// // FILE: unit_test_001.cpp // AUTHOR: Rob Tillaart // DATE: 2021-05-29 // PURPOSE: unit tests for the temperature library // https://github.com/RobTillaart/TSL235R // https://github.com/Arduino-CI/arduino_ci/blob/master/REFERENCE.md // // supported assertions // ---------------------------- // assertEqual(expected, actual); // a == b // assertNotEqual(unwanted, actual); // a != b // assertComparativeEquivalent(expected, actual); // abs(a - b) == 0 or (!(a > b) && !(a < b)) // assertComparativeNotEquivalent(unwanted, actual); // abs(a - b) > 0 or ((a > b) || (a < b)) // assertLess(upperBound, actual); // a < b // assertMore(lowerBound, actual); // a > b // assertLessOrEqual(upperBound, actual); // a <= b // assertMoreOrEqual(lowerBound, actual); // a >= b // assertTrue(actual); // assertFalse(actual); // assertNull(actual); // // special cases for floats // assertEqualFloat(expected, actual, epsilon); // fabs(a - b) <= epsilon // assertNotEqualFloat(unwanted, actual, epsilon); // fabs(a - b) >= epsilon // assertInfinity(actual); // isinf(a) // assertNotInfinity(actual); // !isinf(a) // assertNAN(arg); // isnan(a) // assertNotNAN(arg); // !isnan(a) #include #include "Arduino.h" #include "TSL235R.h" unittest_setup() { fprintf(stderr, "TSL235R_LIB_VERSION: %s\n", (char *) TSL235R_LIB_VERSION); } unittest_teardown() { } unittest(test_constants) { assertEqualFloat(5.0, TSL235_DEFAULT_VOLTAGE, 0.001); } unittest(test_constructor) { TSL235R mysensor; assertEqual(635, mysensor.getWavelength() ); assertEqualFloat(1.0, mysensor.getWaveLengthFactor(), 0.001); assertEqualFloat(5.0, mysensor.getVoltage(), 0.001); assertEqualFloat(1.0, mysensor.getVoltageFactor(), 0.001); assertEqualFloat(0.001419659, mysensor.getFactor(), 0.001); fprintf(stderr, "%1.6f\n", mysensor.getFactor() ); } unittest(test_wavelength) { TSL235R mysensor; assertEqual(635, mysensor.getWavelength() ); assertEqualFloat(1.0, mysensor.getWaveLengthFactor(), 0.001); fprintf(stderr,"\n"); for (int wl = 300; wl < 1150; wl += 50) { mysensor.setWavelength(wl); assertEqual(wl, mysensor.getWavelength() ); } fprintf(stderr, "\n\tWavelen\tfactor\n"); for (int wl = 300; wl < 1150; wl += 50) { mysensor.setWavelength(wl); fprintf(stderr, "\t%d\t %1.3f\n", wl, mysensor.getWaveLengthFactor() ); } fprintf(stderr, "\n"); mysensor.setWavelength(); assertEqual(635, mysensor.getWavelength() ); } unittest(test_voltage) { TSL235R mysensor(2.7); assertEqualFloat(2.7, mysensor.getVoltage(), 0.001); assertEqualFloat(0.988, mysensor.getVoltageFactor(), 0.001); fprintf(stderr,"\n"); for (float volts = 2.7; volts < 5.5; volts += 0.1) { mysensor.setVoltage(volts); assertEqualFloat(volts, mysensor.getVoltage(), 0.001); } fprintf(stderr, "\n\tVolts\tfactor\n"); for (float volts = 2.7; volts < 5.5; volts += 0.1) { mysensor.setVoltage(volts); fprintf(stderr, "\t%1.1f\t %1.3f\n", volts, mysensor.getVoltageFactor() ); } fprintf(stderr, "\n"); mysensor.setVoltage(); assertEqualFloat(5.0, mysensor.getVoltage(), 0.001); } unittest(test_conversion1) { TSL235R mysensor; assertEqualFloat(1.0, mysensor.getVoltageFactor(), 0.001); assertEqualFloat(1.0, mysensor.getWaveLengthFactor(), 0.001); fprintf(stderr, "%1.6f\n", mysensor.getFactor() ); fprintf(stderr,"\n"); for (uint32_t Hz = 10; Hz < 1000000; Hz *= 2) { float rad = mysensor.irradiance(Hz); assertEqualFloat(0.001419659 * Hz, mysensor.irradiance(Hz), 0.001 * Hz); // we must have a relative error here! } } unittest(test_conversion2) { TSL235R mysensor; assertEqualFloat(1.0, mysensor.getVoltageFactor(), 0.001); assertEqualFloat(1.0, mysensor.getWaveLengthFactor(), 0.001); fprintf(stderr,"\n"); for (uint32_t Hz = 10; Hz < 1000000; Hz *= 2) { float rad1 = mysensor.irradiance(Hz); float rad2 = mysensor.irradiance(Hz * 10, 10000); // 10 seconds 10 times as many pulses assertEqualFloat(rad1, rad2, 0.001); } fprintf(stderr, "\ndone..."); } unittest_main() // -- END OF FILE --