_cb[i] = NULL;
return ESP_OK;
}
}
return ESP_ERR_INVALID_STATE;
}
static IRAM_ATTR void mac_bb_power_down_cb_execute(void)
{
for (int i = 0; i < MAC_BB_POWER_DOWN_CB_NO; i++) {
if (s_mac_bb_power_down_cb[i]) {
s_mac_bb_power_down_cb[i]();
}
}
}
esp_err_t esp_register_mac_bb_pu_callback(mac_bb_power_up_cb_t cb)
{
int index = MAC_BB_POWER_UP_CB_NO;
for (int i = MAC_BB_POWER_UP_CB_NO - 1; i >= 0; i--) {
if (s_mac_bb_power_up_cb[i] == cb) {
return ESP_OK;
}
if (s_mac_bb_power_up_cb[i] == NULL) {
index = i;
}
}
if (index < MAC_BB_POWER_UP_CB_NO) {
s_mac_bb_power_up_cb[index] = cb;
return ESP_OK;
}
return ESP_ERR_NO_MEM;
}
esp_err_t esp_unregister_mac_bb_pu_callback(mac_bb_power_up_cb_t cb)
{
for (int i = MAC_BB_POWER_UP_CB_NO - 1; i >= 0; i--) {
if (s_mac_bb_power_up_cb[i] == cb) {
s_mac_bb_power_up_cb[i] = NULL;
return ESP_OK;
}
}
return ESP_ERR_INVALID_STATE;
}
static IRAM_ATTR void mac_bb_power_up_cb_execute(void)
{
for (int i = 0; i < MAC_BB_POWER_UP_CB_NO; i++) {
if (s_mac_bb_power_up_cb[i]) {
s_mac_bb_power_up_cb[i]();
}
}
}
#endif ///CONFIG_MAC_BB_PD
/* Wake from deep sleep stub
See esp_deepsleep.h esp_wake_deep_sleep() comments for details.
*/
esp_deep_sleep_wake_stub_fn_t esp_get_deep_sleep_wake_stub(void)
{
esp_deep_sleep_wake_stub_fn_t stub_ptr = (esp_deep_sleep_wake_stub_fn_t) REG_READ(RTC_ENTRY_ADDR_REG);
if (!esp_ptr_executable(stub_ptr)) {
return NULL;
}
return stub_ptr;
}
void esp_set_deep_sleep_wake_stub(esp_deep_sleep_wake_stub_fn_t new_stub)
{
REG_WRITE(RTC_ENTRY_ADDR_REG, (uint32_t)new_stub);
}
void RTC_IRAM_ATTR esp_default_wake_deep_sleep(void)
{
/* Clear MMU for CPU 0 */
#if CONFIG_IDF_TARGET_ESP32
_DPORT_REG_WRITE(DPORT_PRO_CACHE_CTRL1_REG,
_DPORT_REG_READ(DPORT_PRO_CACHE_CTRL1_REG) | DPORT_PRO_CACHE_MMU_IA_CLR);
_DPORT_REG_WRITE(DPORT_PRO_CACHE_CTRL1_REG,
_DPORT_REG_READ(DPORT_PRO_CACHE_CTRL1_REG) & (~DPORT_PRO_CACHE_MMU_IA_CLR));
#if DEEP_SLEEP_WAKEUP_DELAY > 0
// ROM code has not started yet, so we need to set delay factor
// used by esp_rom_delay_us first.
ets_update_cpu_frequency_rom(ets_get_detected_xtal_freq() / 1000000);
// This delay is configured in menuconfig, it can be used to give
// the flash chip some time to become ready.
esp_rom_delay_us(DEEP_SLEEP_WAKEUP_DELAY);
#endif
#elif CONFIG_IDF_TARGET_ESP32S2
REG_SET_BIT(EXTMEM_CACHE_DBG_INT_ENA_REG, EXTMEM_CACHE_DBG_EN);
#endif
}
void __attribute__((weak, alias("esp_default_wake_deep_sleep"))) esp_wake_deep_sleep(void);
void esp_deep_sleep(uint64_t time_in_us)
{
esp_sleep_enable_timer_wakeup(time_in_us);
esp_deep_sleep_start();
}
// [refactor-todo] provide target logic for body of uart functions below
static void IRAM_ATTR flush_uarts(void)
{
for (int i = 0; i < SOC_UART_NUM; ++i) {
#ifdef CONFIG_IDF_TARGET_ESP32
esp_rom_uart_tx_wait_idle(i);
#else
if (periph_ll_periph_enabled(PERIPH_UART0_MODULE + i)) {
esp_rom_uart_tx_wait_idle(i);
}
#endif
}
}
static void IRAM_ATTR suspend_uarts(void)
{
for (int i = 0; i < SOC_UART_NUM; ++i) {
#ifndef CONFIG_IDF_TARGET_ESP32
if (!periph_ll_periph_enabled(PERIPH_UART0_MODULE + i)) {
continue;
}
#endif
uart_ll_force_xoff(i);
#if SOC_UART_SUPPORT_FSM_TX_WAIT_SEND
uint32_t uart_fsm = 0;
do {
uart_fsm = uart_ll_get_fsm_status(i);
} while (!(uart_fsm == UART_LL_FSM_IDLE || uart_fsm == UART_LL_FSM_TX_WAIT_SEND));
#else
while (uart_ll_get_fsm_status(i) != 0) {}
#endif
}
}
static void IRAM_ATTR resume_uarts(void)
{
for (int i = 0; i < SOC_UART_NUM; ++i) {
#ifndef CONFIG_IDF_TARGET_ESP32
if (!periph_ll_periph_enabled(PERIPH_UART0_MODULE + i)) {
continue;
}
#endif
uart_ll_force_xon(i);
}
}
inline static uint32_t IRAM_ATTR call_rtc_sleep_start(uint32_t reject_triggers);
#if SOC_PM_SUPPORT_CPU_PD
esp_err_t esp_sleep_cpu_pd_low_init(bool enable)
{
if (enable) {
if (s_config.cpu_pd_mem == NULL) {
void *buf = heap_caps_aligned_alloc(SOC_RTC_CNTL_CPU_PD_DMA_ADDR_ALIGN,
SOC_RTC_CNTL_CPU_PD_RETENTION_MEM_SIZE + RTC_HAL_DMA_LINK_NODE_SIZE,
MALLOC_CAP_RETENTION | MALLOC_CAP_DEFAULT);
if (buf) {
memset(buf, 0, SOC_RTC_CNTL_CPU_PD_RETENTION_MEM_SIZE + RTC_HAL_DMA_LINK_NODE_SIZE);
s_config.cpu_pd_mem = rtc_cntl_hal_dma_link_init(buf,
buf + RTC_HAL_DMA_LINK_NODE_SIZE, SOC_RTC_CNTL_CPU_PD_RETENTION_MEM_SIZE, NULL);
} else {
return ESP_ERR_NO_MEM;
}
}
} else {
if (s_config.cpu_pd_mem) {
heap_caps_free(s_config.cpu_pd_mem);
s_config.cpu_pd_mem = NULL;
}
}
return ESP_OK;
}
#endif // SOC_PM_SUPPORT_CPU_PD
#if SOC_GPIO_SUPPORT_SLP_SWITCH
#if CONFIG_GPIO_ESP32_SUPPORT_SWITCH_SLP_PULL
static inline void gpio_sleep_mode_config_apply(void)
{
for (gpio_num_t gpio_num = GPIO_NUM_0; gpio_num < GPIO_NUM_MAX; gpio_num++) {
if (GPIO_IS_VALID_GPIO(gpio_num)) {
gpio_sleep_pupd_config_apply(gpio_num);
}
}
}
static inline void gpio_sleep_mode_config_unapply(void)
{
for (gpio_num_t gpio_num = GPIO_NUM_0; gpio_num < GPIO_NUM_MAX; gpio_num++) {
if (GPIO_IS_VALID_GPIO(gpio_num)) {
gpio_sleep_pupd_config_unapply(gpio_num);
}
}
}
#endif
void esp_sleep_config_gpio_isolate(void)
{
ESP_LOGI(TAG, "Configure to isolate all GPIO pins in sleep state");
for (gpio_num_t gpio_num = GPIO_NUM_0; gpio_num < GPIO_NUM_MAX; gpio_num++) {
if (GPIO_IS_VALID_GPIO(gpio_num)) {
gpio_sleep_set_direction(gpio_num, GPIO_MODE_DISABLE);
gpio_sleep_set_pull_mode(gpio_num, GPIO_FLOATING);
}
}
}
void esp_sleep_enable_gpio_switch(bool enable)
{
ESP_LOGI(TAG, "%s automatic switching of GPIO sleep configuration", enable ? "Enable" : "Disable");
for (gpio_num_t gpio_num = GPIO_NUM_0; gpio_num < GPIO_NUM_MAX; gpio_num++) {
if (GPIO_IS_VALID_GPIO(gpio_num)) {
if (enable) {
gpio_sleep_sel_en(gpio_num);
} else {
gpio_sleep_sel_dis(gpio_num);
}
}
}
}
#endif // SOC_GPIO_SUPPORT_SLP_SWITCH
static uint32_t IRAM_ATTR esp_sleep_start(uint32_t pd_flags)
{
// Stop UART output so that output is not lost due to APB frequency change.
// For light sleep, suspend UART output — it will resume after wakeup.
// For deep sleep, wait for the contents of UART FIFO to be sent.
bool deep_sleep = pd_flags & RTC_SLEEP_PD_DIG;
#if !CONFIG_FREERTOS_UNICORE && CONFIG_IDF_TARGET_ESP32S3 && CONFIG_ESP_SYSTEM_ALLOW_RTC_FAST_MEM_AS_HEAP
/* Currently only safe to use deep sleep wake stub & RTC memory as heap in single core mode.
For ESP32-S3, either disable ESP_SYSTEM_ALLOW_RTC_FAST_MEM_AS_HEAP in config or find a way to set the
deep sleep wake stub to NULL.
*/
assert(!deep_sleep || esp_get_deep_sleep_wake_stub() == NULL);
#endif
if (deep_sleep) {
flush_uarts();
} else {
suspend_uarts();
}
// Save current frequency and switch to XTAL
rtc_cpu_freq_config_t cpu_freq_config;
rtc_clk_cpu_freq_get_config(&cpu_freq_config);
rtc_clk_cpu_freq_set_xtal();
2021-03-09 00:49:59 -05:00
#if CONFIG_MAC_BB_PD
mac_bb_power_down_cb_execute();
#endif
#if SOC_PM_SUPPORT_EXT_WAKEUP
// Configure pins for external wakeup
if (s_config.wakeup_triggers & RTC_EXT0_TRIG_EN) {
ext0_wakeup_prepare();
}
if (s_config.wakeup_triggers & RTC_EXT1_TRIG_EN) {
ext1_wakeup_prepare();
}
#endif
#if SOC_GPIO_SUPPORT_DEEPSLEEP_WAKEUP
if (s_config.wakeup_triggers & RTC_GPIO_TRIG_EN) {
esp_deep_sleep_wakeup_prepare();
}
#endif
#ifdef CONFIG_IDF_TARGET_ESP32
// Enable ULP wakeup
if (s_config.wakeup_triggers & RTC_ULP_TRIG_EN) {
rtc_hal_ulp_wakeup_enable();
}
#if CONFIG_GPIO_ESP32_SUPPORT_SWITCH_SLP_PULL
gpio_sleep_mode_config_apply();
#endif
#endif
#if CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
if (deep_sleep) {
if (s_config.wakeup_triggers & RTC_TOUCH_TRIG_EN) {
touch_wakeup_prepare();
/* Workaround: In deep sleep, for ESP32S2, Power down the RTC_PERIPH will change the slope configuration of Touch sensor sleep pad.
* The configuration change will change the reading of the sleep pad, which will cause the touch wake-up sensor to trigger falsely.
*/
pd_flags &= ~RTC_SLEEP_PD_RTC_PERIPH;
}
} else {
/* In light sleep, the RTC_PERIPH power domain should be in the power-on state (Power on the touch circuit in light sleep),
* otherwise the touch sensor FSM will be cleared, causing touch sensor false triggering.
*/
if (touch_ll_get_fsm_state()) { // Check if the touch sensor is working properly.
pd_flags &= ~RTC_SLEEP_PD_RTC_PERIPH;
}
}
#endif
uint32_t reject_triggers = 0;
if ((pd_flags & RTC_SLEEP_PD_DIG) == 0 && (s_config.wakeup_triggers & RTC_GPIO_TRIG_EN)) {
/* Light sleep, enable sleep reject for faster return from this function,
* in case the wakeup is already triggerred.
*/
#if CONFIG_IDF_TARGET_ESP32
reject_triggers = RTC_CNTL_LIGHT_SLP_REJECT_EN_M | RTC_CNTL_GPIO_REJECT_EN_M;
#else
reject_triggers = s_config.wakeup_triggers;
#endif
}
// Enter sleep
rtc_sleep_config_t config = RTC_SLEEP_CONFIG_DEFAULT(pd_flags);
rtc_sleep_init(config);
rtc_sleep_low_init(s_config.rtc_clk_cal_period);
// Set state machine time for light sleep
if (!deep_sleep) {
rtc_sleep_low_init(s_config.rtc_clk_cal_period);
}
// Configure timer wakeup
if ((s_config.wakeup_triggers & RTC_TIMER_TRIG_EN) &&
s_config.sleep_duration > 0) {
timer_wakeup_prepare();
}
uint32_t result;
if (deep_sleep) {
/* Disable interrupts in case another task writes to RTC memory while we
* calculate RTC memory CRC
*
* Note: for ESP32-S3 running in dual core mode this is currently not enough,
* see the assert at top of this function.
*/
portENTER_CRITICAL(&spinlock_rtc_deep_sleep);
#if !CONFIG_ESP_SYSTEM_ALLOW_RTC_FAST_MEM_AS_HEAP
/* If not possible stack is in RTC FAST memory, use the ROM function to calculate the CRC and save ~140 bytes IRAM */
2021-03-21 23:37:05 -04:00
#if CONFIG_IDF_TARGET_ESP32S3//TODO: WIFI-3542
result = 0;
#else
set_rtc_memory_crc();
result = call_rtc_sleep_start(reject_triggers);
2021-03-21 23:37:05 -04:00
#endif
#else
/* Otherwise, need to call the dedicated soc function for this */
result = rtc_deep_sleep_start(s_config.wakeup_triggers, reject_triggers);
#endif
portEXIT_CRITICAL(&spinlock_rtc_deep_sleep);
} else {
result = call_rtc_sleep_start(reject_triggers);
}
// Restore CPU frequency
rtc_clk_cpu_freq_set_config(&cpu_freq_config);
if (!deep_sleep) {
s_config.ccount_ticks_record = cpu_ll_get_cycle_count();
}
#if SOC_PM_SUPPORT_CPU_PD
rtc_cntl_hal_disable_cpu_retention();
#endif
#if CONFIG_GPIO_ESP32_SUPPORT_SWITCH_SLP_PULL
gpio_sleep_mode_config_unapply();
#endif
#if CONFIG_MAC_BB_PD
mac_bb_power_up_cb_execute();
#endif
// re-enable UART output
resume_uarts();
return result;
}
inline static uint32_t IRAM_ATTR call_rtc_sleep_start(uint32_t reject_triggers)
{
#ifdef CONFIG_IDF_TARGET_ESP32
return rtc_sleep_start(s_config.wakeup_triggers, reject_triggers);
#else
return rtc_sleep_start(s_config.wakeup_triggers, reject_triggers, 1);
#endif
}
void IRAM_ATTR esp_deep_sleep_start(void)
{
#if CONFIG_IDF_TARGET_ESP32S2
/* Due to hardware limitations, on S2 the brownout detector sometimes trigger during deep sleep
to circumvent this we disable the brownout detector before sleeping */
esp_brownout_disable();
#endif //CONFIG_IDF_TARGET_ESP32S2
// record current RTC time
s_config.rtc_ticks_at_sleep_start = rtc_time_get();
// record current RTC time
esp_sync_counters_rtc_and_frc();
// Configure wake stub
if (esp_get_deep_sleep_wake_stub() == NULL) {
esp_set_deep_sleep_wake_stub(esp_wake_deep_sleep);
}
// Decide which power domains can be powered down
uint32_t pd_flags = get_power_down_flags();
s_config.rtc_clk_cal_period = esp_clk_slowclk_cal_get();
// Correct the sleep time
s_config.sleep_time_adjustment = DEEP_SLEEP_TIME_OVERHEAD_US;
uint32_t force_pd_flags = RTC_SLEEP_PD_DIG | RTC_SLEEP_PD_VDDSDIO;
#if SOC_PM_SUPPORT_WIFI_PD
force_pd_flags |= RTC_SLEEP_PD_WIFI;
#endif
#if SOC_PM_SUPPORT_BT_PD
force_pd_flags |= RTC_SLEEP_PD_BT;
#endif
// Enter sleep
esp_sleep_start(force_pd_flags | pd_flags);
// Because RTC is in a slower clock domain than the CPU, it
// can take several CPU cycles for the sleep mode to start.
while (1) {
;
}
}
/**
* Helper function which handles entry to and exit from light sleep
* Placed into IRAM as flash may need some time to be powered on.
*/
static esp_err_t esp_light_sleep_inner(uint32_t pd_flags,
uint32_t flash_enable_time_us,
rtc_vddsdio_config_t vddsdio_config) IRAM_ATTR __attribute__((noinline));
static esp_err_t esp_light_sleep_inner(uint32_t pd_flags,
uint32_t flash_enable_time_us,
rtc_vddsdio_config_t vddsdio_config)
{
// Enter sleep
esp_err_t err = esp_sleep_start(pd_flags);
// If VDDSDIO regulator was controlled by RTC registers before sleep,
// restore the configuration.
if (vddsdio_config.force) {
rtc_vddsdio_set_config(vddsdio_config);
}
// If SPI flash was powered down, wait for it to become ready
if (pd_flags & RTC_SLEEP_PD_VDDSDIO) {
// Wait for the flash chip to start up
esp_rom_delay_us(flash_enable_time_us);
}
return err;
}
esp_err_t esp_light_sleep_start(void)
{
2021-01-08 05:29:54 -05:00
s_config.ccount_ticks_record = cpu_ll_get_cycle_count();
static portMUX_TYPE light_sleep_lock = portMUX_INITIALIZER_UNLOCKED;
portENTER_CRITICAL(&light_sleep_lock);
/* We will be calling esp_timer_private_advance inside DPORT access critical
* section. Make sure the code on the other CPU is not holding esp_timer
* lock, otherwise there will be deadlock.
*/
esp_timer_private_lock();
s_config.rtc_ticks_at_sleep_start = rtc_time_get();
uint32_t ccount_at_sleep_start = cpu_ll_get_cycle_count();
uint64_t frc_time_at_start = esp_system_get_time();
uint32_t sleep_time_overhead_in = (ccount_at_sleep_start - s_config.ccount_ticks_record) / (esp_clk_cpu_freq() / 1000000ULL);
DPORT_STALL_OTHER_CPU_START();
// Decide which power domains can be powered down
uint32_t pd_flags = get_power_down_flags();
// Re-calibrate the RTC Timer clock
#if defined(CONFIG_ESP32_RTC_CLK_SRC_EXT_CRYS) || defined(CONFIG_ESP32S2_RTC_CLK_SRC_EXT_CRYS) || defined(CONFIG_ESP32C3_RTC_CLK_SRC_EXT_CRYS)
uint64_t time_per_us = 1000000ULL;
s_config.rtc_clk_cal_period = (time_per_us << RTC_CLK_CAL_FRACT) / rtc_clk_slow_freq_get_hz();
#elif defined(CONFIG_ESP32S2_RTC_CLK_SRC_INT_RC)
s_config.rtc_clk_cal_period = rtc_clk_cal_cycling(RTC_CAL_RTC_MUX, RTC_CLK_SRC_CAL_CYCLES);
esp_clk_slowclk_cal_set(s_config.rtc_clk_cal_period);
#else
s_config.rtc_clk_cal_period = rtc_clk_cal(RTC_CAL_RTC_MUX, RTC_CLK_SRC_CAL_CYCLES);
esp_clk_slowclk_cal_set(s_config.rtc_clk_cal_period);
#endif
/*
* Adjustment time consists of parts below:
* 1. Hardware time waiting for internal 8M oscilate clock and XTAL;
* 2. Hardware state swithing time of the rtc main state machine;
* 3. Code execution time when clock is not stable;
* 4. Code execution time which can be measured;
*/
uint32_t rtc_cntl_xtl_buf_wait_slp_cycles = rtc_time_us_to_slowclk(RTC_CNTL_XTL_BUF_WAIT_SLP_US, s_config.rtc_clk_cal_period);
s_config.sleep_time_adjustment = LIGHT_SLEEP_TIME_OVERHEAD_US + sleep_time_overhead_in + s_config.sleep_time_overhead_out
+ rtc_time_slowclk_to_us(rtc_cntl_xtl_buf_wait_slp_cycles + RTC_CNTL_CK8M_WAIT_SLP_CYCLES + RTC_CNTL_WAKEUP_DELAY_CYCLES, s_config.rtc_clk_cal_period);
// Decide if VDD_SDIO needs to be powered down;
// If it needs to be powered down, adjust sleep time.
const uint32_t flash_enable_time_us = VDD_SDIO_POWERUP_TO_FLASH_READ_US + DEEP_SLEEP_WAKEUP_DELAY;
/**
* If VDD_SDIO power domain is requested to be turned off, bit `RTC_SLEEP_PD_VDDSDIO`
* will be set in `pd_flags`.
*/
if (pd_flags & RTC_SLEEP_PD_VDDSDIO) {
/*
* When VDD_SDIO power domain has to be turned off, the minimum sleep time of the
* system needs to meet the sum below:
* 1. Wait time for the flash power-on after waking up;
* 2. The execution time of codes between RTC Timer get start time
* with hardware starts to switch state to sleep;
* 3. The hardware state switching time of the rtc state machine during
* sleep and wake-up. This process requires 6 cycles to complete.
* The specific hardware state switching process and the cycles
* consumed are rtc_cpu_run_stall(1), cut_pll_rtl(2), cut_8m(1),
* min_protect(2);
* 4. All the adjustment time which is s_config.sleep_time_adjustment below.
*/
const uint32_t vddsdio_pd_sleep_duration = MAX(FLASH_PD_MIN_SLEEP_TIME_US,
flash_enable_time_us + LIGHT_SLEEP_MIN_TIME_US + s_config.sleep_time_adjustment
+ rtc_time_slowclk_to_us(RTC_MODULE_SLEEP_PREPARE_CYCLES, s_config.rtc_clk_cal_period));
if (s_config.sleep_duration > vddsdio_pd_sleep_duration) {
if (s_config.sleep_time_overhead_out < flash_enable_time_us) {
s_config.sleep_time_adjustment += flash_enable_time_us;
}
} else {
/**
* Minimum sleep time is not enough, then keep the VDD_SDIO power
* domain on.
*/
pd_flags &= ~RTC_SLEEP_PD_VDDSDIO;
if (s_config.sleep_time_overhead_out > flash_enable_time_us) {
s_config.sleep_time_adjustment -= flash_enable_time_us;
}
}
}
2020-12-30 03:42:39 -05:00
periph_inform_out_light_sleep_overhead(s_config.sleep_time_adjustment - sleep_time_overhead_in);
#if SOC_PM_SUPPORT_CPU_PD
rtc_cntl_hal_enable_cpu_retention(s_config.cpu_pd_mem);
#endif
rtc_vddsdio_config_t vddsdio_config = rtc_vddsdio_get_config();
// Safety net: enable WDT in case exit from light sleep fails
wdt_hal_context_t rtc_wdt_ctx = {.inst = WDT_RWDT, .rwdt_dev = &RTCCNTL};
bool wdt_was_enabled = wdt_hal_is_enabled(&rtc_wdt_ctx); // If WDT was enabled in the user code, then do not change it here.
if (!wdt_was_enabled) {
wdt_hal_init(&rtc_wdt_ctx, WDT_RWDT, 0, false);
uint32_t stage_timeout_ticks = (uint32_t)(1000ULL * rtc_clk_slow_freq_get_hz() / 1000ULL);
wdt_hal_write_protect_disable(&rtc_wdt_ctx);
wdt_hal_config_stage(&rtc_wdt_ctx, WDT_STAGE0, stage_timeout_ticks, WDT_STAGE_ACTION_RESET_RTC);
wdt_hal_enable(&rtc_wdt_ctx);
wdt_hal_write_protect_enable(&rtc_wdt_ctx);
}
// Enter sleep, then wait for flash to be ready on wakeup
esp_err_t err = esp_light_sleep_inner(pd_flags,
flash_enable_time_us, vddsdio_config);
s_light_sleep_wakeup = true;
// FRC1 has been clock gated for the duration of the sleep, correct for that.
#ifdef CONFIG_IDF_TARGET_ESP32C3
/**
* On esp32c3, rtc_time_get() is non-blocking, esp_system_get_time() is
* blocking, and the measurement data shows that this order is better.
*/
uint64_t frc_time_at_end = esp_system_get_time();
uint64_t rtc_ticks_at_end = rtc_time_get();
#else
uint64_t rtc_ticks_at_end = rtc_time_get();
uint64_t frc_time_at_end = esp_system_get_time();
#endif
uint64_t rtc_time_diff = rtc_time_slowclk_to_us(rtc_ticks_at_end - s_config.rtc_ticks_at_sleep_start, s_config.rtc_clk_cal_period);
uint64_t frc_time_diff = frc_time_at_end - frc_time_at_start;
int64_t time_diff = rtc_time_diff - frc_time_diff;
/* Small negative values (up to 1 RTC_SLOW clock period) are possible,
* for very small values of sleep_duration. Ignore those to keep esp_timer
* monotonic.
*/
if (time_diff > 0) {
esp_timer_private_advance(time_diff);
}
esp_set_time_from_rtc();
esp_timer_private_unlock();
DPORT_STALL_OTHER_CPU_END();
if (!wdt_was_enabled) {
wdt_hal_write_protect_disable(&rtc_wdt_ctx);
wdt_hal_disable(&rtc_wdt_ctx);
wdt_hal_write_protect_enable(&rtc_wdt_ctx);
}
portEXIT_CRITICAL(&light_sleep_lock);
s_config.sleep_time_overhead_out = (cpu_ll_get_cycle_count() - s_config.ccount_ticks_record) / (esp_clk_cpu_freq() / 1000000ULL);
return err;
}
esp_err_t esp_sleep_disable_wakeup_source(esp_sleep_source_t source)
{
// For most of sources it is enough to set trigger mask in local
// configuration structure. The actual RTC wake up options
// will be updated by esp_sleep_start().
if (source == ESP_SLEEP_WAKEUP_ALL) {
s_config.wakeup_triggers = 0;
} else if (CHECK_SOURCE(source, ESP_SLEEP_WAKEUP_TIMER, RTC_TIMER_TRIG_EN)) {
s_config.wakeup_triggers &= ~RTC_TIMER_TRIG_EN;
s_config.sleep_duration = 0;
#if SOC_PM_SUPPORT_EXT_WAKEUP
} else if (CHECK_SOURCE(source, ESP_SLEEP_WAKEUP_EXT0, RTC_EXT0_TRIG_EN)) {
s_config.ext0_rtc_gpio_num = 0;
s_config.ext0_trigger_level = 0;
s_config.wakeup_triggers &= ~RTC_EXT0_TRIG_EN;
} else if (CHECK_SOURCE(source, ESP_SLEEP_WAKEUP_EXT1, RTC_EXT1_TRIG_EN)) {
s_config.ext1_rtc_gpio_mask = 0;
s_config.ext1_trigger_mode = 0;
s_config.wakeup_triggers &= ~RTC_EXT1_TRIG_EN;
#endif
#if SOC_TOUCH_PAD_WAKE_SUPPORTED
} else if (CHECK_SOURCE(source, ESP_SLEEP_WAKEUP_TOUCHPAD, RTC_TOUCH_TRIG_EN)) {
s_config.wakeup_triggers &= ~RTC_TOUCH_TRIG_EN;
#endif
} else if (CHECK_SOURCE(source, ESP_SLEEP_WAKEUP_GPIO, RTC_GPIO_TRIG_EN)) {
s_config.wakeup_triggers &= ~RTC_GPIO_TRIG_EN;
} else if (CHECK_SOURCE(source, ESP_SLEEP_WAKEUP_UART, (RTC_UART0_TRIG_EN | RTC_UART1_TRIG_EN))) {
s_config.wakeup_triggers &= ~(RTC_UART0_TRIG_EN | RTC_UART1_TRIG_EN);
}
#if defined(CONFIG_ESP32_ULP_COPROC_ENABLED) || defined(CONFIG_ESP32S2_ULP_COPROC_ENABLED)
else if (CHECK_SOURCE(source, ESP_SLEEP_WAKEUP_ULP, RTC_ULP_TRIG_EN)) {
s_config.wakeup_triggers &= ~RTC_ULP_TRIG_EN;
}
#endif
else {
ESP_LOGE(TAG, "Incorrect wakeup source (%d) to disable.", (int) source);
return ESP_ERR_INVALID_STATE;
}
return ESP_OK;
}
esp_err_t esp_sleep_enable_ulp_wakeup(void)
{
#if CONFIG_IDF_TARGET_ESP32
#if ((defined CONFIG_ESP32_RTC_EXT_CRYST_ADDIT_CURRENT) || (defined CONFIG_ESP32_RTC_EXT_CRYST_ADDIT_CURRENT_V2))
ESP_LOGE(TAG, "Failed to enable wakeup when provide current to external 32kHz crystal");
2018-12-22 01:19:46 -05:00
return ESP_ERR_NOT_SUPPORTED;
#endif
#ifdef CONFIG_ESP32_ULP_COPROC_ENABLED
if (s_config.wakeup_triggers & RTC_EXT0_TRIG_EN) {
ESP_LOGE(TAG, "Conflicting wake-up trigger: ext0");
return ESP_ERR_INVALID_STATE;
}
s_config.wakeup_triggers |= RTC_ULP_TRIG_EN;
return ESP_OK;
#else // CONFIG_ESP32_ULP_COPROC_ENABLED
return ESP_ERR_INVALID_STATE;
#endif // CONFIG_ESP32_ULP_COPROC_ENABLED
2020-07-29 01:13:51 -04:00
#elif CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
s_config.wakeup_triggers |= (RTC_ULP_TRIG_EN | RTC_COCPU_TRIG_EN | RTC_COCPU_TRAP_TRIG_EN);
return ESP_OK;
#else
return ESP_ERR_NOT_SUPPORTED;
#endif
}
esp_err_t esp_sleep_enable_timer_wakeup(uint64_t time_in_us)
{
s_config.wakeup_triggers |= RTC_TIMER_TRIG_EN;
s_config.sleep_duration = time_in_us;
return ESP_OK;
}
static void timer_wakeup_prepare(void)
{
int64_t sleep_duration = (int64_t) s_config.sleep_duration - (int64_t) s_config.sleep_time_adjustment;
if (sleep_duration < 0) {
sleep_duration = 0;
}
int64_t ticks = rtc_time_us_to_slowclk(sleep_duration, s_config.rtc_clk_cal_period);
rtc_hal_set_wakeup_timer(s_config.rtc_ticks_at_sleep_start + ticks);
}
#if CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
/* In deep sleep mode, only the sleep channel is supported, and other touch channels should be turned off. */
static void touch_wakeup_prepare(void)
{
uint16_t sleep_cycle = 0;
uint16_t meas_times = 0;
touch_pad_t touch_num = TOUCH_PAD_NUM0;
touch_ll_sleep_get_channel_num(&touch_num); // Check if the sleep pad is enabled.
if ((touch_num > TOUCH_PAD_NUM0) && (touch_num < TOUCH_PAD_MAX) && touch_ll_get_fsm_state()) {
touch_ll_stop_fsm();
touch_ll_clear_channel_mask(TOUCH_PAD_BIT_MASK_ALL);
touch_ll_intr_clear(TOUCH_PAD_INTR_MASK_ALL); // Clear state from previous wakeup
touch_hal_sleep_channel_get_work_time(&sleep_cycle, &meas_times);
touch_ll_set_meas_times(meas_times);
touch_ll_set_sleep_time(sleep_cycle);
touch_ll_set_channel_mask(BIT(touch_num));
touch_ll_start_fsm();
}
}
#endif
#if SOC_TOUCH_SENSOR_NUM > 0
esp_err_t esp_sleep_enable_touchpad_wakeup(void)
{
#if ((defined CONFIG_ESP32_RTC_EXT_CRYST_ADDIT_CURRENT) || (defined CONFIG_ESP32_RTC_EXT_CRYST_ADDIT_CURRENT_V2))
ESP_LOGE(TAG, "Failed to enable wakeup when provide current to external 32kHz crystal");
2018-12-22 01:19:46 -05:00
return ESP_ERR_NOT_SUPPORTED;
#endif
if (s_config.wakeup_triggers & (RTC_EXT0_TRIG_EN)) {
ESP_LOGE(TAG, "Conflicting wake-up trigger: ext0");
return ESP_ERR_INVALID_STATE;
}
s_config.wakeup_triggers |= RTC_TOUCH_TRIG_EN;
return ESP_OK;
}
touch_pad_t esp_sleep_get_touchpad_wakeup_status(void)
{
if (esp_sleep_get_wakeup_cause() != ESP_SLEEP_WAKEUP_TOUCHPAD) {
return TOUCH_PAD_MAX;
}
touch_pad_t pad_num;
esp_err_t ret = touch_pad_get_wakeup_status(&pad_num); //TODO 723diff commit id:fda9ada1b
assert(ret == ESP_OK && "wakeup reason is RTC_TOUCH_TRIG_EN but SENS_TOUCH_MEAS_EN is zero");
return (ret == ESP_OK) ? pad_num : TOUCH_PAD_MAX;
}
#endif // SOC_TOUCH_SENSOR_NUM > 0
bool esp_sleep_is_valid_wakeup_gpio(gpio_num_t gpio_num)
{
#if SOC_RTCIO_INPUT_OUTPUT_SUPPORTED
return RTC_GPIO_IS_VALID_GPIO(gpio_num);
#else
return GPIO_IS_DEEP_SLEEP_WAKEUP_VALID_GPIO(gpio_num);
#endif // SOC_RTCIO_INPUT_OUTPUT_SUPPORTED
}
#if SOC_PM_SUPPORT_EXT_WAKEUP
esp_err_t esp_sleep_enable_ext0_wakeup(gpio_num_t gpio_num, int level)
{
if (level < 0 || level > 1) {
return ESP_ERR_INVALID_ARG;
}
if (!esp_sleep_is_valid_wakeup_gpio(gpio_num)) {
return ESP_ERR_INVALID_ARG;
}
if (s_config.wakeup_triggers & (RTC_TOUCH_TRIG_EN | RTC_ULP_TRIG_EN)) {
ESP_LOGE(TAG, "Conflicting wake-up triggers: touch / ULP");
return ESP_ERR_INVALID_STATE;
}
2019-07-25 11:11:31 -04:00
s_config.ext0_rtc_gpio_num = rtc_io_number_get(gpio_num);
s_config.ext0_trigger_level = level;
s_config.wakeup_triggers |= RTC_EXT0_TRIG_EN;
return ESP_OK;
}
static void ext0_wakeup_prepare(void)
{
int rtc_gpio_num = s_config.ext0_rtc_gpio_num;
rtcio_hal_ext0_set_wakeup_pin(rtc_gpio_num, s_config.ext0_trigger_level);
rtcio_hal_function_select(rtc_gpio_num, RTCIO_FUNC_RTC);
rtcio_hal_input_enable(rtc_gpio_num);
}
esp_err_t esp_sleep_enable_ext1_wakeup(uint64_t mask, esp_sleep_ext1_wakeup_mode_t mode)
{
if (mode > ESP_EXT1_WAKEUP_ANY_HIGH) {
return ESP_ERR_INVALID_ARG;
}
// Translate bit map of GPIO numbers into the bit map of RTC IO numbers
uint32_t rtc_gpio_mask = 0;
for (int gpio = 0; mask; ++gpio, mask >>= 1) {
if ((mask & 1) == 0) {
continue;
}
if (!esp_sleep_is_valid_wakeup_gpio(gpio)) {
ESP_LOGE(TAG, "Not an RTC IO: GPIO%d", gpio);
return ESP_ERR_INVALID_ARG;
}
2019-07-25 11:11:31 -04:00
rtc_gpio_mask |= BIT(rtc_io_number_get(gpio));
}
s_config.ext1_rtc_gpio_mask = rtc_gpio_mask;
s_config.ext1_trigger_mode = mode;
s_config.wakeup_triggers |= RTC_EXT1_TRIG_EN;
return ESP_OK;
}
static void ext1_wakeup_prepare(void)
{
// Configure all RTC IOs selected as ext1 wakeup inputs
uint32_t rtc_gpio_mask = s_config.ext1_rtc_gpio_mask;
for (int gpio = 0; gpio < GPIO_PIN_COUNT && rtc_gpio_mask != 0; ++gpio) {
2019-07-25 11:11:31 -04:00
int rtc_pin = rtc_io_number_get(gpio);
if ((rtc_gpio_mask & BIT(rtc_pin)) == 0) {
continue;
}
#if SOC_RTCIO_INPUT_OUTPUT_SUPPORTED
// Route pad to RTC
rtcio_hal_function_select(rtc_pin, RTCIO_FUNC_RTC);
sleep: make sure input enable is set for EXT0/EXT1 wakeup Since commit 94250e4, EXT0 wakeup mechanism, when wakeup level was set to 0, started waking up chip immediately after entering deep sleep. This failure was triggered in that commit by a change of RTC_CNTL_MIN_SLP_VAL (i.e. minimum time in sleep mode until wakeup can happen) from 128 cycles to 2 cycles. The reason for this behaviour is related to the way input enable (IE) signal going into an RTC pad is obtained: PAD_IE = (SLP_SEL) ? SLP_IE & CHIP_SLEEP : IE, where SLP_IE, SLP_SEL, and IE are bits of an RTC_IO register related to the given pad. CHIP_SLEEP is the signal indicating that chip has entered sleep mode. The code in prepare_ext{0,1}_wakeup did not enable IE, but did enable SLP_SEL and SLP_IE. This meant that until CHIP_SLEEP went high, PAD_IE was 0, hence the input from the pad read 0 even if external signal was 1. CHIP_SLEEP went high on the 2nd cycle of sleep. So when RTC_CNTL_MIN_SLP_VAL was set to 2, the input signal from the pad was latched as 0 at the moment when CHIP_SLEEP went high, causing EXT0 wakeup with level 0 to trigger. This commit changes the way PAD_IE is enabled: SLP_SEL and SLP_IE are no longer used, and IE is set to 1. If EXT0 wakeup is used, RTC_IO is not powered down, so IE signal stays 1 both before CHIP_SLEEP goes high and after. If EXT1 wakeup is used, RTC_IO may be powered down. However prepare_ext1_wakeup enables Hold on the pad, locking states of all the control signals, including IE. Closes https://github.com/espressif/esp-idf/issues/1931 Closes https://github.com/espressif/esp-idf/issues/2043
2018-06-12 08:23:26 -04:00
// set input enable in sleep mode
rtcio_hal_input_enable(rtc_pin);
#endif
// Pad configuration depends on RTC_PERIPH state in sleep mode
sleep: make sure input enable is set for EXT0/EXT1 wakeup Since commit 94250e4, EXT0 wakeup mechanism, when wakeup level was set to 0, started waking up chip immediately after entering deep sleep. This failure was triggered in that commit by a change of RTC_CNTL_MIN_SLP_VAL (i.e. minimum time in sleep mode until wakeup can happen) from 128 cycles to 2 cycles. The reason for this behaviour is related to the way input enable (IE) signal going into an RTC pad is obtained: PAD_IE = (SLP_SEL) ? SLP_IE & CHIP_SLEEP : IE, where SLP_IE, SLP_SEL, and IE are bits of an RTC_IO register related to the given pad. CHIP_SLEEP is the signal indicating that chip has entered sleep mode. The code in prepare_ext{0,1}_wakeup did not enable IE, but did enable SLP_SEL and SLP_IE. This meant that until CHIP_SLEEP went high, PAD_IE was 0, hence the input from the pad read 0 even if external signal was 1. CHIP_SLEEP went high on the 2nd cycle of sleep. So when RTC_CNTL_MIN_SLP_VAL was set to 2, the input signal from the pad was latched as 0 at the moment when CHIP_SLEEP went high, causing EXT0 wakeup with level 0 to trigger. This commit changes the way PAD_IE is enabled: SLP_SEL and SLP_IE are no longer used, and IE is set to 1. If EXT0 wakeup is used, RTC_IO is not powered down, so IE signal stays 1 both before CHIP_SLEEP goes high and after. If EXT1 wakeup is used, RTC_IO may be powered down. However prepare_ext1_wakeup enables Hold on the pad, locking states of all the control signals, including IE. Closes https://github.com/espressif/esp-idf/issues/1931 Closes https://github.com/espressif/esp-idf/issues/2043
2018-06-12 08:23:26 -04:00
if (s_config.pd_options[ESP_PD_DOMAIN_RTC_PERIPH] != ESP_PD_OPTION_ON) {
#if SOC_RTCIO_INPUT_OUTPUT_SUPPORTED
sleep: make sure input enable is set for EXT0/EXT1 wakeup Since commit 94250e4, EXT0 wakeup mechanism, when wakeup level was set to 0, started waking up chip immediately after entering deep sleep. This failure was triggered in that commit by a change of RTC_CNTL_MIN_SLP_VAL (i.e. minimum time in sleep mode until wakeup can happen) from 128 cycles to 2 cycles. The reason for this behaviour is related to the way input enable (IE) signal going into an RTC pad is obtained: PAD_IE = (SLP_SEL) ? SLP_IE & CHIP_SLEEP : IE, where SLP_IE, SLP_SEL, and IE are bits of an RTC_IO register related to the given pad. CHIP_SLEEP is the signal indicating that chip has entered sleep mode. The code in prepare_ext{0,1}_wakeup did not enable IE, but did enable SLP_SEL and SLP_IE. This meant that until CHIP_SLEEP went high, PAD_IE was 0, hence the input from the pad read 0 even if external signal was 1. CHIP_SLEEP went high on the 2nd cycle of sleep. So when RTC_CNTL_MIN_SLP_VAL was set to 2, the input signal from the pad was latched as 0 at the moment when CHIP_SLEEP went high, causing EXT0 wakeup with level 0 to trigger. This commit changes the way PAD_IE is enabled: SLP_SEL and SLP_IE are no longer used, and IE is set to 1. If EXT0 wakeup is used, RTC_IO is not powered down, so IE signal stays 1 both before CHIP_SLEEP goes high and after. If EXT1 wakeup is used, RTC_IO may be powered down. However prepare_ext1_wakeup enables Hold on the pad, locking states of all the control signals, including IE. Closes https://github.com/espressif/esp-idf/issues/1931 Closes https://github.com/espressif/esp-idf/issues/2043
2018-06-12 08:23:26 -04:00
// RTC_PERIPH will be powered down, so RTC_IO_ registers will
// loose their state. Lock pad configuration.
// Pullups/pulldowns also need to be disabled.
rtcio_hal_pullup_disable(rtc_pin);
rtcio_hal_pulldown_disable(rtc_pin);
#endif
rtcio_hal_hold_enable(rtc_pin);
}
// Keep track of pins which are processed to bail out early
rtc_gpio_mask &= ~BIT(rtc_pin);
}
// Clear state from previous wakeup
rtc_hal_ext1_clear_wakeup_pins();
// Set RTC IO pins and mode (any high, all low) to be used for wakeup
rtc_hal_ext1_set_wakeup_pins(s_config.ext1_rtc_gpio_mask, s_config.ext1_trigger_mode);
}
uint64_t esp_sleep_get_ext1_wakeup_status(void)
{
if (esp_sleep_get_wakeup_cause() != ESP_SLEEP_WAKEUP_EXT1) {
return 0;
}
uint32_t status = rtc_hal_ext1_get_wakeup_pins();
// Translate bit map of RTC IO numbers into the bit map of GPIO numbers
uint64_t gpio_mask = 0;
for (int gpio = 0; gpio < GPIO_PIN_COUNT; ++gpio) {
if (!esp_sleep_is_valid_wakeup_gpio(gpio)) {
continue;
}
2019-07-25 11:11:31 -04:00
int rtc_pin = rtc_io_number_get(gpio);
if ((status & BIT(rtc_pin)) == 0) {
continue;
}
gpio_mask |= 1ULL << gpio;
}
return gpio_mask;
}
#endif // SOC_PM_SUPPORT_EXT_WAKEUP
#if SOC_GPIO_SUPPORT_DEEPSLEEP_WAKEUP
uint64_t esp_sleep_get_gpio_wakeup_status(void)
{
if (esp_sleep_get_wakeup_cause() != ESP_SLEEP_WAKEUP_GPIO) {
return 0;
}
return rtc_hal_gpio_get_wakeup_pins();
}
static void esp_deep_sleep_wakeup_prepare(void)
{
for (gpio_num_t gpio_idx = GPIO_NUM_0; gpio_idx < GPIO_NUM_MAX; gpio_idx++) {
if (((1ULL << gpio_idx) & s_config.gpio_wakeup_mask) == 0) {
continue;
}
if (s_config.gpio_trigger_mode & BIT(gpio_idx)) {
ESP_ERROR_CHECK(gpio_pullup_dis(gpio_idx));
ESP_ERROR_CHECK(gpio_pulldown_en(gpio_idx));
} else {
ESP_ERROR_CHECK(gpio_pullup_en(gpio_idx));
ESP_ERROR_CHECK(gpio_pulldown_dis(gpio_idx));
}
rtc_hal_gpio_set_wakeup_pins();
ESP_ERROR_CHECK(gpio_hold_en(gpio_idx));
}
}
esp_err_t esp_deep_sleep_enable_gpio_wakeup(uint64_t gpio_pin_mask, esp_deepsleep_gpio_wake_up_mode_t mode)
{
if (mode > ESP_GPIO_WAKEUP_GPIO_HIGH) {
ESP_LOGE(TAG, "invalid mode");
return ESP_ERR_INVALID_ARG;
}
gpio_int_type_t intr_type = ((mode == ESP_GPIO_WAKEUP_GPIO_LOW) ? GPIO_INTR_LOW_LEVEL : GPIO_INTR_HIGH_LEVEL);
esp_err_t err = ESP_OK;
for (gpio_num_t gpio_idx = GPIO_NUM_0; gpio_idx < GPIO_NUM_MAX; gpio_idx++, gpio_pin_mask >>= 1) {
if ((gpio_pin_mask & 1) == 0) {
continue;
}
if (!esp_sleep_is_valid_wakeup_gpio(gpio_idx)) {
ESP_LOGE(TAG, "invalid mask, please ensure gpio number is no more than 5");
return ESP_ERR_INVALID_ARG;
}
err = gpio_deep_sleep_wakeup_enable(gpio_idx, intr_type);
s_config.gpio_wakeup_mask |= BIT(gpio_idx);
if (mode == ESP_GPIO_WAKEUP_GPIO_HIGH) {
s_config.gpio_trigger_mode |= (mode << gpio_idx);
} else {
s_config.gpio_trigger_mode &= ~(mode << gpio_idx);
}
}
s_config.wakeup_triggers |= RTC_GPIO_TRIG_EN;
rtc_hal_gpio_clear_wakeup_pins();
return err;
}
#endif //SOC_GPIO_SUPPORT_DEEPSLEEP_WAKEUP
esp_err_t esp_sleep_enable_gpio_wakeup(void)
{
#if CONFIG_IDF_TARGET_ESP32
if (s_config.wakeup_triggers & (RTC_TOUCH_TRIG_EN | RTC_ULP_TRIG_EN)) {
ESP_LOGE(TAG, "Conflicting wake-up triggers: touch / ULP");
return ESP_ERR_INVALID_STATE;
}
#endif
s_config.wakeup_triggers |= RTC_GPIO_TRIG_EN;
return ESP_OK;
}
esp_err_t esp_sleep_enable_uart_wakeup(int uart_num)
{
if (uart_num == UART_NUM_0) {
s_config.wakeup_triggers |= RTC_UART0_TRIG_EN;
} else if (uart_num == UART_NUM_1) {
s_config.wakeup_triggers |= RTC_UART1_TRIG_EN;
} else {
return ESP_ERR_INVALID_ARG;
}
return ESP_OK;
}
esp_err_t esp_sleep_enable_wifi_wakeup(void)
{
#if SOC_PM_SUPPORT_WIFI_WAKEUP
s_config.wakeup_triggers |= RTC_WIFI_TRIG_EN;
return ESP_OK;
#else
return ESP_ERR_NOT_SUPPORTED;
#endif
}
esp_err_t esp_sleep_disable_wifi_wakeup(void)
{
#if SOC_PM_SUPPORT_WIFI_WAKEUP
s_config.wakeup_triggers &= (~RTC_WIFI_TRIG_EN);
return ESP_OK;
#else
return ESP_ERR_NOT_SUPPORTED;
#endif
}
esp_sleep_wakeup_cause_t esp_sleep_get_wakeup_cause(void)
{
if (rtc_get_reset_reason(0) != DEEPSLEEP_RESET && !s_light_sleep_wakeup) {
return ESP_SLEEP_WAKEUP_UNDEFINED;
}
#ifdef CONFIG_IDF_TARGET_ESP32
uint32_t wakeup_cause = REG_GET_FIELD(RTC_CNTL_WAKEUP_STATE_REG, RTC_CNTL_WAKEUP_CAUSE);
#else
uint32_t wakeup_cause = REG_GET_FIELD(RTC_CNTL_SLP_WAKEUP_CAUSE_REG, RTC_CNTL_WAKEUP_CAUSE);
#endif
if (wakeup_cause & RTC_TIMER_TRIG_EN) {
return ESP_SLEEP_WAKEUP_TIMER;
} else if (wakeup_cause & RTC_GPIO_TRIG_EN) {
return ESP_SLEEP_WAKEUP_GPIO;
} else if (wakeup_cause & (RTC_UART0_TRIG_EN | RTC_UART1_TRIG_EN)) {
return ESP_SLEEP_WAKEUP_UART;
#if SOC_PM_SUPPORT_EXT_WAKEUP
} else if (wakeup_cause & RTC_EXT0_TRIG_EN) {
return ESP_SLEEP_WAKEUP_EXT0;
} else if (wakeup_cause & RTC_EXT1_TRIG_EN) {
return ESP_SLEEP_WAKEUP_EXT1;
#endif
#if SOC_TOUCH_PAD_WAKE_SUPPORTED
} else if (wakeup_cause & RTC_TOUCH_TRIG_EN) {
return ESP_SLEEP_WAKEUP_TOUCHPAD;
#endif
#if SOC_ULP_SUPPORTED
} else if (wakeup_cause & RTC_ULP_TRIG_EN) {
return ESP_SLEEP_WAKEUP_ULP;
#endif
#if SOC_PM_SUPPORT_WIFI_WAKEUP
} else if (wakeup_cause & RTC_WIFI_TRIG_EN) {
return ESP_SLEEP_WAKEUP_WIFI;
#endif
#if SOC_PM_SUPPORT_BT_WAKEUP
} else if (wakeup_cause & RTC_BT_TRIG_EN) {
return ESP_SLEEP_WAKEUP_BT;
#endif
#if CONFIG_IDF_TARGET_ESP32S2
} else if (wakeup_cause & RTC_COCPU_TRIG_EN) {
return ESP_SLEEP_WAKEUP_ULP;
} else if (wakeup_cause & RTC_COCPU_TRAP_TRIG_EN) {
return ESP_SLEEP_WAKEUP_COCPU_TRAP_TRIG;
#endif
} else {
return ESP_SLEEP_WAKEUP_UNDEFINED;
}
}
esp_err_t esp_sleep_pd_config(esp_sleep_pd_domain_t domain,
esp_sleep_pd_option_t option)
{
if (domain >= ESP_PD_DOMAIN_MAX || option > ESP_PD_OPTION_AUTO) {
return ESP_ERR_INVALID_ARG;
}
s_config.pd_options[domain] = option;
return ESP_OK;
}
static uint32_t get_power_down_flags(void)
{
// Where needed, convert AUTO options to ON. Later interpret AUTO as OFF.
// RTC_SLOW_MEM is needed for the ULP, so keep RTC_SLOW_MEM powered up if ULP
// is used and RTC_SLOW_MEM is Auto.
// If there is any data placed into .rtc.data or .rtc.bss segments, and
// RTC_SLOW_MEM is Auto, keep it powered up as well.
#if SOC_RTC_SLOW_MEM_SUPPORTED && SOC_ULP_SUPPORTED
// Labels are defined in the linker script
extern int _rtc_slow_length;
if ((s_config.pd_options[ESP_PD_DOMAIN_RTC_SLOW_MEM] == ESP_PD_OPTION_AUTO) &&
((size_t) &_rtc_slow_length > 0 ||
(s_config.wakeup_triggers & RTC_ULP_TRIG_EN))) {
s_config.pd_options[ESP_PD_DOMAIN_RTC_SLOW_MEM] = ESP_PD_OPTION_ON;
}
#endif
#if !CONFIG_ESP_SYSTEM_ALLOW_RTC_FAST_MEM_AS_HEAP
/* RTC_FAST_MEM is needed for deep sleep stub.
If RTC_FAST_MEM is Auto, keep it powered on, so that deep sleep stub can run.
In the new chip revision, deep sleep stub will be optional, and this can be changed. */
if (s_config.pd_options[ESP_PD_DOMAIN_RTC_FAST_MEM] == ESP_PD_OPTION_AUTO) {
s_config.pd_options[ESP_PD_DOMAIN_RTC_FAST_MEM] = ESP_PD_OPTION_ON;
}
#else
/* If RTC_FAST_MEM is used for heap, force RTC_FAST_MEM to be powered on. */
s_config.pd_options[ESP_PD_DOMAIN_RTC_FAST_MEM] = ESP_PD_OPTION_ON;
#endif
// RTC_PERIPH is needed for EXT0 wakeup and GPIO wakeup.
// If RTC_PERIPH is auto, and EXT0/GPIO aren't enabled, power down RTC_PERIPH.
if (s_config.pd_options[ESP_PD_DOMAIN_RTC_PERIPH] == ESP_PD_OPTION_AUTO) {
#if SOC_TOUCH_PAD_WAKE_SUPPORTED
uint32_t wakeup_source = RTC_TOUCH_TRIG_EN;
#if SOC_ULP_SUPPORTED
wakeup_source |= RTC_ULP_TRIG_EN;
#endif
if (s_config.wakeup_triggers & (RTC_EXT0_TRIG_EN | RTC_GPIO_TRIG_EN)) {
s_config.pd_options[ESP_PD_DOMAIN_RTC_PERIPH] = ESP_PD_OPTION_ON;
} else if (s_config.wakeup_triggers & wakeup_source) {
// In both rev. 0 and rev. 1 of ESP32, forcing power up of RTC_PERIPH
// prevents ULP timer and touch FSMs from working correctly.
s_config.pd_options[ESP_PD_DOMAIN_RTC_PERIPH] = ESP_PD_OPTION_OFF;
}
#else
if (s_config.wakeup_triggers & RTC_GPIO_TRIG_EN) {
s_config.pd_options[ESP_PD_DOMAIN_RTC_PERIPH] = ESP_PD_OPTION_ON;
} else {
s_config.pd_options[ESP_PD_DOMAIN_RTC_PERIPH] = ESP_PD_OPTION_OFF;
}
#endif // SOC_TOUCH_PAD_WAKE_SUPPORTED
}
#if SOC_PM_SUPPORT_CPU_PD
if (s_config.cpu_pd_mem == NULL) {
s_config.pd_options[ESP_PD_DOMAIN_CPU] = ESP_PD_OPTION_ON;
}
#else
if (s_config.pd_options[ESP_PD_DOMAIN_CPU] != ESP_PD_OPTION_ON) {
s_config.pd_options[ESP_PD_DOMAIN_CPU] = ESP_PD_OPTION_ON;
}
#endif
if (s_config.pd_options[ESP_PD_DOMAIN_XTAL] == ESP_PD_OPTION_AUTO) {
s_config.pd_options[ESP_PD_DOMAIN_XTAL] = ESP_PD_OPTION_OFF;
}
const char *option_str[] = {"OFF", "ON", "AUTO(OFF)" /* Auto works as OFF */};
ESP_LOGD(TAG, "RTC_PERIPH: %s", option_str[s_config.pd_options[ESP_PD_DOMAIN_RTC_PERIPH]]);
#if SOC_RTC_SLOW_MEM_SUPPORTED
ESP_LOGD(TAG, "RTC_SLOW_MEM: %s", option_str[s_config.pd_options[ESP_PD_DOMAIN_RTC_SLOW_MEM]]);
#endif
ESP_LOGD(TAG, "RTC_FAST_MEM: %s", option_str[s_config.pd_options[ESP_PD_DOMAIN_RTC_FAST_MEM]]);
// Prepare flags based on the selected options
uint32_t pd_flags = 0;
if (s_config.pd_options[ESP_PD_DOMAIN_RTC_FAST_MEM] != ESP_PD_OPTION_ON) {
pd_flags |= RTC_SLEEP_PD_RTC_FAST_MEM;
}
#if SOC_RTC_SLOW_MEM_SUPPORTED
if (s_config.pd_options[ESP_PD_DOMAIN_RTC_SLOW_MEM] != ESP_PD_OPTION_ON) {
pd_flags |= RTC_SLEEP_PD_RTC_SLOW_MEM;
}
#endif
if (s_config.pd_options[ESP_PD_DOMAIN_RTC_PERIPH] != ESP_PD_OPTION_ON) {
pd_flags |= RTC_SLEEP_PD_RTC_PERIPH;
}
#if SOC_PM_SUPPORT_CPU_PD
if (s_config.pd_options[ESP_PD_DOMAIN_CPU] != ESP_PD_OPTION_ON) {
pd_flags |= RTC_SLEEP_PD_CPU;
}
#endif
#ifdef CONFIG_IDF_TARGET_ESP32
pd_flags |= RTC_SLEEP_PD_XTAL;
#endif
2018-12-22 01:19:46 -05:00
/**
* VDD_SDIO power domain shall be kept on during the light sleep
* when CONFIG_ESP_SLEEP_POWER_DOWN_FLASH is not set and off when it is set.
* The application can still force the power domain to remain on by calling
* `esp_sleep_pd_config` before getting into light sleep mode.
*
* In deep sleep mode, the power domain will be turned off, regardless the
* value of this field.
*/
if (s_config.pd_options[ESP_PD_DOMAIN_VDDSDIO] == ESP_PD_OPTION_AUTO) {
#ifdef CONFIG_ESP_SLEEP_POWER_DOWN_FLASH
s_config.pd_options[ESP_PD_DOMAIN_VDDSDIO] = ESP_PD_OPTION_OFF;
#else
s_config.pd_options[ESP_PD_DOMAIN_VDDSDIO] = ESP_PD_OPTION_ON;
#endif
}
if (s_config.pd_options[ESP_PD_DOMAIN_VDDSDIO] != ESP_PD_OPTION_ON) {
pd_flags |= RTC_SLEEP_PD_VDDSDIO;
}
#if ((defined CONFIG_ESP32_RTC_CLK_SRC_EXT_CRYS) && (defined CONFIG_ESP32_RTC_EXT_CRYST_ADDIT_CURRENT))
2018-12-22 01:19:46 -05:00
if ((s_config.wakeup_triggers & (RTC_TOUCH_TRIG_EN | RTC_ULP_TRIG_EN)) == 0) {
// If enabled EXT1 only and enable the additional current by touch, should be keep RTC_PERIPH power on.
pd_flags &= ~RTC_SLEEP_PD_RTC_PERIPH;
2018-12-22 01:19:46 -05:00
}
#endif
return pd_flags;
}
void esp_deep_sleep_disable_rom_logging(void)
{
rtc_suppress_rom_log();
}