rob tillaart e1465313a9 0.1.0 GST
2022-02-27 12:06:47 +01:00

113 lines
2.9 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#pragma once
//
// FILE: GST.h
// VERSION: 0.1.0
// PURPOSE: Arduino library for Gold Standard Test metrics
// URL: https://github.com/RobTillaart/GST
// https://en.wikipedia.org/wiki/Sensitivity_and_specificity
// https://en.wikipedia.org/wiki/Confusion_matrix
//
// formula's based upon wikipedia.
#define GST_LIB_VERSION (F("0.1.0"))
class GST
{
public:
GST() {};
// These 4 need to be filled in.
void setTruePositive(float v) { TP = v; P = TP + FN; };
void setTrueNegative(float v) { TN = v; N = TN + FP; };
void setFalsePositive(float v) { FP = v; N = TN + FP; };
void setFalseNegative(float v) { FN = v; P = TP + FN; };
float getTruePositive() { return TP; };
float getTrueNegative() { return TN; };
float getFalsePositive() { return FP; };
float getFalseNegative() { return FN; };
float getTotal() { return P + N; };
float getActualPositive() { return P; };
float getActualNegative() { return N; };
float getTestedPositive() { return TP + FP; };
float getTestedNegative() { return TN + FN; };
float sensitivity() { return TPR(); };
float specificity() { return TNR(); };
// true positive rate
float TPR() { return TP / P; };
// true negative rate
float TNR() { return TN / N; };
// false negative rate
float FNR() { return FN / (FN + TP); };
// false positive rate
float FPR() { return FP / (FP + TN); };
// positive predictive value
float PPV() { return TP / (TP + FP); };
// negative predictive value
float NPV() { return TN / (TN + FN); };
// false discovery rate
float FDR() { return FP / (FP + TP); };
// false omission rate
float FOR() { return FN / (FN + TN); };
// positive likelihood ratio
float LRplus() { return TPR() / FPR(); };
// negative likelihood ratio
float LRminus() { return FNR() / TNR(); };
float prevalenceThreshold() { return sqrt(FPR()) / (sqrt(TPR()) + sqrt(FPR())); };
float threatScore() { return TP / (TP + FN + FP); };
float criticalSuccessIndex() { return threatScore(); };
float prevalence() { return P / (P + N); };
float accuracy() { return (TP + TN) / (P + N); };
float balancedAccuracy() { return (TPR() + TNR()) / 2; };
float F1Score() { return (2 * TP)/(2 * TP + FP + FN); };
// Matthews correlation coefficient
float MCC() { return (TP*TN-FP*FN)/sqrt((TP+FP)*(TP+FN)*(TN+FP)*(TN+FN)); };
float phi() { return MCC(); };
// FowlkesMallows index
float FM() { return sqrt(PPV()*TPR()); };
// Bookmaker informedness
float BM() { return TPR() + TNR() - 1; };
// markedness
float MK() { return PPV() + NPV() - 1; };
float deltaP() { return MK(); };
// diagnostic odds ratio
float DOR() { return LRplus() / LRminus(); };
private:
float P = 0;
float N = 0;
float TP = 0;
float TN = 0;
float FP = 0;
float FN = 0;
};
// -- END OF FILE --