esp-idf/components/driver/gptimer/gptimer.c

528 lines
20 KiB
C

/*
* SPDX-FileCopyrightText: 2022-2023 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <stdlib.h>
#include <sys/lock.h>
#include "sdkconfig.h"
#if CONFIG_GPTIMER_ENABLE_DEBUG_LOG
// The local log level must be defined before including esp_log.h
// Set the maximum log level for this source file
#define LOG_LOCAL_LEVEL ESP_LOG_DEBUG
#endif
#include "freertos/FreeRTOS.h"
#include "esp_attr.h"
#include "esp_err.h"
#include "esp_log.h"
#include "esp_check.h"
#include "esp_pm.h"
#include "driver/gptimer.h"
#include "hal/timer_types.h"
#include "hal/timer_hal.h"
#include "hal/timer_ll.h"
#include "soc/timer_periph.h"
#include "esp_memory_utils.h"
#include "esp_private/periph_ctrl.h"
#include "esp_private/esp_clk.h"
#include "clk_ctrl_os.h"
#include "esp_clk_tree.h"
#include "gptimer_priv.h"
static const char *TAG = "gptimer";
typedef struct gptimer_platform_t {
_lock_t mutex; // platform level mutex lock
gptimer_group_t *groups[SOC_TIMER_GROUPS]; // timer group pool
int group_ref_counts[SOC_TIMER_GROUPS]; // reference count used to protect group install/uninstall
} gptimer_platform_t;
// gptimer driver platform, it's always a singleton
static gptimer_platform_t s_platform;
static gptimer_group_t *gptimer_acquire_group_handle(int group_id);
static void gptimer_release_group_handle(gptimer_group_t *group);
static esp_err_t gptimer_select_periph_clock(gptimer_t *timer, gptimer_clock_source_t src_clk, uint32_t resolution_hz);
static void gptimer_default_isr(void *args);
static esp_err_t gptimer_register_to_group(gptimer_t *timer)
{
gptimer_group_t *group = NULL;
int timer_id = -1;
for (int i = 0; i < SOC_TIMER_GROUPS; i++) {
group = gptimer_acquire_group_handle(i);
ESP_RETURN_ON_FALSE(group, ESP_ERR_NO_MEM, TAG, "no mem for group (%d)", i);
// loop to search free timer in the group
portENTER_CRITICAL(&group->spinlock);
for (int j = 0; j < SOC_TIMER_GROUP_TIMERS_PER_GROUP; j++) {
if (!group->timers[j]) {
timer_id = j;
group->timers[j] = timer;
break;
}
}
portEXIT_CRITICAL(&group->spinlock);
if (timer_id < 0) {
gptimer_release_group_handle(group);
group = NULL;
} else {
timer->timer_id = timer_id;
timer->group = group;
break;;
}
}
ESP_RETURN_ON_FALSE(timer_id != -1, ESP_ERR_NOT_FOUND, TAG, "no free timer");
return ESP_OK;
}
static void gptimer_unregister_from_group(gptimer_t *timer)
{
gptimer_group_t *group = timer->group;
int timer_id = timer->timer_id;
portENTER_CRITICAL(&group->spinlock);
group->timers[timer_id] = NULL;
portEXIT_CRITICAL(&group->spinlock);
// timer has a reference on group, release it now
gptimer_release_group_handle(group);
}
static esp_err_t gptimer_destroy(gptimer_t *timer)
{
if (timer->pm_lock) {
ESP_RETURN_ON_ERROR(esp_pm_lock_delete(timer->pm_lock), TAG, "delete pm_lock failed");
}
if (timer->intr) {
ESP_RETURN_ON_ERROR(esp_intr_free(timer->intr), TAG, "delete interrupt service failed");
}
if (timer->group) {
gptimer_unregister_from_group(timer);
}
free(timer);
return ESP_OK;
}
esp_err_t gptimer_new_timer(const gptimer_config_t *config, gptimer_handle_t *ret_timer)
{
#if CONFIG_GPTIMER_ENABLE_DEBUG_LOG
esp_log_level_set(TAG, ESP_LOG_DEBUG);
#endif
esp_err_t ret = ESP_OK;
gptimer_t *timer = NULL;
ESP_RETURN_ON_FALSE(config && ret_timer, ESP_ERR_INVALID_ARG, TAG, "invalid argument");
ESP_RETURN_ON_FALSE(config->resolution_hz, ESP_ERR_INVALID_ARG, TAG, "invalid timer resolution:%"PRIu32, config->resolution_hz);
if (config->intr_priority) {
ESP_RETURN_ON_FALSE(1 << (config->intr_priority) & GPTIMER_ALLOW_INTR_PRIORITY_MASK, ESP_ERR_INVALID_ARG,
TAG, "invalid interrupt priority:%d", config->intr_priority);
}
timer = heap_caps_calloc(1, sizeof(gptimer_t), GPTIMER_MEM_ALLOC_CAPS);
ESP_GOTO_ON_FALSE(timer, ESP_ERR_NO_MEM, err, TAG, "no mem for gptimer");
// register timer to the group (because one group can have several timers)
ESP_GOTO_ON_ERROR(gptimer_register_to_group(timer), err, TAG, "register timer failed");
gptimer_group_t *group = timer->group;
int group_id = group->group_id;
int timer_id = timer->timer_id;
// initialize HAL layer
timer_hal_init(&timer->hal, group_id, timer_id);
// select clock source, set clock resolution
ESP_GOTO_ON_ERROR(gptimer_select_periph_clock(timer, config->clk_src, config->resolution_hz), err, TAG, "set periph clock failed");
// initialize counter value to zero
timer_hal_set_counter_value(&timer->hal, 0);
// set counting direction
timer_ll_set_count_direction(timer->hal.dev, timer_id, config->direction);
// interrupt register is shared by all timers in the same group
portENTER_CRITICAL(&group->spinlock);
timer_ll_enable_intr(timer->hal.dev, TIMER_LL_EVENT_ALARM(timer_id), false); // disable interrupt
timer_ll_clear_intr_status(timer->hal.dev, TIMER_LL_EVENT_ALARM(timer_id)); // clear pending interrupt event
portEXIT_CRITICAL(&group->spinlock);
// initialize other members of timer
timer->spinlock = (portMUX_TYPE)portMUX_INITIALIZER_UNLOCKED;
// put the timer driver to the init state
atomic_init(&timer->fsm, GPTIMER_FSM_INIT);
timer->direction = config->direction;
timer->intr_priority = config->intr_priority;
timer->flags.intr_shared = config->flags.intr_shared;
ESP_LOGD(TAG, "new gptimer (%d,%d) at %p, resolution=%"PRIu32"Hz", group_id, timer_id, timer, timer->resolution_hz);
*ret_timer = timer;
return ESP_OK;
err:
if (timer) {
gptimer_destroy(timer);
}
return ret;
}
esp_err_t gptimer_del_timer(gptimer_handle_t timer)
{
ESP_RETURN_ON_FALSE(timer, ESP_ERR_INVALID_ARG, TAG, "invalid argument");
ESP_RETURN_ON_FALSE(atomic_load(&timer->fsm) == GPTIMER_FSM_INIT, ESP_ERR_INVALID_STATE, TAG, "timer not in init state");
gptimer_group_t *group = timer->group;
gptimer_clock_source_t clk_src = timer->clk_src;
int group_id = group->group_id;
int timer_id = timer->timer_id;
ESP_LOGD(TAG, "del timer (%d,%d)", group_id, timer_id);
timer_hal_deinit(&timer->hal);
// recycle memory resource
ESP_RETURN_ON_ERROR(gptimer_destroy(timer), TAG, "destroy gptimer failed");
switch (clk_src) {
#if SOC_TIMER_GROUP_SUPPORT_RC_FAST
case GPTIMER_CLK_SRC_RC_FAST:
periph_rtc_dig_clk8m_disable();
break;
#endif // SOC_TIMER_GROUP_SUPPORT_RC_FAST
default:
break;
}
return ESP_OK;
}
esp_err_t gptimer_set_raw_count(gptimer_handle_t timer, unsigned long long value)
{
ESP_RETURN_ON_FALSE_ISR(timer, ESP_ERR_INVALID_ARG, TAG, "invalid argument");
portENTER_CRITICAL_SAFE(&timer->spinlock);
timer_hal_set_counter_value(&timer->hal, value);
portEXIT_CRITICAL_SAFE(&timer->spinlock);
return ESP_OK;
}
esp_err_t gptimer_get_raw_count(gptimer_handle_t timer, unsigned long long *value)
{
ESP_RETURN_ON_FALSE_ISR(timer && value, ESP_ERR_INVALID_ARG, TAG, "invalid argument");
portENTER_CRITICAL_SAFE(&timer->spinlock);
*value = timer_hal_capture_and_get_counter_value(&timer->hal);
portEXIT_CRITICAL_SAFE(&timer->spinlock);
return ESP_OK;
}
esp_err_t gptimer_get_resolution(gptimer_handle_t timer, uint32_t *out_resolution)
{
ESP_RETURN_ON_FALSE(timer && out_resolution, ESP_ERR_INVALID_ARG, TAG, "invalid argument");
*out_resolution = timer->resolution_hz;
return ESP_OK;
}
esp_err_t gptimer_get_captured_count(gptimer_handle_t timer, uint64_t *value)
{
ESP_RETURN_ON_FALSE_ISR(timer && value, ESP_ERR_INVALID_ARG, TAG, "invalid argument");
portENTER_CRITICAL_SAFE(&timer->spinlock);
*value = timer_ll_get_counter_value(timer->hal.dev, timer->timer_id);
portEXIT_CRITICAL_SAFE(&timer->spinlock);
return ESP_OK;
}
esp_err_t gptimer_register_event_callbacks(gptimer_handle_t timer, const gptimer_event_callbacks_t *cbs, void *user_data)
{
gptimer_group_t *group = NULL;
ESP_RETURN_ON_FALSE(timer && cbs, ESP_ERR_INVALID_ARG, TAG, "invalid argument");
group = timer->group;
int group_id = group->group_id;
int timer_id = timer->timer_id;
#if CONFIG_GPTIMER_ISR_IRAM_SAFE
if (cbs->on_alarm) {
ESP_RETURN_ON_FALSE(esp_ptr_in_iram(cbs->on_alarm), ESP_ERR_INVALID_ARG, TAG, "on_alarm callback not in IRAM");
}
if (user_data) {
ESP_RETURN_ON_FALSE(esp_ptr_internal(user_data), ESP_ERR_INVALID_ARG, TAG, "user context not in internal RAM");
}
#endif
// lazy install interrupt service
if (!timer->intr) {
ESP_RETURN_ON_FALSE(atomic_load(&timer->fsm) == GPTIMER_FSM_INIT, ESP_ERR_INVALID_STATE, TAG, "timer not in init state");
// if user wants to control the interrupt allocation more precisely, we can expose more flags in `gptimer_config_t`
int isr_flags = timer->flags.intr_shared ? ESP_INTR_FLAG_SHARED | GPTIMER_INTR_ALLOC_FLAGS : GPTIMER_INTR_ALLOC_FLAGS;
if (timer->intr_priority) {
isr_flags |= 1 << (timer->intr_priority);
}
ESP_RETURN_ON_ERROR(esp_intr_alloc_intrstatus(timer_group_periph_signals.groups[group_id].timer_irq_id[timer_id], isr_flags,
(uint32_t)timer_ll_get_intr_status_reg(timer->hal.dev), TIMER_LL_EVENT_ALARM(timer_id),
gptimer_default_isr, timer, &timer->intr), TAG, "install interrupt service failed");
}
// enable/disable GPTimer interrupt events
portENTER_CRITICAL(&group->spinlock);
timer_ll_enable_intr(timer->hal.dev, TIMER_LL_EVENT_ALARM(timer->timer_id), cbs->on_alarm != NULL); // enable timer interrupt
portEXIT_CRITICAL(&group->spinlock);
timer->on_alarm = cbs->on_alarm;
timer->user_ctx = user_data;
return ESP_OK;
}
esp_err_t gptimer_set_alarm_action(gptimer_handle_t timer, const gptimer_alarm_config_t *config)
{
ESP_RETURN_ON_FALSE_ISR(timer, ESP_ERR_INVALID_ARG, TAG, "invalid argument");
if (config) {
#if CONFIG_GPTIMER_CTRL_FUNC_IN_IRAM
ESP_RETURN_ON_FALSE_ISR(esp_ptr_internal(config), ESP_ERR_INVALID_ARG, TAG, "alarm config struct not in internal RAM");
#endif
// When auto_reload is enabled, alarm_count should not be equal to reload_count
bool valid_auto_reload = !config->flags.auto_reload_on_alarm || config->alarm_count != config->reload_count;
ESP_RETURN_ON_FALSE_ISR(valid_auto_reload, ESP_ERR_INVALID_ARG, TAG, "reload count can't equal to alarm count");
portENTER_CRITICAL_SAFE(&timer->spinlock);
timer->reload_count = config->reload_count;
timer->alarm_count = config->alarm_count;
timer->flags.auto_reload_on_alarm = config->flags.auto_reload_on_alarm;
timer->flags.alarm_en = true;
timer_ll_set_reload_value(timer->hal.dev, timer->timer_id, config->reload_count);
timer_ll_set_alarm_value(timer->hal.dev, timer->timer_id, config->alarm_count);
portEXIT_CRITICAL_SAFE(&timer->spinlock);
} else {
portENTER_CRITICAL_SAFE(&timer->spinlock);
timer->flags.auto_reload_on_alarm = false;
timer->flags.alarm_en = false;
portEXIT_CRITICAL_SAFE(&timer->spinlock);
}
portENTER_CRITICAL_SAFE(&timer->spinlock);
timer_ll_enable_auto_reload(timer->hal.dev, timer->timer_id, timer->flags.auto_reload_on_alarm);
timer_ll_enable_alarm(timer->hal.dev, timer->timer_id, timer->flags.alarm_en);
portEXIT_CRITICAL_SAFE(&timer->spinlock);
return ESP_OK;
}
esp_err_t gptimer_enable(gptimer_handle_t timer)
{
ESP_RETURN_ON_FALSE(timer, ESP_ERR_INVALID_ARG, TAG, "invalid argument");
gptimer_fsm_t expected_fsm = GPTIMER_FSM_INIT;
ESP_RETURN_ON_FALSE(atomic_compare_exchange_strong(&timer->fsm, &expected_fsm, GPTIMER_FSM_ENABLE),
ESP_ERR_INVALID_STATE, TAG, "timer not in init state");
// acquire power manager lock
if (timer->pm_lock) {
ESP_RETURN_ON_ERROR(esp_pm_lock_acquire(timer->pm_lock), TAG, "acquire pm_lock failed");
}
// enable interrupt service
if (timer->intr) {
ESP_RETURN_ON_ERROR(esp_intr_enable(timer->intr), TAG, "enable interrupt service failed");
}
return ESP_OK;
}
esp_err_t gptimer_disable(gptimer_handle_t timer)
{
ESP_RETURN_ON_FALSE(timer, ESP_ERR_INVALID_ARG, TAG, "invalid argument");
gptimer_fsm_t expected_fsm = GPTIMER_FSM_ENABLE;
ESP_RETURN_ON_FALSE(atomic_compare_exchange_strong(&timer->fsm, &expected_fsm, GPTIMER_FSM_INIT),
ESP_ERR_INVALID_STATE, TAG, "timer not in enable state");
// disable interrupt service
if (timer->intr) {
ESP_RETURN_ON_ERROR(esp_intr_disable(timer->intr), TAG, "disable interrupt service failed");
}
// release power manager lock
if (timer->pm_lock) {
ESP_RETURN_ON_ERROR(esp_pm_lock_release(timer->pm_lock), TAG, "release pm_lock failed");
}
return ESP_OK;
}
esp_err_t gptimer_start(gptimer_handle_t timer)
{
ESP_RETURN_ON_FALSE_ISR(timer, ESP_ERR_INVALID_ARG, TAG, "invalid argument");
gptimer_fsm_t expected_fsm = GPTIMER_FSM_ENABLE;
if (atomic_compare_exchange_strong(&timer->fsm, &expected_fsm, GPTIMER_FSM_RUN_WAIT)) {
// the register used by the following LL functions are shared with other API,
// which is possible to run along with this function, so we need to protect
portENTER_CRITICAL_SAFE(&timer->spinlock);
timer_ll_enable_counter(timer->hal.dev, timer->timer_id, true);
timer_ll_enable_alarm(timer->hal.dev, timer->timer_id, timer->flags.alarm_en);
portEXIT_CRITICAL_SAFE(&timer->spinlock);
} else {
ESP_RETURN_ON_FALSE_ISR(false, ESP_ERR_INVALID_STATE, TAG, "timer is not enabled yet");
}
atomic_store(&timer->fsm, GPTIMER_FSM_RUN);
return ESP_OK;
}
esp_err_t gptimer_stop(gptimer_handle_t timer)
{
ESP_RETURN_ON_FALSE_ISR(timer, ESP_ERR_INVALID_ARG, TAG, "invalid argument");
gptimer_fsm_t expected_fsm = GPTIMER_FSM_RUN;
if (atomic_compare_exchange_strong(&timer->fsm, &expected_fsm, GPTIMER_FSM_ENABLE_WAIT)) {
// disable counter, alarm, auto-reload
portENTER_CRITICAL_SAFE(&timer->spinlock);
timer_ll_enable_counter(timer->hal.dev, timer->timer_id, false);
timer_ll_enable_alarm(timer->hal.dev, timer->timer_id, false);
portEXIT_CRITICAL_SAFE(&timer->spinlock);
} else {
ESP_RETURN_ON_FALSE_ISR(false, ESP_ERR_INVALID_STATE, TAG, "timer is not running");
}
atomic_store(&timer->fsm, GPTIMER_FSM_ENABLE);
return ESP_OK;
}
static gptimer_group_t *gptimer_acquire_group_handle(int group_id)
{
bool new_group = false;
gptimer_group_t *group = NULL;
// prevent install timer group concurrently
_lock_acquire(&s_platform.mutex);
if (!s_platform.groups[group_id]) {
group = heap_caps_calloc(1, sizeof(gptimer_group_t), GPTIMER_MEM_ALLOC_CAPS);
if (group) {
new_group = true;
s_platform.groups[group_id] = group;
// initialize timer group members
group->group_id = group_id;
group->spinlock = (portMUX_TYPE)portMUX_INITIALIZER_UNLOCKED;
// enable APB access timer registers
periph_module_enable(timer_group_periph_signals.groups[group_id].module);
}
} else {
group = s_platform.groups[group_id];
}
if (group) {
// someone acquired the group handle means we have a new object that refer to this group
s_platform.group_ref_counts[group_id]++;
}
_lock_release(&s_platform.mutex);
if (new_group) {
ESP_LOGD(TAG, "new group (%d) @%p", group_id, group);
}
return group;
}
static void gptimer_release_group_handle(gptimer_group_t *group)
{
int group_id = group->group_id;
bool do_deinitialize = false;
_lock_acquire(&s_platform.mutex);
s_platform.group_ref_counts[group_id]--;
if (s_platform.group_ref_counts[group_id] == 0) {
assert(s_platform.groups[group_id]);
do_deinitialize = true;
s_platform.groups[group_id] = NULL;
periph_module_disable(timer_group_periph_signals.groups[group_id].module);
}
_lock_release(&s_platform.mutex);
if (do_deinitialize) {
free(group);
ESP_LOGD(TAG, "del group (%d)", group_id);
}
}
static esp_err_t gptimer_select_periph_clock(gptimer_t *timer, gptimer_clock_source_t src_clk, uint32_t resolution_hz)
{
uint32_t counter_src_hz = 0;
int timer_id = timer->timer_id;
// TODO: [clk_tree] to use a generic clock enable/disable or acquire/release function for all clock source
#if SOC_TIMER_GROUP_SUPPORT_RC_FAST
if (src_clk == GPTIMER_CLK_SRC_RC_FAST) {
// RC_FAST clock is not enabled automatically on start up, we enable it here manually.
// Note there's a ref count in the enable/disable function, we must call them in pair in the driver.
periph_rtc_dig_clk8m_enable();
}
#endif // SOC_TIMER_GROUP_SUPPORT_RC_FAST
// get clock source frequency
ESP_RETURN_ON_ERROR(esp_clk_tree_src_get_freq_hz((soc_module_clk_t)src_clk, ESP_CLK_TREE_SRC_FREQ_PRECISION_CACHED, &counter_src_hz),
TAG, "get clock source frequency failed");
#if CONFIG_PM_ENABLE
bool need_pm_lock = true;
// to make the gptimer work reliable, the source clock must stay alive and unchanged
// driver will create different pm lock for that purpose, according to different clock source
esp_pm_lock_type_t pm_lock_type = ESP_PM_NO_LIGHT_SLEEP;
#if SOC_TIMER_GROUP_SUPPORT_RC_FAST
if (src_clk == GPTIMER_CLK_SRC_RC_FAST) {
// RC_FAST won't be turn off in sleep and won't change its frequency during DFS
need_pm_lock = false;
}
#endif // SOC_TIMER_GROUP_SUPPORT_RC_FAST
#if SOC_TIMER_GROUP_SUPPORT_APB
if (src_clk == GPTIMER_CLK_SRC_APB) {
// APB clock frequency can be changed during DFS
pm_lock_type = ESP_PM_APB_FREQ_MAX;
}
#endif // SOC_TIMER_GROUP_SUPPORT_APB
#if CONFIG_IDF_TARGET_ESP32C2
if (src_clk == GPTIMER_CLK_SRC_PLL_F40M) {
// although PLL_F40M clock is a fixed PLL clock, which is unchangeable
// on ESP32C2, PLL_F40M can be turned off even during DFS (unlike other PLL clocks)
// so we're acquiring a fake "APB" lock here to prevent the system from doing DFS
pm_lock_type = ESP_PM_APB_FREQ_MAX;
}
#endif // CONFIG_IDF_TARGET_ESP32C2
if (need_pm_lock) {
sprintf(timer->pm_lock_name, "gptimer_%d_%d", timer->group->group_id, timer_id); // e.g. gptimer_0_0
ESP_RETURN_ON_ERROR(esp_pm_lock_create(pm_lock_type, 0, timer->pm_lock_name, &timer->pm_lock),
TAG, "create pm lock failed");
}
#endif // CONFIG_PM_ENABLE
timer_ll_set_clock_source(timer->hal.dev, timer_id, src_clk);
timer->clk_src = src_clk;
unsigned int prescale = counter_src_hz / resolution_hz; // potential resolution loss here
timer_ll_set_clock_prescale(timer->hal.dev, timer_id, prescale);
timer->resolution_hz = counter_src_hz / prescale; // this is the real resolution
if (timer->resolution_hz != resolution_hz) {
ESP_LOGW(TAG, "resolution lost, expect %"PRIu32", real %"PRIu32, resolution_hz, timer->resolution_hz);
}
return ESP_OK;
}
static void gptimer_default_isr(void *args)
{
bool need_yield = false;
gptimer_t *timer = (gptimer_t *)args;
gptimer_group_t *group = timer->group;
gptimer_alarm_cb_t on_alarm_cb = timer->on_alarm;
uint32_t intr_status = timer_ll_get_intr_status(timer->hal.dev);
if (intr_status & TIMER_LL_EVENT_ALARM(timer->timer_id)) {
// Note: when alarm event happens, the alarm will be disabled automatically by hardware
gptimer_alarm_event_data_t edata = {
.count_value = timer_hal_capture_and_get_counter_value(&timer->hal),
.alarm_value = timer->alarm_count,
};
portENTER_CRITICAL_ISR(&group->spinlock);
timer_ll_clear_intr_status(timer->hal.dev, TIMER_LL_EVENT_ALARM(timer->timer_id));
// for auto-reload, we need to re-enable the alarm manually
if (timer->flags.auto_reload_on_alarm) {
timer_ll_enable_alarm(timer->hal.dev, timer->timer_id, true);
}
portEXIT_CRITICAL_ISR(&group->spinlock);
if (on_alarm_cb) {
if (on_alarm_cb(timer, &edata, timer->user_ctx)) {
need_yield = true;
}
}
}
if (need_yield) {
portYIELD_FROM_ISR();
}
}