esp-idf/components/hal/esp32s3/include/hal/gdma_ll.h

545 lines
15 KiB
C
Raw Normal View History

// Copyright 2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <stdint.h>
#include <stdbool.h>
#include "soc/soc_caps.h"
#include "soc/gdma_struct.h"
#include "soc/gdma_reg.h"
2020-10-20 05:16:30 -04:00
#ifdef __cplusplus
extern "C" {
#endif
2020-12-09 07:29:26 -05:00
#define GDMA_LL_GET_HW(id) (((id) == 0) ? (&GDMA) : NULL)
2021-04-27 06:52:42 -04:00
#define GDMA_LL_RX_EVENT_MASK (0x3FF)
#define GDMA_LL_TX_EVENT_MASK (0xFF)
#define GDMA_LL_EVENT_TX_L3_FIFO_UDF (1<<7)
#define GDMA_LL_EVENT_TX_L3_FIFO_OVF (1<<6)
#define GDMA_LL_EVENT_TX_L1_FIFO_UDF (1<<5)
#define GDMA_LL_EVENT_TX_L1_FIFO_OVF (1<<4)
#define GDMA_LL_EVENT_TX_TOTAL_EOF (1<<3)
#define GDMA_LL_EVENT_TX_DESC_ERROR (1<<2)
#define GDMA_LL_EVENT_TX_EOF (1<<1)
#define GDMA_LL_EVENT_TX_DONE (1<<0)
#define GDMA_LL_EVENT_RX_L3_FIFO_UDF (1<<9)
#define GDMA_LL_EVENT_RX_L3_FIFO_OVF (1<<8)
#define GDMA_LL_EVENT_RX_L1_FIFO_UDF (1<<7)
#define GDMA_LL_EVENT_RX_L1_FIFO_OVF (1<<6)
#define GDMA_LL_EVENT_RX_WATER_MARK (1<<5)
#define GDMA_LL_EVENT_RX_DESC_EMPTY (1<<4)
#define GDMA_LL_EVENT_RX_DESC_ERROR (1<<3)
#define GDMA_LL_EVENT_RX_ERR_EOF (1<<2)
#define GDMA_LL_EVENT_RX_SUC_EOF (1<<1)
#define GDMA_LL_EVENT_RX_DONE (1<<0)
///////////////////////////////////// Common /////////////////////////////////////////
/**
* @brief Enable DMA channel M2M mode (TX channel n forward data to RX channel n), disabled by default
*/
static inline void gdma_ll_enable_m2m_mode(gdma_dev_t *dev, uint32_t channel, bool enable)
{
dev->in[channel].conf0.mem_trans_en = enable;
2020-10-20 05:16:30 -04:00
if (enable) {
// to enable m2m mode, the tx chan has to be the same to rx chan, and set to a valid value
dev->in[channel].peri_sel.sel = 0;
dev->out[channel].peri_sel.sel = 0;
}
}
/**
2021-04-27 06:52:42 -04:00
* @brief Enable DMA clock gating
*/
static inline void gdma_ll_enable_clock(gdma_dev_t *dev, bool enable)
{
dev->misc_conf.clk_en = enable;
}
///////////////////////////////////// RX /////////////////////////////////////////
/**
* @brief Get DMA RX channel interrupt status word
*/
2021-04-27 06:52:42 -04:00
static inline uint32_t gdma_ll_rx_get_interrupt_status(gdma_dev_t *dev, uint32_t channel)
{
return dev->in[channel].int_st.val;
}
/**
2021-04-27 06:52:42 -04:00
* @brief Enable DMA RX channel interrupt
*/
2021-04-27 06:52:42 -04:00
static inline void gdma_ll_rx_enable_interrupt(gdma_dev_t *dev, uint32_t channel, uint32_t mask, bool enable)
{
if (enable) {
dev->in[channel].int_ena.val |= mask;
} else {
dev->in[channel].int_ena.val &= ~mask;
}
}
/**
2021-04-27 06:52:42 -04:00
* @brief Clear DMA RX channel interrupt
*/
2021-04-27 06:52:42 -04:00
static inline void gdma_ll_rx_clear_interrupt_status(gdma_dev_t *dev, uint32_t channel, uint32_t mask)
{
dev->in[channel].int_clr.val = mask;
}
/**
2021-04-27 06:52:42 -04:00
* @brief Get DMA RX channel interrupt status register address
*/
2021-04-27 06:52:42 -04:00
static inline volatile void *gdma_ll_rx_get_interrupt_status_reg(gdma_dev_t *dev, uint32_t channel)
{
2021-04-27 06:52:42 -04:00
return (volatile void *)(&dev->in[channel].int_st);
}
2020-10-20 05:16:30 -04:00
/**
* @brief Enable DMA RX channel to check the owner bit in the descriptor, disabled by default
*/
static inline void gdma_ll_rx_enable_owner_check(gdma_dev_t *dev, uint32_t channel, bool enable)
{
dev->in[channel].conf1.in_check_owner = enable;
2020-10-20 05:16:30 -04:00
}
/**
* @brief Enable DMA RX channel burst reading data, disabled by default
*/
static inline void gdma_ll_rx_enable_data_burst(gdma_dev_t *dev, uint32_t channel, bool enable)
{
dev->in[channel].conf0.in_data_burst_en = enable;
}
/**
* @brief Enable DMA RX channel burst reading descriptor link, disabled by default
*/
static inline void gdma_ll_rx_enable_descriptor_burst(gdma_dev_t *dev, uint32_t channel, bool enable)
{
dev->in[channel].conf0.indscr_burst_en = enable;
}
/**
* @brief Reset DMA RX channel FSM and FIFO pointer
*/
static inline void gdma_ll_rx_reset_channel(gdma_dev_t *dev, uint32_t channel)
{
dev->in[channel].conf0.in_rst = 1;
dev->in[channel].conf0.in_rst = 0;
}
/**
* @brief Set DMA RX channel memory block size
* @param size_index Supported value: GDMA_IN_EXT_MEM_BK_SIZE_16B, GDMA_IN_EXT_MEM_BK_SIZE_32B
*/
static inline void gdma_ll_rx_set_block_size_psram(gdma_dev_t *dev, uint32_t channel, uint32_t size_index)
{
dev->in[channel].conf1.in_ext_mem_bk_size = size_index;
}
/**
* @brief Set the water mark for RX channel, default value is 12
*/
static inline void gdma_ll_rx_set_water_mark(gdma_dev_t *dev, uint32_t channel, uint32_t water_mark)
{
dev->in[channel].conf1.dma_infifo_full_thrs = water_mark;
}
/**
* @brief Check if DMA RX FIFO is full
* @param fifo_level (1,2,3) <=> (L1, L2, L3)
*/
static inline bool gdma_ll_rx_is_fifo_full(gdma_dev_t *dev, uint32_t channel, uint32_t fifo_level)
{
return dev->in[channel].infifo_status.val & (1 << 2 * (fifo_level - 1));
}
/**
* @brief Check if DMA RX FIFO is empty
* @param fifo_level (1,2,3) <=> (L1, L2, L3)
*/
static inline bool gdma_ll_rx_is_fifo_empty(gdma_dev_t *dev, uint32_t channel, uint32_t fifo_level)
{
return dev->in[channel].infifo_status.val & (1 << (2 * (fifo_level - 1) + 1));
}
/**
* @brief Get number of bytes in RX FIFO (L1, L2, L3)
* @param fifo_level (1,2,3) <=> (L1, L2, L3)
*/
static inline uint32_t gdma_ll_rx_get_fifo_bytes(gdma_dev_t *dev, uint32_t channel, uint32_t fifo_level)
{
switch (fifo_level) {
case 1:
return dev->in[channel].infifo_status.infifo_cnt_l1;
case 2:
return dev->in[channel].infifo_status.infifo_cnt_l2;
case 3:
return dev->in[channel].infifo_status.infifo_cnt_l3;
}
}
/**
* @brief Pop data from DMA RX FIFO
*/
static inline uint32_t gdma_ll_rx_pop_data(gdma_dev_t *dev, uint32_t channel)
{
dev->in[channel].pop.infifo_pop = 1;
return dev->in[channel].pop.infifo_rdata;
}
/**
* @brief Set the descriptor link base address for RX channel
*/
static inline void gdma_ll_rx_set_desc_addr(gdma_dev_t *dev, uint32_t channel, uint32_t addr)
{
dev->in[channel].link.addr = addr;
}
/**
* @brief Start dealing with RX descriptors
*/
static inline void gdma_ll_rx_start(gdma_dev_t *dev, uint32_t channel)
{
dev->in[channel].link.start = 1;
}
/**
* @brief Stop dealing with RX descriptors
*/
static inline void gdma_ll_rx_stop(gdma_dev_t *dev, uint32_t channel)
{
dev->in[channel].link.stop = 1;
}
/**
* @brief Restart a new inlink right after the last descriptor
*/
static inline void gdma_ll_rx_restart(gdma_dev_t *dev, uint32_t channel)
{
dev->in[channel].link.restart = 1;
}
/**
* @brief Enable DMA RX to return the address of current descriptor when receives error
*/
static inline void gdma_ll_rx_enable_auto_return(gdma_dev_t *dev, uint32_t channel, bool enable)
{
dev->in[channel].link.auto_ret = enable;
}
/**
* @brief Check if DMA RX FSM is in IDLE state
*/
static inline bool gdma_ll_rx_is_fsm_idle(gdma_dev_t *dev, uint32_t channel)
{
return dev->in[channel].link.park;
}
/**
* @brief Get RX success EOF descriptor's address
*/
static inline uint32_t gdma_ll_rx_get_success_eof_desc_addr(gdma_dev_t *dev, uint32_t channel)
{
return dev->in[channel].suc_eof_des_addr;
}
/**
* @brief Get RX error EOF descriptor's address
*/
static inline uint32_t gdma_ll_rx_get_error_eof_desc_addr(gdma_dev_t *dev, uint32_t channel)
{
return dev->in[channel].err_eof_des_addr;
}
/**
* @brief Get current RX descriptor's address
*/
static inline uint32_t gdma_ll_rx_get_current_desc_addr(gdma_dev_t *dev, uint32_t channel)
{
return dev->in[channel].dscr;
}
/**
* @brief Set weight for DMA RX channel
*/
static inline void gdma_ll_rx_set_weight(gdma_dev_t *dev, uint32_t channel, uint32_t weight)
{
dev->in[channel].wight.rx_weight = weight;
}
/**
* @brief Set priority for DMA RX channel
*/
static inline void gdma_ll_rx_set_priority(gdma_dev_t *dev, uint32_t channel, uint32_t prio)
{
dev->in[channel].pri.rx_pri = prio;
}
/**
* @brief Connect DMA RX channel to a given peripheral
*/
2021-04-27 06:52:42 -04:00
static inline void gdma_ll_rx_connect_to_periph(gdma_dev_t *dev, uint32_t channel, int periph_id)
{
dev->in[channel].peri_sel.sel = periph_id;
}
/**
* @brief Extend the L2 FIFO size for RX channel
* @note By default, the L2 FIFO size is SOC_GDMA_L2_FIFO_BASE_SIZE Bytes. Suggest to extend it to twice the block size when accessing PSRAM.
* @note `size_in_bytes` should aligned to 8 and larger than SOC_GDMA_L2_FIFO_BASE_SIZE
*/
static inline void gdma_ll_rx_extend_l2_fifo_size_to(gdma_dev_t *dev, uint32_t channel, uint32_t size_in_bytes)
{
if (size_in_bytes > SOC_GDMA_L2_FIFO_BASE_SIZE) {
dev->in[channel].sram_size.in_size = (size_in_bytes - SOC_GDMA_L2_FIFO_BASE_SIZE) / 8;
}
}
///////////////////////////////////// TX /////////////////////////////////////////
2021-04-27 06:52:42 -04:00
/**
* @brief Get DMA TX channel interrupt status word
*/
static inline uint32_t gdma_ll_tx_get_interrupt_status(gdma_dev_t *dev, uint32_t channel)
{
return dev->out[channel].int_st.val;
}
/**
* @brief Enable DMA TX channel interrupt
*/
static inline void gdma_ll_tx_enable_interrupt(gdma_dev_t *dev, uint32_t channel, uint32_t mask, bool enable)
{
if (enable) {
dev->out[channel].int_ena.val |= mask;
} else {
dev->out[channel].int_ena.val &= ~mask;
}
}
/**
* @brief Clear DMA TX channel interrupt
*/
static inline void gdma_ll_tx_clear_interrupt_status(gdma_dev_t *dev, uint32_t channel, uint32_t mask)
{
dev->out[channel].int_clr.val = mask;
}
/**
* @brief Get DMA TX channel interrupt status register address
*/
static inline volatile void *gdma_ll_tx_get_interrupt_status_reg(gdma_dev_t *dev, uint32_t channel)
{
return (volatile void *)(&dev->out[channel].int_st);
}
2020-10-20 05:16:30 -04:00
/**
* @brief Enable DMA TX channel to check the owner bit in the descriptor, disabled by default
*/
static inline void gdma_ll_tx_enable_owner_check(gdma_dev_t *dev, uint32_t channel, bool enable)
{
dev->out[channel].conf1.out_check_owner = enable;
2020-10-20 05:16:30 -04:00
}
/**
* @brief Enable DMA TX channel burst sending data, disabled by default
*/
static inline void gdma_ll_tx_enable_data_burst(gdma_dev_t *dev, uint32_t channel, bool enable)
{
dev->out[channel].conf0.out_data_burst_en = enable;
}
/**
* @brief Enable DMA TX channel burst reading descriptor link, disabled by default
*/
static inline void gdma_ll_tx_enable_descriptor_burst(gdma_dev_t *dev, uint32_t channel, bool enable)
{
dev->out[channel].conf0.outdscr_burst_en = enable;
}
/**
* @brief Set TX channel EOF mode
*/
static inline void gdma_ll_tx_set_eof_mode(gdma_dev_t *dev, uint32_t channel, uint32_t mode)
{
dev->out[channel].conf0.out_eof_mode = mode;
}
/**
* @brief Enable DMA TX channel automatic write results back to descriptor after all data has been sent out, disabled by default
*/
static inline void gdma_ll_tx_enable_auto_write_back(gdma_dev_t *dev, uint32_t channel, bool enable)
{
dev->out[channel].conf0.out_auto_wrback = enable;
}
/**
* @brief Reset DMA TX channel FSM and FIFO pointer
*/
static inline void gdma_ll_tx_reset_channel(gdma_dev_t *dev, uint32_t channel)
{
dev->out[channel].conf0.out_rst = 1;
dev->out[channel].conf0.out_rst = 0;
}
/**
* @brief Set DMA TX channel memory block size
* @param size_index Supported value: GDMA_OUT_EXT_MEM_BK_SIZE_16B, GDMA_OUT_EXT_MEM_BK_SIZE_32B
*/
static inline void gdma_ll_tx_set_block_size_psram(gdma_dev_t *dev, uint32_t channel, uint32_t size_index)
{
dev->out[channel].conf1.out_ext_mem_bk_size = size_index;
}
/**
* @brief Check if DMA TX FIFO is full
* @param fifo_level (1,2,3) <=> (L1, L2, L3)
*/
static inline bool gdma_ll_tx_is_fifo_full(gdma_dev_t *dev, uint32_t channel, uint32_t fifo_level)
{
return dev->out[channel].outfifo_status.val & (1 << 2 * (fifo_level - 1));
}
/**
* @brief Check if DMA TX FIFO is empty
* @param fifo_level (1,2,3) <=> (L1, L2, L3)
*/
static inline bool gdma_ll_tx_is_fifo_empty(gdma_dev_t *dev, uint32_t channel, uint32_t fifo_level)
{
return dev->out[channel].outfifo_status.val & (1 << (2 * (fifo_level - 1) + 1));
}
/**
* @brief Get number of bytes in TX FIFO (L1, L2, L3)
* @param fifo_level (1,2,3) <=> (L1, L2, L3)
*/
static inline uint32_t gdma_ll_tx_get_fifo_bytes(gdma_dev_t *dev, uint32_t channel, uint32_t fifo_level)
{
switch (fifo_level) {
case 1:
return dev->out[channel].outfifo_status.outfifo_cnt_l1;
case 2:
return dev->out[channel].outfifo_status.outfifo_cnt_l2;
case 3:
return dev->out[channel].outfifo_status.outfifo_cnt_l3;
}
}
/**
* @brief Push data into DMA TX FIFO
*/
static inline void gdma_ll_tx_push_data(gdma_dev_t *dev, uint32_t channel, uint32_t data)
{
dev->out[channel].push.outfifo_wdata = data;
dev->out[channel].push.outfifo_push = 1;
}
/**
* @brief Set the descriptor link base address for TX channel
*/
static inline void gdma_ll_tx_set_desc_addr(gdma_dev_t *dev, uint32_t channel, uint32_t addr)
{
dev->out[channel].link.addr = addr;
}
/**
* @brief Start dealing with TX descriptors
*/
static inline void gdma_ll_tx_start(gdma_dev_t *dev, uint32_t channel)
{
dev->out[channel].link.start = 1;
}
/**
* @brief Stop dealing with TX descriptors
*/
static inline void gdma_ll_tx_stop(gdma_dev_t *dev, uint32_t channel)
{
dev->out[channel].link.stop = 1;
}
/**
* @brief Restart a new outlink right after the last descriptor
*/
static inline void gdma_ll_tx_restart(gdma_dev_t *dev, uint32_t channel)
{
dev->out[channel].link.restart = 1;
}
/**
* @brief Check if DMA TX FSM is in IDLE state
*/
static inline bool gdma_ll_tx_is_fsm_idle(gdma_dev_t *dev, uint32_t channel)
{
return dev->out[channel].link.park;
}
/**
* @brief Get TX EOF descriptor's address
*/
static inline uint32_t gdma_ll_tx_get_eof_desc_addr(gdma_dev_t *dev, uint32_t channel)
{
return dev->out[channel].eof_des_addr;
}
/**
* @brief Get current TX descriptor's address
*/
static inline uint32_t gdma_ll_tx_get_current_desc_addr(gdma_dev_t *dev, uint32_t channel)
{
return dev->out[channel].dscr;
}
/**
* @brief Set weight for DMA TX channel
*/
static inline void gdma_ll_tx_set_weight(gdma_dev_t *dev, uint32_t channel, uint32_t weight)
{
dev->out[channel].wight.tx_weight = weight;
}
/**
* @brief Set priority for DMA TX channel
*/
static inline void gdma_ll_tx_set_priority(gdma_dev_t *dev, uint32_t channel, uint32_t prio)
{
dev->out[channel].pri.tx_pri = prio;
}
/**
* @brief Connect DMA TX channel to a given peripheral
*/
2021-04-27 06:52:42 -04:00
static inline void gdma_ll_tx_connect_to_periph(gdma_dev_t *dev, uint32_t channel, int periph_id)
{
2021-04-27 06:52:42 -04:00
dev->out[channel].peri_sel.sel = periph_id;
}
/**
* @brief Extend the L2 FIFO size for TX channel
* @note By default, the L2 FIFO size is SOC_GDMA_L2_FIFO_BASE_SIZE Bytes. Suggest to extend it to twice the block size when accessing PSRAM.
* @note `size_in_bytes` should aligned to 8 and larger than SOC_GDMA_L2_FIFO_BASE_SIZE
*/
static inline void gdma_ll_tx_extend_fifo_size_to(gdma_dev_t *dev, uint32_t channel, uint32_t size_in_bytes)
{
if (size_in_bytes > SOC_GDMA_L2_FIFO_BASE_SIZE) {
dev->out[channel].sram_size.out_size = (size_in_bytes - SOC_GDMA_L2_FIFO_BASE_SIZE) / 8;
}
}
#ifdef __cplusplus
}
#endif