GY-63_MS5611/libraries/TSL235R/test/unit_test_001.cpp
2023-02-18 15:26:18 +01:00

167 lines
4.2 KiB
C++

//
// FILE: unit_test_001.cpp
// AUTHOR: Rob Tillaart
// DATE: 2021-05-29
// PURPOSE: unit tests for the temperature library
// https://github.com/RobTillaart/TSL235R
// https://github.com/Arduino-CI/arduino_ci/blob/master/REFERENCE.md
//
// supported assertions
// ----------------------------
// assertEqual(expected, actual); // a == b
// assertNotEqual(unwanted, actual); // a != b
// assertComparativeEquivalent(expected, actual); // abs(a - b) == 0 or (!(a > b) && !(a < b))
// assertComparativeNotEquivalent(unwanted, actual); // abs(a - b) > 0 or ((a > b) || (a < b))
// assertLess(upperBound, actual); // a < b
// assertMore(lowerBound, actual); // a > b
// assertLessOrEqual(upperBound, actual); // a <= b
// assertMoreOrEqual(lowerBound, actual); // a >= b
// assertTrue(actual);
// assertFalse(actual);
// assertNull(actual);
// // special cases for floats
// assertEqualFloat(expected, actual, epsilon); // fabs(a - b) <= epsilon
// assertNotEqualFloat(unwanted, actual, epsilon); // fabs(a - b) >= epsilon
// assertInfinity(actual); // isinf(a)
// assertNotInfinity(actual); // !isinf(a)
// assertNAN(arg); // isnan(a)
// assertNotNAN(arg); // !isnan(a)
#include <ArduinoUnitTests.h>
#include "Arduino.h"
#include "TSL235R.h"
unittest_setup()
{
fprintf(stderr, "TSL235R_LIB_VERSION: %s\n", (char *) TSL235R_LIB_VERSION);
}
unittest_teardown()
{
}
unittest(test_constants)
{
assertEqualFloat(5.0, TSL235_DEFAULT_VOLTAGE, 0.001);
}
unittest(test_constructor)
{
TSL235R mysensor;
assertEqual(635, mysensor.getWavelength() );
assertEqualFloat(1.0, mysensor.getWaveLengthFactor(), 0.001);
assertEqualFloat(5.0, mysensor.getVoltage(), 0.001);
assertEqualFloat(1.0, mysensor.getVoltageFactor(), 0.001);
assertEqualFloat(0.001419659, mysensor.getFactor(), 0.001);
fprintf(stderr, "%1.6f\n", mysensor.getFactor() );
}
unittest(test_wavelength)
{
TSL235R mysensor;
assertEqual(635, mysensor.getWavelength() );
assertEqualFloat(1.0, mysensor.getWaveLengthFactor(), 0.001);
fprintf(stderr,"\n");
for (int wl = 300; wl < 1150; wl += 50)
{
mysensor.setWavelength(wl);
assertEqual(wl, mysensor.getWavelength() );
}
fprintf(stderr, "\n\tWavelen\tfactor\n");
for (int wl = 300; wl < 1150; wl += 50)
{
mysensor.setWavelength(wl);
fprintf(stderr, "\t%d\t %1.3f\n", wl, mysensor.getWaveLengthFactor() );
}
fprintf(stderr, "\n");
mysensor.setWavelength();
assertEqual(635, mysensor.getWavelength() );
}
unittest(test_voltage)
{
TSL235R mysensor(2.7);
assertEqualFloat(2.7, mysensor.getVoltage(), 0.001);
assertEqualFloat(0.988, mysensor.getVoltageFactor(), 0.001);
fprintf(stderr,"\n");
for (float volts = 2.7; volts < 5.5; volts += 0.1)
{
mysensor.setVoltage(volts);
assertEqualFloat(volts, mysensor.getVoltage(), 0.001);
}
fprintf(stderr, "\n\tVolts\tfactor\n");
for (float volts = 2.7; volts < 5.5; volts += 0.1)
{
mysensor.setVoltage(volts);
fprintf(stderr, "\t%1.1f\t %1.3f\n", volts, mysensor.getVoltageFactor() );
}
fprintf(stderr, "\n");
mysensor.setVoltage();
assertEqualFloat(5.0, mysensor.getVoltage(), 0.001);
}
unittest(test_conversion1)
{
TSL235R mysensor;
assertEqualFloat(1.0, mysensor.getVoltageFactor(), 0.001);
assertEqualFloat(1.0, mysensor.getWaveLengthFactor(), 0.001);
fprintf(stderr, "%1.6f\n", mysensor.getFactor() );
fprintf(stderr,"\n");
for (uint32_t Hz = 10; Hz < 1000000; Hz *= 2)
{
float rad = mysensor.irradiance(Hz);
assertEqualFloat(0.001419659 * Hz, mysensor.irradiance(Hz), 0.001 * Hz); // we must have a relative error here!
}
}
unittest(test_conversion2)
{
TSL235R mysensor;
assertEqualFloat(1.0, mysensor.getVoltageFactor(), 0.001);
assertEqualFloat(1.0, mysensor.getWaveLengthFactor(), 0.001);
fprintf(stderr,"\n");
for (uint32_t Hz = 10; Hz < 1000000; Hz *= 2)
{
float rad1 = mysensor.irradiance(Hz);
float rad2 = mysensor.irradiance(Hz * 10, 10000); // 10 seconds 10 times as many pulses
assertEqualFloat(rad1, rad2, 0.001);
}
fprintf(stderr, "\ndone...");
}
unittest_main()
// -- END OF FILE --