esp-idf/docs/en/api-reference/peripherals/spi_flash/spi_flash_concurrency.rst
morris 2f0c9b3584 feat(gdma): set burst size and return alignment constraint
burst size can affect the buffer alignment
2024-06-07 22:44:18 +08:00

95 lines
5.5 KiB
ReStructuredText

.. _concurrency-constraints-flash:
Concurrency Constraints for Flash on SPI1
=========================================
:link_to_translation:`zh_CN:[中文]`
The SPI0/1 bus is shared between the instruction & data cache (for firmware execution) and the SPI1 peripheral (controlled by the drivers including this SPI Flash driver). Hence, operations to SPI1 will cause significant influence to the whole system. This kind of operations include calling SPI Flash API or other drivers on SPI1 bus, any operations like read/write/erase or other user defined SPI operations, regardless to the main flash or other SPI slave devices.
.. only:: not (esp32c3 or SOC_SPIRAM_XIP_SUPPORTED)
On {IDF_TARGET_NAME}, these caches must be disabled while reading/writing/erasing.
.. only:: SOC_SPI_MEM_SUPPORT_AUTO_SUSPEND
On {IDF_TARGET_NAME}, the config option :ref:`CONFIG_SPI_FLASH_AUTO_SUSPEND` allows the cache to read flash concurrently with SPI1 operations. This is an optional feature that depends on special SPI Flash models, hence disabled by default. See :ref:`auto-suspend` for more details.
If this option is disabled, the caches must be disabled while reading/writing/erasing operations. There are some constraints using driver on the SPI1 bus, see :ref:`impact_disabled_cache`. These constraints will cause more IRAM/DRAM usages.
.. only:: SOC_SPIRAM_XIP_SUPPORTED
On {IDF_TARGET_NAME}, the config options :ref:`CONFIG_SPIRAM_FETCH_INSTRUCTIONS` (disabled by default) and :ref:`CONFIG_SPIRAM_RODATA` (disabled by default) allow the cache to read/write PSRAM concurrently with SPI1 operations. See :ref:`xip_from_psram` for more details.
If these options are disabled, the caches must be disabled while reading/writing/erasing operations. There are some constraints using driver on the SPI1 bus, see :ref:`impact_disabled_cache`. These constraints will cause more IRAM/DRAM usages.
.. _impact_disabled_cache:
When the Caches Are Disabled
----------------------------
Under this condition, all CPUs should always execute code and access data from internal RAM. The APIs documented in this file will disable the caches automatically and transparently.
.. only:: esp32c3
.. note::
When :ref:`CONFIG_SPI_FLASH_AUTO_SUSPEND` is enabled, these APIs will not disable the caches. The hardware will handle the arbitration between them.
.. only:: SOC_SPIRAM_XIP_SUPPORTED
.. note::
When :ref:`CONFIG_SPIRAM_FETCH_INSTRUCTIONS` and :ref:`CONFIG_SPIRAM_RODATA` are both enabled, these APIs will not disable the caches.
.. only:: SOC_HP_CPU_HAS_MULTIPLE_CORES
The way that these APIs disable the caches suspends all the other tasks. Besides, all non-IRAM-safe interrupts will be disabled. The other core will be polling in a busy loop. These will be restored until the Flash operation completes.
.. only:: not SOC_HP_CPU_HAS_MULTIPLE_CORES
The way that these APIs disable the caches also disables non-IRAM-safe interrupts. These will be restored until the Flash operation completes.
See also :ref:`esp_flash_os_func` and :ref:`spi_bus_lock`.
There are no such constraints and impacts for flash chips on other SPI buses than SPI0/1.
For differences between internal RAM (e.g., IRAM, DRAM) and flash cache, please refer to the :ref:`application memory layout <memory-layout>` documentation.
.. _iram-safe-interrupt-handlers:
IRAM-Safe Interrupt Handlers
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
For interrupt handlers which need to execute when the cache is disabled (e.g., for low latency operations), set the ``ESP_INTR_FLAG_IRAM`` flag when the :doc:`interrupt handler is registered </api-reference/system/intr_alloc>`.
You must ensure that all data and functions accessed by these interrupt handlers, including the ones that handlers call, are located in IRAM or DRAM. See :ref:`how-to-place-code-in-iram`.
If a function or symbol is not correctly put into IRAM/DRAM, and the interrupt handler reads from the flash cache during a flash operation, it will cause a crash due to Illegal Instruction exception (for code which should be in IRAM) or garbage data to be read (for constant data which should be in DRAM).
.. note::
When working with strings in ISRs, it is not advised to use ``printf`` and other output functions. For debugging purposes, use :cpp:func:`ESP_DRAM_LOGE` and similar macros when logging from ISRs. Make sure that both ``TAG`` and format string are placed into ``DRAM`` in that case.
Non-IRAM-Safe Interrupt Handlers
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
If the ``ESP_INTR_FLAG_IRAM`` flag is not set when registering, the interrupt handler will not get executed when the caches are disabled. Once the caches are restored, the non-IRAM-safe interrupts will be re-enabled. After this moment, the interrupt handler will run normally again. This means that as long as caches are disabled, users will not see the corresponding hardware event happening.
.. only:: SOC_DMA_CAN_ACCESS_FLASH
When DMA Read Data from Flash
-----------------------------
When DMA is reading data from Flash, erase/write operations from SPI1 take higher priority in hardware, resulting in unpredictable data read by DMA if auto-suspend is not enabled. It is recommended to stop DMA access to Flash before erasing or writing to it. If DMA cannot be stopped (for example, the LCD needs to continuously refresh image data stored in Flash), it is advisable to copy such data to PSRAM or internal SRAM.
.. only:: SOC_SPI_MEM_SUPPORT_AUTO_SUSPEND
.. include:: auto_suspend.inc
.. only:: SOC_SPIRAM_XIP_SUPPORTED
.. include:: xip_from_psram.inc