0.1.4 TSL235R

This commit is contained in:
rob tillaart 2023-02-18 15:26:18 +01:00
parent 76a45dc61a
commit 9e2ad31141
11 changed files with 130 additions and 40 deletions

View File

@ -6,7 +6,7 @@ jobs:
lint:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
- uses: actions/checkout@v3
- uses: arduino/arduino-lint-action@v1
with:
library-manager: update

View File

@ -8,7 +8,7 @@ jobs:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
- uses: actions/checkout@v3
- uses: ruby/setup-ruby@v1
with:
ruby-version: 2.6

View File

@ -10,7 +10,7 @@ jobs:
test:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
- uses: actions/checkout@v3
- name: json-syntax-check
uses: limitusus/json-syntax-check@v1
with:

View File

@ -6,6 +6,16 @@ The format is based on [Keep a Changelog](http://keepachangelog.com/)
and this project adheres to [Semantic Versioning](http://semver.org/).
## [0.1.4] - 2023-02-18
- updated cf value in **calculateFactor()**
- add **#define TSL235_DEFAULT_VOLTAGE** to allow set voltage from command line.
- update readme.md
- move code to .cpp
- update GitHub actions
- update license 2023
- minor edits
## [0.1.3] - 2022-11-26
- Add RP2040 support to build-CI.
- Add CHANGELOG.md

View File

@ -1,6 +1,6 @@
MIT License
Copyright (c) 2020-2022 Rob Tillaart
Copyright (c) 2020-2023 Rob Tillaart
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal

View File

@ -28,7 +28,15 @@ Above 1 uW/cm2 1 second or shorter is OK.
Note that for longer and shorter measurements than 1 second one must
convert the value to Hz, which is the number of pulses in 1 second.
The library provides functions **irradiance()** to do that for you.
The library provides two **irradiance()** functions to do that for you.
#### Related
- https://github.com/RobTillaart/TSL235R pulse based irradiance variant.
- https://github.com/RobTillaart/TSL260R analog IR irradiance variant.
- https://github.com/RobTillaart/AnalogUVSensor
- https://github.com/RobTillaart/ML8511 UV sensor
## Connection
@ -44,9 +52,19 @@ Always check the datasheet.
## Interface
- **TSL235R(float voltage = 5.0)** constructor, optionally one can give the operational voltage
```cpp
#include "TSL235R.h"
```
#### Constructor
- **TSL235R(float voltage = TSL235_DEFAULT_VOLTAGE)** constructor, optionally one can give the operational voltage
to add a small correction (< 1.5%).
Default voltage is 5.0 Volts.
Default voltage is 5.0 Volts, this define can be overruled from command line.
#### Irradiance
- **float irradiance(uint32_t Hz)** returns the irradiance in uW/cm2.
Note that Hz implies the measured pulses for 1 second.
- **float irradiance(uint32_t pulses, uint32_t milliseconds)** returns the irradiance in uW/cm2.
@ -55,6 +73,9 @@ To get irradiance in W/m2 one must divide by 100.
- **float irradiance_HS(uint32_t pulses, uint32_t microseconds)** returns the irradiance in uW/cm2.
This formula is used when the time is measured in microseconds.
This is the most accurate measurement.
#### Configuration
- **float getFactor()** returns the inner conversion factor from Hz to Watt/cm2.
- **void setWavelength(uint16_t wavelength = 635)** sets the wavelength so the formulas can use a
correction factor.
@ -63,7 +84,7 @@ At the default wavelength of 635 nm the wavelength correction factor == 1.0.
- **float getWaveLengthFactor()** returns the wavelength correction factor.
As the sensor is most sensitive around 750 nm this value helps to normalize the signal.
This works only for (almost) monochromatic light.
- **void setVoltage(float voltage)** sets the voltage so the formulas can use a correction factor.
- **void setVoltage(float voltage = TSL235_DEFAULT_VOLTAGE)** sets the voltage so the formulas can use a correction factor.
This voltage correction factor is rather small < 1.5%.
Note: this voltage can be changed runtime.
- **float getVoltage()** returns the set voltage, by constructor or by **setVoltage()**.
@ -77,19 +98,22 @@ See examples for typical usage.
## Future
#### must
#### Must
- improve documentation
- test test test
#### should
- default voltage should be a #define so people who use 3.3V processor
can change the library with minimal effort.
- irradiance(pulses, millis) can be given a default of 1000 millis.
makes irradiance(Hz) obsolete.
- move code from .h to .cpp
#### Should
#### Could
#### could
- investigate hardware solutions for e.g. divide by 100 or 1000 or so.
- investigate correction factor for white light and mixed light sources.
- investigate calibration factor for timing of processor used.
#### Wont
- irradiance(pulses, millis) can be given a default of 1000 millis.
- makes irradiance(Hz) obsolete.
- performance is less!

View File

@ -1,8 +1,10 @@
//
// FILE: TSL235R.cpp
// AUTHOR: Rob Tillaart
// VERSION: 0.1.3
// VERSION: 0.1.4
// DATE: 2020-05-29
// PURPOSE: library for the TSL235R light to frequency convertor
// URL: https://github.com/RobTillaart/TSL235R
#include "TSL235R.h"
@ -10,6 +12,9 @@
TSL235R::TSL235R(float voltage)
{
_waveLength = 635;
_waveLengthFactor = 1.0;
_voltageFactor = 1.0;
_voltage = voltage;
calculateFactor();
}
@ -26,12 +31,19 @@ float TSL235R::irradiance(uint32_t pulses, uint32_t milliseconds)
return (pulses * 1000.0 * _factor) / milliseconds;
}
float TSL235R::irradiance_HS(uint32_t pulses, uint32_t microseconds)
{
return (pulses * 1000000.0 * _factor) / microseconds;
}
float TSL235R::getFactor()
{
return _factor;
}
void TSL235R::setWavelength(uint16_t wavelength)
{
_waveLength = wavelength;
@ -39,6 +51,18 @@ void TSL235R::setWavelength(uint16_t wavelength)
}
uint16_t TSL235R::getWavelength()
{
return _waveLength;
}
float TSL235R::getWaveLengthFactor()
{
return _waveLengthFactor;
}
void TSL235R::setVoltage(float voltage)
{
_voltage = voltage;
@ -46,14 +70,26 @@ void TSL235R::setVoltage(float voltage)
}
float TSL235R::getVoltage()
{
return _voltage;
}
float TSL235R::getVoltageFactor()
{
return _voltageFactor;
}
void TSL235R::calculateFactor()
{
// figure 1 datasheet
// 1 KHz crosses the line at 35/230 between 1 and 10.
// so the correction factor is 10^0.15217 = 1.419659 = 1.42 (as all math has 3 decimals)
// so the correction factor is 10^0.15217 = 1.419659
// as the graph is in kHz we need to correct a factor 1000
// as the irradiance function gets Hz
const float cf = 0.00142;
const float cf = 0.001419659;
_waveLengthFactor = calculateWaveLengthFactor(_waveLength);
_voltageFactor = 0.988 + (_voltage - 2.7) * (0.015 / 2.8);
@ -72,6 +108,7 @@ float TSL235R::calculateWaveLengthFactor(uint16_t _waveLength)
}
// from https://github.com/RobTillaart/MultiMap
float TSL235R::multiMap(float value, float * _in, float * _out, uint8_t size)
{
// take care the value is within range

View File

@ -2,41 +2,48 @@
//
// FILE: TSL235R.h
// AUTHOR: Rob Tillaart
// VERSION: 0.1.3
// VERSION: 0.1.4
// DATE: 2020-05-29
// PURPOSE: library for the TSL235R light to frequency convertor
// URL: https://github.com/RobTillaart/TSL235R
#define TSL235R_LIB_VERSION (F("0.1.3"))
#define TSL235R_LIB_VERSION (F("0.1.4"))
#include "Arduino.h"
#if not defined(TSL235_DEFAULT_VOLTAGE)
#define TSL235_DEFAULT_VOLTAGE 5.0
#endif
class TSL235R
{
public:
TSL235R(float voltage = 5.0);
TSL235R(float voltage = TSL235_DEFAULT_VOLTAGE);
float irradiance(uint32_t Hz); // Hz == pulses in one second.
float irradiance(uint32_t pulses, uint32_t milliseconds); // obsolete?
// Hz == pulses in one second.
// could be calculated from shorter/longer measurement.
float irradiance(uint32_t Hz);
float irradiance(uint32_t pulses, uint32_t milliseconds);
float irradiance_HS(uint32_t pulses, uint32_t microseconds);
float getFactor() { return _factor; };
float getFactor();
void setWavelength(uint16_t wavelength = 635);
uint16_t getWavelength() { return _waveLength; }
float getWaveLengthFactor() { return _waveLengthFactor; }
uint16_t getWavelength();
float getWaveLengthFactor();
void setVoltage(float voltage = 5.0);
float getVoltage() { return _voltage; };
float getVoltageFactor() { return _voltageFactor; };
void setVoltage(float voltage = TSL235_DEFAULT_VOLTAGE);
float getVoltage();
float getVoltageFactor();
private:
uint16_t _waveLength = 635;
float _waveLengthFactor = 1.0;
float _voltage = 5.0;
float _voltageFactor = 1.0;
float _factor = 1.2;
float _voltage;
float _factor;
void calculateFactor();
float calculateWaveLengthFactor(uint16_t _waveLength);

View File

@ -15,7 +15,7 @@
"type": "git",
"url": "https://github.com/RobTillaart/TSL235R.git"
},
"version": "0.1.3",
"version": "0.1.4",
"license": "MIT",
"frameworks": "*",
"platforms": "*",

View File

@ -1,5 +1,5 @@
name=TSL235R
version=0.1.3
version=0.1.4
author=Rob Tillaart <rob.tillaart@gmail.com>
maintainer=Rob Tillaart <rob.tillaart@gmail.com>
sentence=Library for the TSL235R light to frequency convertor.

View File

@ -48,14 +48,21 @@ unittest_teardown()
}
unittest(test_constants)
{
assertEqualFloat(5.0, TSL235_DEFAULT_VOLTAGE, 0.001);
}
unittest(test_constructor)
{
TSL235R mysensor;
assertEqual(635, mysensor.getWavelength() );
assertEqualFloat(1.0, mysensor.getWaveLengthFactor(), 0.001);
assertEqualFloat(5.0, mysensor.getVoltage(), 0.001);
assertEqualFloat(1.0, mysensor.getVoltageFactor(), 0.001);
assertEqualFloat(0.00142, mysensor.getFactor(), 0.001);
assertEqualFloat(0.001419659, mysensor.getFactor(), 0.001);
fprintf(stderr, "%1.6f\n", mysensor.getFactor() );
}
@ -64,6 +71,7 @@ unittest(test_constructor)
unittest(test_wavelength)
{
TSL235R mysensor;
assertEqual(635, mysensor.getWavelength() );
assertEqualFloat(1.0, mysensor.getWaveLengthFactor(), 0.001);
fprintf(stderr,"\n");
@ -90,6 +98,7 @@ unittest(test_wavelength)
unittest(test_voltage)
{
TSL235R mysensor(2.7);
assertEqualFloat(2.7, mysensor.getVoltage(), 0.001);
assertEqualFloat(0.988, mysensor.getVoltageFactor(), 0.001);
fprintf(stderr,"\n");
@ -116,6 +125,7 @@ unittest(test_voltage)
unittest(test_conversion1)
{
TSL235R mysensor;
assertEqualFloat(1.0, mysensor.getVoltageFactor(), 0.001);
assertEqualFloat(1.0, mysensor.getWaveLengthFactor(), 0.001);
@ -125,7 +135,7 @@ unittest(test_conversion1)
for (uint32_t Hz = 10; Hz < 1000000; Hz *= 2)
{
float rad = mysensor.irradiance(Hz);
assertEqualFloat(0.00142 * Hz, mysensor.irradiance(Hz), 0.001 * Hz); // we must have a relative error here!
assertEqualFloat(0.001419659 * Hz, mysensor.irradiance(Hz), 0.001 * Hz); // we must have a relative error here!
}
}
@ -133,6 +143,7 @@ unittest(test_conversion1)
unittest(test_conversion2)
{
TSL235R mysensor;
assertEqualFloat(1.0, mysensor.getVoltageFactor(), 0.001);
assertEqualFloat(1.0, mysensor.getWaveLengthFactor(), 0.001);
fprintf(stderr,"\n");
@ -151,4 +162,5 @@ unittest(test_conversion2)
unittest_main()
// --------
// -- END OF FILE --