mirror of
https://github.com/espressif/esp-idf.git
synced 2024-10-05 20:47:46 -04:00
1216 lines
42 KiB
C
1216 lines
42 KiB
C
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <freertos/FreeRTOS.h>
|
|
#include <freertos/task.h>
|
|
#include <freertos/semphr.h>
|
|
|
|
#include <unity.h>
|
|
#include "esp_flash.h"
|
|
#include "driver/spi_common_internal.h"
|
|
#include "esp_flash_spi_init.h"
|
|
#include "memspi_host_driver.h"
|
|
#include <esp_attr.h>
|
|
#include "esp_log.h"
|
|
|
|
#include <test_utils.h>
|
|
|
|
#include "unity.h"
|
|
#include "driver/gpio.h"
|
|
#include "soc/io_mux_reg.h"
|
|
#include "sdkconfig.h"
|
|
|
|
#include "ccomp_timer.h"
|
|
#include "esp_rom_gpio.h"
|
|
#include "esp_rom_sys.h"
|
|
#include "esp_timer.h"
|
|
|
|
#if CONFIG_IDF_TARGET_ESP32S2
|
|
#include "esp32s2/rom/cache.h"
|
|
#elif CONFIG_IDF_TARGET_ESP32S3
|
|
#include "esp32s3/rom/cache.h"
|
|
#elif CONFIG_IDF_TARGET_ESP32C3
|
|
#include "esp32c3/rom/cache.h"
|
|
#endif
|
|
|
|
#define FUNC_SPI 1
|
|
|
|
static uint8_t sector_buf[4096];
|
|
|
|
#define MAX_ADDR_24BIT 0x1000000
|
|
#define TEST_SPI_SPEED ESP_FLASH_10MHZ
|
|
#define TEST_SPI_READ_MODE SPI_FLASH_FASTRD
|
|
// #define FORCE_GPIO_MATRIX
|
|
|
|
#if CONFIG_IDF_TARGET_ESP32
|
|
#define EXTRA_SPI1_CLK_IO 17 //the pin which is usually used by the PSRAM clk
|
|
#define SPI1_CS_IO 16 //the pin which is usually used by the PSRAM cs
|
|
|
|
#define HSPI_PIN_NUM_MOSI HSPI_IOMUX_PIN_NUM_MOSI
|
|
#define HSPI_PIN_NUM_MISO HSPI_IOMUX_PIN_NUM_MISO
|
|
#define HSPI_PIN_NUM_CLK HSPI_IOMUX_PIN_NUM_CLK
|
|
#define HSPI_PIN_NUM_HD HSPI_IOMUX_PIN_NUM_HD
|
|
#define HSPI_PIN_NUM_WP HSPI_IOMUX_PIN_NUM_WP
|
|
#define HSPI_PIN_NUM_CS HSPI_IOMUX_PIN_NUM_CS
|
|
|
|
#define VSPI_PIN_NUM_MOSI VSPI_IOMUX_PIN_NUM_MOSI
|
|
#define VSPI_PIN_NUM_MISO VSPI_IOMUX_PIN_NUM_MISO
|
|
#define VSPI_PIN_NUM_CLK VSPI_IOMUX_PIN_NUM_CLK
|
|
#define VSPI_PIN_NUM_HD VSPI_IOMUX_PIN_NUM_HD
|
|
#define VSPI_PIN_NUM_WP VSPI_IOMUX_PIN_NUM_WP
|
|
#define VSPI_PIN_NUM_CS VSPI_IOMUX_PIN_NUM_CS
|
|
|
|
#elif CONFIG_IDF_TARGET_ESP32S2
|
|
#define SPI1_CS_IO 26 //the pin which is usually used by the PSRAM cs
|
|
#define SPI1_HD_IO 27 //the pin which is usually used by the PSRAM hd
|
|
#define SPI1_WP_IO 28 //the pin which is usually used by the PSRAM wp
|
|
|
|
#define FSPI_PIN_NUM_MOSI 35
|
|
#define FSPI_PIN_NUM_MISO 37
|
|
#define FSPI_PIN_NUM_CLK 36
|
|
#define FSPI_PIN_NUM_HD 33
|
|
#define FSPI_PIN_NUM_WP 38
|
|
#define FSPI_PIN_NUM_CS 34
|
|
|
|
// Just use the same pins for HSPI
|
|
#define HSPI_PIN_NUM_MOSI FSPI_PIN_NUM_MOSI
|
|
#define HSPI_PIN_NUM_MISO FSPI_PIN_NUM_MISO
|
|
#define HSPI_PIN_NUM_CLK FSPI_PIN_NUM_CLK
|
|
#define HSPI_PIN_NUM_HD FSPI_PIN_NUM_HD
|
|
#define HSPI_PIN_NUM_WP FSPI_PIN_NUM_WP
|
|
#define HSPI_PIN_NUM_CS FSPI_PIN_NUM_CS
|
|
|
|
#elif CONFIG_IDF_TARGET_ESP32S3
|
|
#define SPI1_CS_IO 26 //the pin which is usually used by the PSRAM cs
|
|
#define SPI1_HD_IO 27 //the pin which is usually used by the PSRAM hd
|
|
#define SPI1_WP_IO 28 //the pin which is usually used by the PSRAM wp
|
|
|
|
#define FSPI_PIN_NUM_MOSI 35
|
|
#define FSPI_PIN_NUM_MISO 37
|
|
#define FSPI_PIN_NUM_CLK 36
|
|
#define FSPI_PIN_NUM_HD 33
|
|
#define FSPI_PIN_NUM_WP 38
|
|
#define FSPI_PIN_NUM_CS 34
|
|
|
|
// Just use the same pins for HSPI
|
|
#define HSPI_PIN_NUM_MOSI FSPI_PIN_NUM_MOSI
|
|
#define HSPI_PIN_NUM_MISO FSPI_PIN_NUM_MISO
|
|
#define HSPI_PIN_NUM_CLK FSPI_PIN_NUM_CLK
|
|
#define HSPI_PIN_NUM_HD FSPI_PIN_NUM_HD
|
|
#define HSPI_PIN_NUM_WP FSPI_PIN_NUM_WP
|
|
#define HSPI_PIN_NUM_CS FSPI_PIN_NUM_CS
|
|
|
|
#elif CONFIG_IDF_TARGET_ESP32C3
|
|
#define SPI1_CS_IO 26 //the pin which is usually used by the PSRAM cs
|
|
#define SPI1_HD_IO 27 //the pin which is usually used by the PSRAM hd
|
|
#define SPI1_WP_IO 28 //the pin which is usually used by the PSRAM wp
|
|
|
|
#define FSPI_PIN_NUM_MOSI 7
|
|
#define FSPI_PIN_NUM_MISO 2
|
|
#define FSPI_PIN_NUM_CLK 6
|
|
#define FSPI_PIN_NUM_HD 4
|
|
#define FSPI_PIN_NUM_WP 5
|
|
#define FSPI_PIN_NUM_CS 10
|
|
|
|
// Just use the same pins for HSPI
|
|
#define HSPI_PIN_NUM_MOSI FSPI_PIN_NUM_MOSI
|
|
#define HSPI_PIN_NUM_MISO FSPI_PIN_NUM_MISO
|
|
#define HSPI_PIN_NUM_CLK FSPI_PIN_NUM_CLK
|
|
#define HSPI_PIN_NUM_HD FSPI_PIN_NUM_HD
|
|
#define HSPI_PIN_NUM_WP FSPI_PIN_NUM_WP
|
|
#define HSPI_PIN_NUM_CS FSPI_PIN_NUM_CS
|
|
#endif
|
|
|
|
#define TEST_CONFIG_NUM (sizeof(config_list)/sizeof(flashtest_config_t))
|
|
|
|
typedef void (*flash_test_func_t)(const esp_partition_t *part);
|
|
|
|
/* Use FLASH_TEST_CASE for SPI flash tests that only use the main SPI flash chip
|
|
*/
|
|
#define FLASH_TEST_CASE(STR, FUNC_TO_RUN) \
|
|
TEST_CASE(STR, "[esp_flash]") {flash_test_func(FUNC_TO_RUN, 1 /* first index reserved for main flash */ );}
|
|
|
|
#define FLASH_TEST_CASE_IGNORE(STR, FUNC_TO_RUN) \
|
|
TEST_CASE(STR, "[esp_flash][ignore]") {flash_test_func(FUNC_TO_RUN, 1 /* first index reserved for main flash */ );}
|
|
|
|
/* Use FLASH_TEST_CASE_3 for tests which also run on external flash, which sits in the place of PSRAM
|
|
(these tests are incompatible with PSRAM)
|
|
|
|
These tests run for all the flash chip configs shown in config_list, below (internal and external).
|
|
*/
|
|
#if defined(CONFIG_SPIRAM)
|
|
|
|
#define FLASH_TEST_CASE_3(STR, FUNCT_TO_RUN)
|
|
#define FLASH_TEST_CASE_3_IGNORE(STR, FUNCT_TO_RUN)
|
|
#else //CONFIG_SPIRAM
|
|
#if !CONFIG_IDF_TARGET_ESP32C3
|
|
#define FLASH_TEST_CASE_3(STR, FUNC_TO_RUN) \
|
|
TEST_CASE(STR", 3 chips", "[esp_flash_3][test_env=UT_T1_ESP_FLASH]") {flash_test_func(FUNC_TO_RUN, TEST_CONFIG_NUM);}
|
|
|
|
#define FLASH_TEST_CASE_3_IGNORE(STR, FUNC_TO_RUN) \
|
|
TEST_CASE(STR", 3 chips", "[esp_flash_3][test_env=UT_T1_ESP_FLASH][ignore]") {flash_test_func(FUNC_TO_RUN, TEST_CONFIG_NUM);}
|
|
#else //CONFIG_IDF_TARGET_ESP32C3
|
|
#define FLASH_TEST_CASE_3(STR, FUNC_TO_RUN) \
|
|
TEST_CASE(STR", 2 chips", "[esp_flash_2][test_env=UT_T1_ESP_FLASH]") {flash_test_func(FUNC_TO_RUN, TEST_CONFIG_NUM);}
|
|
|
|
#define FLASH_TEST_CASE_3_IGNORE(STR, FUNC_TO_RUN) \
|
|
TEST_CASE(STR", 2 chips", "[esp_flash_2][test_env=UT_T1_ESP_FLASH][ignore]") {flash_test_func(FUNC_TO_RUN, TEST_CONFIG_NUM);}
|
|
#endif // !CONFIG_IDF_TARGET_ESP32C3
|
|
#endif //CONFIG_SPIRAM
|
|
|
|
//currently all the configs are the same with esp_flash_spi_device_config_t, no more information required
|
|
typedef esp_flash_spi_device_config_t flashtest_config_t;
|
|
|
|
static const char TAG[] = "test_esp_flash";
|
|
|
|
#define FLASHTEST_CONFIG_COMMON \
|
|
/* 0 always reserved for main flash */ \
|
|
{ \
|
|
/* no need to init */ \
|
|
.host_id = -1, \
|
|
} \
|
|
, \
|
|
{ \
|
|
.io_mode = TEST_SPI_READ_MODE,\
|
|
.speed = TEST_SPI_SPEED, \
|
|
.host_id = SPI1_HOST, \
|
|
.cs_id = 1, \
|
|
/* the pin which is usually used by the PSRAM */ \
|
|
.cs_io_num = SPI1_CS_IO, \
|
|
.input_delay_ns = 0, \
|
|
}
|
|
|
|
#if CONFIG_IDF_TARGET_ESP32
|
|
flashtest_config_t config_list[] = {
|
|
FLASHTEST_CONFIG_COMMON,
|
|
/* current runner doesn't have a flash on HSPI */
|
|
// {
|
|
// .io_mode = TEST_SPI_READ_MODE,
|
|
// .speed = TEST_SPI_SPEED,
|
|
// .host_id = HSPI_HOST,
|
|
// .cs_id = 0,
|
|
// // uses GPIO matrix on esp32s2 regardless if FORCE_GPIO_MATRIX
|
|
// .cs_io_num = HSPI_PIN_NUM_CS,
|
|
// .input_delay_ns = 20,
|
|
// },
|
|
{
|
|
.io_mode = TEST_SPI_READ_MODE,
|
|
.speed = TEST_SPI_SPEED,
|
|
.host_id = VSPI_HOST,
|
|
.cs_id = 0,
|
|
.cs_io_num = VSPI_PIN_NUM_CS,
|
|
.input_delay_ns = 0,
|
|
},
|
|
};
|
|
#elif CONFIG_IDF_TARGET_ESP32S2
|
|
flashtest_config_t config_list[] = {
|
|
FLASHTEST_CONFIG_COMMON,
|
|
{
|
|
.io_mode = TEST_SPI_READ_MODE,
|
|
.speed = TEST_SPI_SPEED,
|
|
.host_id = FSPI_HOST,
|
|
.cs_id = 0,
|
|
.cs_io_num = FSPI_PIN_NUM_CS,
|
|
.input_delay_ns = 0,
|
|
},
|
|
{
|
|
.io_mode = TEST_SPI_READ_MODE,
|
|
.speed = TEST_SPI_SPEED,
|
|
.host_id = HSPI_HOST,
|
|
.cs_id = 0,
|
|
// uses GPIO matrix on esp32s2 regardless of FORCE_GPIO_MATRIX
|
|
.cs_io_num = HSPI_PIN_NUM_CS,
|
|
.input_delay_ns = 0,
|
|
},
|
|
};
|
|
#elif CONFIG_IDF_TARGET_ESP32S3
|
|
flashtest_config_t config_list[] = {
|
|
FLASHTEST_CONFIG_COMMON,
|
|
/* No runners for esp32s3 for these config yet */
|
|
{
|
|
.io_mode = TEST_SPI_READ_MODE,
|
|
.speed = TEST_SPI_SPEED,
|
|
.host_id = SPI2_HOST,
|
|
.cs_id = 0,
|
|
.cs_io_num = FSPI_PIN_NUM_CS,
|
|
.input_delay_ns = 0,
|
|
},
|
|
};
|
|
#elif CONFIG_IDF_TARGET_ESP32C3
|
|
flashtest_config_t config_list[] = {
|
|
/* No SPI1 CS1 flash on esp32c3 test */
|
|
{
|
|
/* no need to init */
|
|
.host_id = -1,
|
|
},
|
|
{
|
|
.io_mode = TEST_SPI_READ_MODE,
|
|
.speed = TEST_SPI_SPEED,
|
|
.host_id = SPI2_HOST,
|
|
.cs_id = 0,
|
|
.cs_io_num = FSPI_PIN_NUM_CS,
|
|
.input_delay_ns = 0,
|
|
},
|
|
};
|
|
#endif
|
|
|
|
static void get_chip_host(esp_flash_t* chip, spi_host_device_t* out_host_id, int* out_cs_id)
|
|
{
|
|
spi_host_device_t host_id;
|
|
int cs_id;
|
|
if (chip == NULL) {
|
|
host_id = SPI1_HOST;
|
|
cs_id = 0;
|
|
} else {
|
|
spi_flash_hal_context_t* host_data = (spi_flash_hal_context_t*)chip->host;
|
|
host_id = spi_flash_ll_hw_get_id(host_data->spi);
|
|
cs_id = host_data->cs_num;
|
|
}
|
|
if (out_host_id) {
|
|
*out_host_id = host_id;
|
|
}
|
|
if (out_cs_id) {
|
|
*out_cs_id = cs_id;
|
|
}
|
|
}
|
|
|
|
#if CONFIG_IDF_TARGET_ESP32
|
|
static void setup_bus(spi_host_device_t host_id)
|
|
{
|
|
if (host_id == SPI1_HOST) {
|
|
ESP_LOGI(TAG, "setup flash on SPI1 CS1...\n");
|
|
//no need to initialize the bus, however the CLK may need one more output if it's on the usual place of PSRAM
|
|
esp_rom_gpio_connect_out_signal(EXTRA_SPI1_CLK_IO, SPICLK_OUT_IDX, 0, 0);
|
|
//currently the SPI bus for main flash chip is initialized through GPIO matrix
|
|
} else if (host_id == SPI2_HOST) {
|
|
ESP_LOGI(TAG, "setup flash on SPI%d (HSPI) CS0...\n", host_id + 1);
|
|
spi_bus_config_t hspi_bus_cfg = {
|
|
.mosi_io_num = HSPI_PIN_NUM_MOSI,
|
|
.miso_io_num = HSPI_PIN_NUM_MISO,
|
|
.sclk_io_num = HSPI_PIN_NUM_CLK,
|
|
.quadhd_io_num = HSPI_PIN_NUM_HD,
|
|
.quadwp_io_num = HSPI_PIN_NUM_WP,
|
|
.max_transfer_sz = 64,
|
|
};
|
|
esp_err_t ret = spi_bus_initialize(host_id, &hspi_bus_cfg, 0);
|
|
TEST_ESP_OK(ret);
|
|
} else if (host_id == SPI3_HOST) {
|
|
ESP_LOGI(TAG, "setup flash on SPI%d (VSPI) CS0...\n", host_id + 1);
|
|
spi_bus_config_t vspi_bus_cfg = {
|
|
.mosi_io_num = VSPI_PIN_NUM_MOSI,
|
|
.miso_io_num = VSPI_PIN_NUM_MISO,
|
|
.sclk_io_num = VSPI_PIN_NUM_CLK,
|
|
.quadhd_io_num = VSPI_PIN_NUM_HD,
|
|
.quadwp_io_num = VSPI_PIN_NUM_WP,
|
|
.max_transfer_sz = 64,
|
|
};
|
|
esp_err_t ret = spi_bus_initialize(host_id, &vspi_bus_cfg, 0);
|
|
TEST_ESP_OK(ret);
|
|
} else {
|
|
ESP_LOGE(TAG, "invalid bus");
|
|
}
|
|
}
|
|
#else // FOR ESP32-S2, ESP32-S3, ESP32-C3
|
|
static void setup_bus(spi_host_device_t host_id)
|
|
{
|
|
if (host_id == SPI1_HOST) {
|
|
ESP_LOGI(TAG, "setup flash on SPI1 CS1...\n");
|
|
#if !CONFIG_ESPTOOLPY_FLASHMODE_QIO && !CONFIG_ESPTOOLPY_FLASHMODE_QOUT
|
|
//Initialize the WP and HD pins, which are not automatically initialized on ESP32-S2.
|
|
int wp_pin = spi_periph_signal[host_id].spiwp_iomux_pin;
|
|
int hd_pin = spi_periph_signal[host_id].spihd_iomux_pin;
|
|
gpio_iomux_in(wp_pin, spi_periph_signal[host_id].spiwp_in);
|
|
gpio_iomux_out(wp_pin, spi_periph_signal[host_id].func, false);
|
|
gpio_iomux_in(hd_pin, spi_periph_signal[host_id].spihd_in);
|
|
gpio_iomux_out(hd_pin, spi_periph_signal[host_id].func, false);
|
|
#endif //CONFIG_ESPTOOLPY_FLASHMODE_QIO || CONFIG_ESPTOOLPY_FLASHMODE_QOUT
|
|
//currently the SPI bus for main flash chip is initialized through GPIO matrix
|
|
} else if (host_id == SPI2_HOST) {
|
|
ESP_LOGI(TAG, "setup flash on SPI%d (FSPI) CS0...\n", host_id + 1);
|
|
spi_bus_config_t fspi_bus_cfg = {
|
|
.mosi_io_num = FSPI_PIN_NUM_MOSI,
|
|
.miso_io_num = FSPI_PIN_NUM_MISO,
|
|
.sclk_io_num = FSPI_PIN_NUM_CLK,
|
|
.quadhd_io_num = FSPI_PIN_NUM_HD,
|
|
.quadwp_io_num = FSPI_PIN_NUM_WP,
|
|
.max_transfer_sz = 64,
|
|
};
|
|
esp_err_t ret = spi_bus_initialize(host_id, &fspi_bus_cfg, 0);
|
|
TEST_ESP_OK(ret);
|
|
} else if (host_id == SPI3_HOST) {
|
|
ESP_LOGI(TAG, "setup flash on SPI%d (HSPI) CS0...\n", host_id + 1);
|
|
spi_bus_config_t hspi_bus_cfg = {
|
|
.mosi_io_num = HSPI_PIN_NUM_MOSI,
|
|
.miso_io_num = HSPI_PIN_NUM_MISO,
|
|
.sclk_io_num = HSPI_PIN_NUM_CLK,
|
|
.quadhd_io_num = HSPI_PIN_NUM_HD,
|
|
.quadwp_io_num = HSPI_PIN_NUM_WP,
|
|
.max_transfer_sz = 64,
|
|
};
|
|
esp_err_t ret = spi_bus_initialize(host_id, &hspi_bus_cfg, 0);
|
|
TEST_ESP_OK(ret);
|
|
|
|
// HSPI have no multiline mode, use GPIO to pull those pins up
|
|
gpio_set_direction(HSPI_PIN_NUM_HD, GPIO_MODE_OUTPUT);
|
|
gpio_set_level(HSPI_PIN_NUM_HD, 1);
|
|
|
|
gpio_set_direction(HSPI_PIN_NUM_WP, GPIO_MODE_OUTPUT);
|
|
gpio_set_level(HSPI_PIN_NUM_WP, 1);
|
|
} else {
|
|
ESP_LOGE(TAG, "invalid bus");
|
|
}
|
|
}
|
|
#endif // CONFIG_IDF_TARGET_ESP32
|
|
|
|
static void release_bus(int host_id)
|
|
{
|
|
//SPI1 bus can't be deinitialized
|
|
if (host_id == SPI2_HOST || host_id == SPI3_HOST) {
|
|
spi_bus_free(host_id);
|
|
}
|
|
}
|
|
|
|
static void setup_new_chip(const flashtest_config_t* test_cfg, esp_flash_t** out_chip)
|
|
{
|
|
//the bus should be initialized before the flash is attached to the bus
|
|
if (test_cfg->host_id == -1) {
|
|
*out_chip = NULL;
|
|
return;
|
|
}
|
|
setup_bus(test_cfg->host_id);
|
|
|
|
esp_flash_spi_device_config_t dev_cfg = {
|
|
.host_id = test_cfg->host_id,
|
|
.io_mode = test_cfg->io_mode,
|
|
.speed = test_cfg->speed,
|
|
.cs_id = test_cfg->cs_id,
|
|
.cs_io_num = test_cfg->cs_io_num,
|
|
.input_delay_ns = test_cfg->input_delay_ns,
|
|
};
|
|
esp_flash_t* init_chip;
|
|
esp_err_t err = spi_bus_add_flash_device(&init_chip, &dev_cfg);
|
|
TEST_ESP_OK(err);
|
|
err = esp_flash_init(init_chip);
|
|
TEST_ESP_OK(err);
|
|
*out_chip = init_chip;
|
|
}
|
|
|
|
static void teardown_test_chip(esp_flash_t* chip)
|
|
{
|
|
spi_host_device_t host_id;
|
|
get_chip_host(chip, &host_id, NULL);
|
|
//happen to work when chip==NULL
|
|
spi_bus_remove_flash_device(chip);
|
|
release_bus(host_id);
|
|
}
|
|
|
|
static void flash_test_core(flash_test_func_t func, const flashtest_config_t* config)
|
|
{
|
|
esp_flash_t* chip;
|
|
setup_new_chip(config, &chip);
|
|
|
|
uint32_t size;
|
|
esp_err_t err = esp_flash_get_size(chip, &size);
|
|
TEST_ESP_OK(err);
|
|
ESP_LOGI(TAG, "Flash size: 0x%08X", size);
|
|
|
|
const esp_partition_t* test_part = get_test_data_partition();
|
|
TEST_ASSERT_NOT_EQUAL(NULL, test_part->flash_chip);
|
|
|
|
esp_partition_t part = *test_part;
|
|
part.flash_chip = chip;
|
|
|
|
ESP_LOGI(TAG, "Testing chip %p, address 0x%08X...", part.flash_chip, part.address);
|
|
(*func)(&part);
|
|
|
|
// For flash with size over 16MB, add one extra round of test for the 32-bit address area
|
|
if (size > MAX_ADDR_24BIT) {
|
|
part.address = 0x1030000;
|
|
part.size = 0x0010000;
|
|
ESP_LOGI(TAG, "Testing chip %p, address 0x%08X...", part.flash_chip, part.address);
|
|
(*func)(&part);
|
|
}
|
|
|
|
teardown_test_chip(chip);
|
|
}
|
|
|
|
static void flash_test_func(flash_test_func_t func, int test_num)
|
|
{
|
|
esp_log_level_set("gpio", ESP_LOG_NONE);
|
|
for (int i = 0; i < test_num; i++) {
|
|
ESP_LOGI(TAG, "Testing config %d/%d", i+1, test_num);
|
|
flash_test_core(func, &config_list[i]);
|
|
}
|
|
ESP_LOGI(TAG, "Completed %d configs", test_num);
|
|
}
|
|
|
|
/* ---------- Test code start ------------*/
|
|
|
|
static void test_metadata(const esp_partition_t* part)
|
|
{
|
|
esp_flash_t* chip = part->flash_chip;
|
|
uint32_t id, size;
|
|
TEST_ESP_OK(esp_flash_read_id(chip, &id));
|
|
TEST_ESP_OK(esp_flash_get_size(chip, &size));
|
|
printf("Flash ID %08x detected size %d bytes\n", id, size);
|
|
}
|
|
|
|
FLASH_TEST_CASE("SPI flash metadata functions", test_metadata);
|
|
FLASH_TEST_CASE_3("SPI flash metadata functions", test_metadata);
|
|
|
|
static uint32_t erase_test_region(const esp_partition_t *part, int num_sectors)
|
|
{
|
|
esp_flash_t* chip = part->flash_chip;
|
|
uint32_t offs = part->address;
|
|
|
|
/* chip should be initialised */
|
|
TEST_ASSERT(esp_flash_default_chip != NULL
|
|
&& esp_flash_chip_driver_initialized(esp_flash_default_chip));
|
|
|
|
TEST_ASSERT(num_sectors * 4096 <= part->size);
|
|
|
|
bzero(sector_buf, sizeof(sector_buf));
|
|
|
|
printf("Erase @ 0x%x...\n", offs);
|
|
TEST_ASSERT_EQUAL_HEX32(ESP_OK, esp_flash_erase_region(chip, offs, num_sectors * 4096) );
|
|
|
|
printf("Verify erased...\n");
|
|
for (int i = 0; i < num_sectors; i++) {
|
|
TEST_ASSERT_EQUAL_HEX32(ESP_OK, esp_flash_read(chip, sector_buf, offs + i * 4096, sizeof(sector_buf)));
|
|
|
|
printf("Buffer starts 0x%02x 0x%02x 0x%02x 0x%02x\n", sector_buf[0], sector_buf[1], sector_buf[2], sector_buf[3]);
|
|
for (int i = 0; i < sizeof(sector_buf); i++) {
|
|
TEST_ASSERT_EQUAL_HEX8(0xFF, sector_buf[i]);
|
|
}
|
|
}
|
|
|
|
return offs;
|
|
}
|
|
|
|
void test_simple_read_write(const esp_partition_t* part)
|
|
{
|
|
esp_flash_t* chip = part->flash_chip;
|
|
uint32_t offs = erase_test_region(part, 1);
|
|
|
|
const int test_seed = 778;
|
|
srand(test_seed);
|
|
for (int i = 0 ; i < sizeof(sector_buf); i++) {
|
|
sector_buf[i] = rand();
|
|
}
|
|
|
|
printf("Write %p...\n", (void *)offs);
|
|
TEST_ASSERT_EQUAL(ESP_OK, esp_flash_write(chip, sector_buf, offs, sizeof(sector_buf)) );
|
|
|
|
bzero(sector_buf, sizeof(sector_buf));
|
|
|
|
printf("Read back...\n");
|
|
TEST_ASSERT_EQUAL(ESP_OK, esp_flash_read(chip, sector_buf, offs, sizeof(sector_buf)) );
|
|
|
|
printf("Buffer starts 0x%02x 0x%02x 0x%02x 0x%02x\n", sector_buf[0], sector_buf[1], sector_buf[2], sector_buf[3]);
|
|
|
|
srand(test_seed);
|
|
for (int i = 0; i < sizeof(sector_buf); i++) {
|
|
uint8_t data = rand();
|
|
TEST_ASSERT_EQUAL_HEX8(data, sector_buf[i]);
|
|
}
|
|
}
|
|
|
|
FLASH_TEST_CASE("SPI flash simple read/write", test_simple_read_write);
|
|
FLASH_TEST_CASE_3("SPI flash simple read/write", test_simple_read_write);
|
|
|
|
void test_unaligned_read_write(const esp_partition_t* part)
|
|
{
|
|
esp_flash_t* chip = part->flash_chip;
|
|
uint32_t offs = erase_test_region(part, 2);
|
|
|
|
const char *msg = "i am a message";
|
|
TEST_ASSERT(strlen(msg) + 1 % 4 != 0);
|
|
TEST_ASSERT_EQUAL(ESP_OK, esp_flash_write(chip, msg, offs + 1, strlen(msg) + 1) );
|
|
|
|
char buf[strlen(msg) + 1];
|
|
|
|
memset(buf, 0xEE, sizeof(buf));
|
|
|
|
TEST_ASSERT_EQUAL(ESP_OK, esp_flash_read(chip, buf, offs + 1, strlen(msg) + 1) );
|
|
TEST_ASSERT_EQUAL_STRING_LEN(msg, buf, strlen(msg));
|
|
TEST_ASSERT(memcmp(buf, msg, strlen(msg) + 1) == 0);
|
|
}
|
|
|
|
FLASH_TEST_CASE("SPI flash unaligned read/write", test_unaligned_read_write);
|
|
FLASH_TEST_CASE_3("SPI flash unaligned read/write", test_unaligned_read_write);
|
|
|
|
void test_single_read_write(const esp_partition_t* part)
|
|
{
|
|
esp_flash_t* chip = part->flash_chip;
|
|
uint32_t offs = erase_test_region(part, 2);
|
|
|
|
const int seed = 699;
|
|
srand(seed);
|
|
for (unsigned v = 0; v < 512; v++) {
|
|
uint32_t data = rand();
|
|
TEST_ASSERT_EQUAL_HEX(ESP_OK, esp_flash_write(chip, &data, offs + v, 1) );
|
|
}
|
|
|
|
srand(seed);
|
|
for (unsigned v = 0; v < 512; v++) {
|
|
uint8_t readback;
|
|
uint32_t data = rand();
|
|
TEST_ASSERT_EQUAL_HEX(ESP_OK, esp_flash_read(chip, &readback, offs + v, 1) );
|
|
TEST_ASSERT_EQUAL_HEX8(data, readback);
|
|
}
|
|
}
|
|
|
|
FLASH_TEST_CASE("SPI flash single byte reads/writes", test_single_read_write);
|
|
FLASH_TEST_CASE_3("SPI flash single byte reads/writes", test_single_read_write);
|
|
|
|
|
|
/* this test is notable because it generates a lot of unaligned reads/writes,
|
|
and also reads/writes across both a sector boundary & many page boundaries.
|
|
*/
|
|
void test_three_byte_read_write(const esp_partition_t* part)
|
|
{
|
|
esp_flash_t* chip = part->flash_chip;
|
|
uint32_t offs = erase_test_region(part, 2);
|
|
|
|
const int seed = 700;
|
|
esp_rom_printf("offs:%X\n", offs);
|
|
|
|
srand(seed);
|
|
for (uint32_t v = 0; v < 86; v++) {
|
|
uint32_t data = rand();
|
|
TEST_ASSERT_EQUAL(ESP_OK, esp_flash_write(chip, &data, offs + 3 * v, 3) );
|
|
}
|
|
|
|
srand(seed);
|
|
for (uint32_t v = 0; v < 1; v++) {
|
|
uint32_t readback;
|
|
uint32_t data = rand();
|
|
TEST_ASSERT_EQUAL(ESP_OK, esp_flash_read(chip, &readback, offs + 3 * v, 3) );
|
|
TEST_ASSERT_EQUAL_HEX32(data & 0xFFFFFF, readback & 0xFFFFFF);
|
|
}
|
|
}
|
|
|
|
FLASH_TEST_CASE("SPI flash three byte reads/writes", test_three_byte_read_write);
|
|
FLASH_TEST_CASE_3("SPI flash three byte reads/writes", test_three_byte_read_write);
|
|
|
|
void test_erase_large_region(const esp_partition_t *part)
|
|
{
|
|
esp_flash_t* chip = part->flash_chip;
|
|
|
|
/* Write some noise at the start and the end of the region */
|
|
const char *ohai = "OHAI";
|
|
uint32_t readback;
|
|
TEST_ASSERT_EQUAL(ESP_OK, esp_flash_write(chip, ohai, part->address, 5));
|
|
TEST_ASSERT_EQUAL(ESP_OK, esp_flash_write(chip, ohai, part->address + part->size - 5, 5));
|
|
|
|
/* sanity check what we just wrote. since the partition may haven't been erased, we only check the part which is written to 0. */
|
|
uint32_t written_data = *((const uint32_t *)ohai);
|
|
TEST_ASSERT_EQUAL(ESP_OK, esp_flash_read(chip, &readback, part->address + part->size - 5, 4));
|
|
TEST_ASSERT_EQUAL_HEX32(0, readback & (~written_data));
|
|
TEST_ASSERT_EQUAL(ESP_OK, esp_flash_read(chip, &readback, part->address, 4));
|
|
TEST_ASSERT_EQUAL_HEX32(0, readback & (~written_data));
|
|
|
|
/* Erase zero bytes, check that nothing got erased */
|
|
TEST_ASSERT_EQUAL(ESP_OK, esp_flash_erase_region(chip, part->address, 0));
|
|
TEST_ASSERT_EQUAL(ESP_OK, esp_flash_read(chip, &readback, part->address + part->size - 5, 4));
|
|
TEST_ASSERT_EQUAL_HEX32(0, readback & (~written_data));
|
|
TEST_ASSERT_EQUAL(ESP_OK, esp_flash_read(chip, &readback, part->address, 4));
|
|
TEST_ASSERT_EQUAL_HEX32(0, readback & (~written_data));
|
|
|
|
/* Erase whole region */
|
|
TEST_ASSERT_EQUAL(ESP_OK, esp_flash_erase_region(chip, part->address, part->size));
|
|
|
|
/* ensure both areas we wrote are now all-FFs */
|
|
TEST_ASSERT_EQUAL(ESP_OK, esp_flash_read(chip, &readback, part->address, 4));
|
|
TEST_ASSERT_EQUAL_HEX32(0xFFFFFFFF, readback);
|
|
|
|
TEST_ASSERT_EQUAL(ESP_OK, esp_flash_read(chip, &readback, part->address + part->size - 5, 4));
|
|
TEST_ASSERT_EQUAL_HEX32(0xFFFFFFFF, readback);
|
|
}
|
|
|
|
FLASH_TEST_CASE("SPI flash erase large region", test_erase_large_region);
|
|
FLASH_TEST_CASE_3("SPI flash erase large region", test_erase_large_region);
|
|
|
|
#if CONFIG_SPI_FLASH_AUTO_SUSPEND
|
|
void esp_test_for_suspend(void)
|
|
{
|
|
/*clear content in cache*/
|
|
#if !CONFIG_IDF_TARGET_ESP32C3
|
|
Cache_Invalidate_DCache_All();
|
|
#endif
|
|
Cache_Invalidate_ICache_All();
|
|
ESP_LOGI(TAG, "suspend test begins:");
|
|
printf("run into test suspend function\n");
|
|
printf("print something when flash is erasing:\n");
|
|
printf("aaaaa bbbbb zzzzz fffff qqqqq ccccc\n");
|
|
}
|
|
|
|
static volatile bool task_erase_end, task_suspend_end = false;
|
|
void task_erase_large_region(void *arg)
|
|
{
|
|
esp_partition_t *part = (esp_partition_t *)arg;
|
|
test_erase_large_region(part);
|
|
task_erase_end = true;
|
|
vTaskDelete(NULL);
|
|
}
|
|
|
|
void task_request_suspend(void *arg)
|
|
{
|
|
vTaskDelay(2);
|
|
ESP_LOGI(TAG, "flash go into suspend");
|
|
esp_test_for_suspend();
|
|
task_suspend_end = true;
|
|
vTaskDelete(NULL);
|
|
}
|
|
|
|
static void test_flash_suspend_resume(const esp_partition_t* part)
|
|
{
|
|
xTaskCreatePinnedToCore(task_request_suspend, "suspend", 2048, (void *)"test_for_suspend", UNITY_FREERTOS_PRIORITY + 3, NULL, 0);
|
|
xTaskCreatePinnedToCore(task_erase_large_region, "test", 2048, (void *)part, UNITY_FREERTOS_PRIORITY + 2, NULL, 0);
|
|
while (!task_erase_end || !task_suspend_end) {
|
|
}
|
|
vTaskDelay(200);
|
|
}
|
|
|
|
FLASH_TEST_CASE("SPI flash suspend and resume test", test_flash_suspend_resume);
|
|
#endif //CONFIG_SPI_FLASH_AUTO_SUSPEND
|
|
|
|
static void test_write_protection(const esp_partition_t* part)
|
|
{
|
|
esp_flash_t* chip = part->flash_chip;
|
|
|
|
bool wp = true;
|
|
esp_err_t ret = ESP_OK;
|
|
ret = esp_flash_get_chip_write_protect(chip, &wp);
|
|
TEST_ESP_OK(ret);
|
|
|
|
for (int i = 0; i < 4; i ++) {
|
|
bool wp_write = !wp;
|
|
ret = esp_flash_set_chip_write_protect(chip, wp_write);
|
|
TEST_ESP_OK(ret);
|
|
|
|
bool wp_read;
|
|
ret = esp_flash_get_chip_write_protect(chip, &wp_read);
|
|
TEST_ESP_OK(ret);
|
|
TEST_ASSERT(wp_read == wp_write);
|
|
wp = wp_read;
|
|
}
|
|
}
|
|
|
|
FLASH_TEST_CASE("Test esp_flash can enable/disable write protetion", test_write_protection);
|
|
FLASH_TEST_CASE_3("Test esp_flash can enable/disable write protetion", test_write_protection);
|
|
|
|
static const uint8_t large_const_buffer[16400] = {
|
|
203, // first byte
|
|
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
|
|
21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37,
|
|
[50 ... 99] = 2,
|
|
[1600 ... 2000] = 3,
|
|
[8000 ... 9000] = 77,
|
|
[15000 ... 16398] = 8,
|
|
43 // last byte
|
|
};
|
|
|
|
static void test_write_large_buffer(const esp_partition_t *part, const uint8_t *source, size_t length);
|
|
static void write_large_buffer(const esp_partition_t *part, const uint8_t *source, size_t length);
|
|
static void read_and_check(const esp_partition_t *part, const uint8_t *source, size_t length);
|
|
|
|
// Internal functions for testing, from esp_flash_api.c
|
|
esp_err_t esp_flash_set_io_mode(esp_flash_t* chip, bool qe);
|
|
esp_err_t esp_flash_get_io_mode(esp_flash_t* chip, bool* qe);
|
|
esp_err_t esp_flash_read_chip_id(esp_flash_t* chip, uint32_t* flash_id);
|
|
esp_err_t spi_flash_chip_mxic_probe(esp_flash_t *chip, uint32_t flash_id);
|
|
|
|
static bool is_winbond_chip(esp_flash_t* chip)
|
|
{
|
|
uint32_t flash_id;
|
|
esp_err_t ret = esp_flash_read_chip_id(chip, &flash_id);
|
|
TEST_ESP_OK(ret);
|
|
if ((flash_id >> 16) == 0xEF) {
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static bool is_mxic_chip(esp_flash_t* chip)
|
|
{
|
|
uint32_t flash_id;
|
|
esp_err_t ret = esp_flash_read_chip_id(chip, &flash_id);
|
|
TEST_ESP_OK(ret);
|
|
return (spi_flash_chip_mxic_probe(chip, flash_id)==ESP_OK);
|
|
}
|
|
|
|
IRAM_ATTR NOINLINE_ATTR static void test_toggle_qe(const esp_partition_t* part)
|
|
{
|
|
esp_flash_t* chip = part->flash_chip;
|
|
|
|
bool qe;
|
|
if (chip == NULL) {
|
|
chip = esp_flash_default_chip;
|
|
}
|
|
esp_flash_io_mode_t io_mode_before = chip->read_mode;
|
|
esp_err_t ret = esp_flash_get_io_mode(chip, &qe);
|
|
TEST_ESP_OK(ret);
|
|
|
|
bool allow_failure = is_winbond_chip(chip) || is_mxic_chip(chip);
|
|
|
|
for (int i = 0; i < 4; i ++) {
|
|
esp_rom_printf(DRAM_STR("write qe: %d->%d\n"), qe, !qe);
|
|
qe = !qe;
|
|
chip->read_mode = qe? SPI_FLASH_QOUT: SPI_FLASH_SLOWRD;
|
|
ret = esp_flash_set_io_mode(chip, qe);
|
|
if (allow_failure && !qe && ret == ESP_ERR_FLASH_NO_RESPONSE) {
|
|
//allows clear qe failure for Winbond chips
|
|
ret = ESP_OK;
|
|
}
|
|
TEST_ESP_OK(ret);
|
|
|
|
bool qe_read;
|
|
ret = esp_flash_get_io_mode(chip, &qe_read);
|
|
TEST_ESP_OK(ret);
|
|
ESP_LOGD(TAG, "qe read: %d", qe_read);
|
|
if (!qe && qe_read) {
|
|
if (allow_failure) {
|
|
ESP_LOGW(TAG, "cannot clear QE bit for known permanent QE (Winbond or MXIC) chips.");
|
|
} else {
|
|
ESP_LOGE(TAG, "cannot clear QE bit, please make sure force clearing QE option is enabled in `spi_flash_common_set_io_mode`, and this chip is not a permanent QE one.");
|
|
}
|
|
chip->read_mode = io_mode_before;
|
|
return;
|
|
}
|
|
TEST_ASSERT_EQUAL(qe, qe_read);
|
|
}
|
|
//restore the io_mode after test
|
|
chip->read_mode = io_mode_before;
|
|
}
|
|
|
|
// These tests show whether the QE is permanent or not for the chip tested.
|
|
// To test the behaviour of a new SPI flash chip, enable force_check flag in generic driver
|
|
// `spi_flash_common_set_io_mode` and then run this test.
|
|
FLASH_TEST_CASE_IGNORE("Test esp_flash_write can toggle QE bit", test_toggle_qe);
|
|
FLASH_TEST_CASE_3_IGNORE("Test esp_flash_write can toggle QE bit", test_toggle_qe);
|
|
|
|
void test_permutations_part(const flashtest_config_t* config, esp_partition_t* part, void* source_buf, size_t length)
|
|
{
|
|
if (config->host_id != -1) {
|
|
esp_flash_speed_t speed = ESP_FLASH_SPEED_MIN;
|
|
while (speed != ESP_FLASH_SPEED_MAX) {
|
|
//test io_mode in the inner loop to test QE set/clear function, since
|
|
//the io mode will switch frequently.
|
|
esp_flash_io_mode_t io_mode = SPI_FLASH_READ_MODE_MIN;
|
|
while (io_mode != SPI_FLASH_READ_MODE_MAX) {
|
|
if (io_mode > SPI_FLASH_FASTRD &&
|
|
!SOC_SPI_PERIPH_SUPPORT_MULTILINE_MODE(config->host_id)) {
|
|
io_mode++;
|
|
continue;
|
|
}
|
|
|
|
esp_flash_t* chip;
|
|
flashtest_config_t temp_config = *config;
|
|
temp_config.io_mode = io_mode;
|
|
temp_config.speed = speed;
|
|
setup_new_chip(&temp_config, &chip);
|
|
ESP_LOGI(TAG, "test flash io mode: %d, speed: %d", io_mode, speed);
|
|
|
|
part->flash_chip = chip;
|
|
read_and_check(part, source_buf, length);
|
|
teardown_test_chip(chip);
|
|
|
|
io_mode++;
|
|
}
|
|
speed++;
|
|
}
|
|
} else {
|
|
//test main flash
|
|
part->flash_chip = NULL;
|
|
read_and_check(part, source_buf, length);
|
|
}
|
|
}
|
|
|
|
void test_permutations_chip(const flashtest_config_t* config)
|
|
{
|
|
esp_log_level_set("gpio", ESP_LOG_NONE);
|
|
esp_flash_t* chip;
|
|
flashtest_config_t temp_config = *config;
|
|
// Use the lowest speed to read configs, data and write data to make sure success
|
|
temp_config.io_mode = SPI_FLASH_READ_MODE_MIN;
|
|
temp_config.speed = ESP_FLASH_SPEED_MIN;
|
|
setup_new_chip(&temp_config, &chip);
|
|
|
|
//Get size to determine whether to test one extra partition
|
|
uint32_t size;
|
|
esp_err_t err = esp_flash_get_size(chip, &size);
|
|
TEST_ESP_OK(err);
|
|
ESP_LOGI(TAG, "Flash size: 0x%08X", size);
|
|
bool addr_32bit = (size > MAX_ADDR_24BIT);
|
|
|
|
// Get test partition, and locate temporary partitions according to the default one
|
|
const esp_partition_t* test_part = get_test_data_partition();
|
|
const int length = sizeof(large_const_buffer);
|
|
TEST_ASSERT(test_part->size > length + 2 + SPI_FLASH_SEC_SIZE);
|
|
|
|
esp_partition_t part[2] = {};
|
|
part[0] = *test_part;
|
|
part[0].flash_chip = chip;
|
|
// For flash with size over 16MB, add one extra round of test for the 32-bit address area
|
|
if (addr_32bit) {
|
|
part[1] = *test_part;
|
|
part[1].flash_chip = chip;
|
|
part[1].address = 0x1030000;
|
|
part[1].size = 0x0010000;
|
|
} else {
|
|
part[1].size = 0;
|
|
}
|
|
|
|
// Prepare test data and write to the specified region
|
|
uint8_t *source_buf = malloc(length);
|
|
TEST_ASSERT_NOT_NULL(source_buf);
|
|
srand(778);
|
|
for (int i = 0; i < length; i++) {
|
|
source_buf[i] = rand();
|
|
}
|
|
|
|
for (int i = 0; i < 2; i++) {
|
|
if (part[i].size == 0) continue;
|
|
write_large_buffer(&part[i], source_buf, length);
|
|
}
|
|
|
|
teardown_test_chip(chip);
|
|
|
|
for (int i = 0; i < 2; i++) {
|
|
if (part[i].size == 0) continue;
|
|
|
|
part[i].flash_chip = (esp_flash_t*)-1;
|
|
ESP_LOGI(TAG, "Testing address 0x%08X...", part[i].address);
|
|
test_permutations_part(config, &part[i], source_buf, length);
|
|
}
|
|
|
|
free(source_buf);
|
|
}
|
|
|
|
TEST_CASE("SPI flash test reading with all speed/mode permutations", "[esp_flash]")
|
|
{
|
|
test_permutations_chip(&config_list[0]);
|
|
}
|
|
|
|
#ifndef CONFIG_SPIRAM
|
|
TEST_CASE("SPI flash test reading with all speed/mode permutations, 3 chips", "[esp_flash_3][test_env=UT_T1_ESP_FLASH]")
|
|
{
|
|
for (int i = 0; i < TEST_CONFIG_NUM; i++) {
|
|
test_permutations_chip(&config_list[i]);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
|
|
static void test_write_large_const_buffer(const esp_partition_t* part)
|
|
{
|
|
test_write_large_buffer(part, large_const_buffer, sizeof(large_const_buffer));
|
|
}
|
|
|
|
FLASH_TEST_CASE("Test esp_flash_write large const buffer", test_write_large_const_buffer);
|
|
FLASH_TEST_CASE_3("Test esp_flash_write large const buffer", test_write_large_const_buffer);
|
|
|
|
static void test_write_large_ram_buffer(const esp_partition_t* part)
|
|
{
|
|
// buffer in RAM
|
|
uint8_t *source_buf = malloc(sizeof(large_const_buffer));
|
|
TEST_ASSERT_NOT_NULL(source_buf);
|
|
memcpy(source_buf, large_const_buffer, sizeof(large_const_buffer));
|
|
test_write_large_buffer(part, source_buf, sizeof(large_const_buffer));
|
|
free(source_buf);
|
|
}
|
|
|
|
FLASH_TEST_CASE("Test esp_flash_write large RAM buffer", test_write_large_ram_buffer);
|
|
FLASH_TEST_CASE_3("Test esp_flash_write large RAM buffer", test_write_large_ram_buffer);
|
|
|
|
static void write_large_buffer(const esp_partition_t *part, const uint8_t *source, size_t length)
|
|
{
|
|
esp_flash_t* chip = part->flash_chip;
|
|
printf("Writing chip %p %p, %d bytes from source %p\n", chip, (void*)part->address, length, source);
|
|
|
|
ESP_ERROR_CHECK( esp_flash_erase_region(chip, part->address, (length + SPI_FLASH_SEC_SIZE) & ~(SPI_FLASH_SEC_SIZE - 1)) );
|
|
|
|
// note writing to unaligned address
|
|
ESP_ERROR_CHECK( esp_flash_write(chip, source, part->address + 1, length) );
|
|
}
|
|
|
|
static void read_and_check(const esp_partition_t *part, const uint8_t *source, size_t length)
|
|
{
|
|
esp_flash_t* chip = part->flash_chip;
|
|
printf("Checking chip %p 0x%08X, %d bytes\n", chip, part->address, length);
|
|
uint8_t *buf = malloc(length);
|
|
TEST_ASSERT_NOT_NULL(buf);
|
|
ESP_ERROR_CHECK( esp_flash_read(chip, buf, part->address + 1, length) );
|
|
TEST_ASSERT_EQUAL_HEX8_ARRAY(source, buf, length);
|
|
free(buf);
|
|
|
|
// check nothing was written at beginning or end
|
|
uint8_t ends[8];
|
|
|
|
ESP_ERROR_CHECK( esp_flash_read(chip, ends, part->address, sizeof(ends)) );
|
|
TEST_ASSERT_EQUAL_HEX8(0xFF, ends[0]);
|
|
TEST_ASSERT_EQUAL_HEX8(source[0], ends[1]);
|
|
|
|
ESP_ERROR_CHECK( esp_flash_read(chip, ends, part->address + length, sizeof(ends)) );
|
|
|
|
TEST_ASSERT_EQUAL_HEX8(source[length - 1], ends[0]);
|
|
TEST_ASSERT_EQUAL_HEX8(0xFF, ends[1]);
|
|
TEST_ASSERT_EQUAL_HEX8(0xFF, ends[2]);
|
|
TEST_ASSERT_EQUAL_HEX8(0xFF, ends[3]);
|
|
}
|
|
|
|
static void test_write_large_buffer(const esp_partition_t* part, const uint8_t *source, size_t length)
|
|
{
|
|
TEST_ASSERT(part->size > length + 2 + SPI_FLASH_SEC_SIZE);
|
|
|
|
write_large_buffer(part, source, length);
|
|
read_and_check(part, source, length);
|
|
}
|
|
|
|
#if !CONFIG_SPIRAM
|
|
|
|
typedef struct {
|
|
uint32_t us_start;
|
|
size_t len;
|
|
const char* name;
|
|
} time_meas_ctx_t;
|
|
|
|
static void time_measure_start(time_meas_ctx_t* ctx)
|
|
{
|
|
ctx->us_start = esp_timer_get_time();
|
|
ccomp_timer_start();
|
|
}
|
|
|
|
static uint32_t time_measure_end(time_meas_ctx_t* ctx)
|
|
{
|
|
uint32_t c_time_us = ccomp_timer_stop();
|
|
uint32_t time_us = esp_timer_get_time() - ctx->us_start;
|
|
|
|
ESP_LOGI(TAG, "%s: compensated: %.2lf kB/s, typical: %.2lf kB/s", ctx->name, ctx->len / (c_time_us / 1000.), ctx->len / (time_us/1000.));
|
|
return ctx->len * 1000 / (c_time_us / 1000);
|
|
}
|
|
|
|
#define TEST_TIMES 20
|
|
#define TEST_SECTORS 4
|
|
|
|
static uint32_t measure_erase(const esp_partition_t* part)
|
|
{
|
|
const int total_len = SPI_FLASH_SEC_SIZE * TEST_SECTORS;
|
|
time_meas_ctx_t time_ctx = {.name = "erase", .len = total_len};
|
|
|
|
time_measure_start(&time_ctx);
|
|
esp_err_t err = esp_flash_erase_region(part->flash_chip, part->address, total_len);
|
|
TEST_ESP_OK(err);
|
|
return time_measure_end(&time_ctx);
|
|
}
|
|
|
|
// should called after measure_erase
|
|
static uint32_t measure_write(const char* name, const esp_partition_t* part, const uint8_t* data_to_write, int seg_len)
|
|
{
|
|
const int total_len = SPI_FLASH_SEC_SIZE;
|
|
time_meas_ctx_t time_ctx = {.name = name, .len = total_len * TEST_TIMES};
|
|
|
|
time_measure_start(&time_ctx);
|
|
for (int i = 0; i < TEST_TIMES; i ++) {
|
|
// Erase one time, but write 100 times the same data
|
|
size_t len = total_len;
|
|
int offset = 0;
|
|
|
|
while (len) {
|
|
int len_write = MIN(seg_len, len);
|
|
esp_err_t err = esp_flash_write(part->flash_chip, data_to_write + offset, part->address + offset, len_write);
|
|
TEST_ESP_OK(err);
|
|
|
|
offset += len_write;
|
|
len -= len_write;
|
|
}
|
|
}
|
|
return time_measure_end(&time_ctx);
|
|
}
|
|
|
|
static uint32_t measure_read(const char* name, const esp_partition_t* part, uint8_t* data_read, int seg_len)
|
|
{
|
|
const int total_len = SPI_FLASH_SEC_SIZE;
|
|
time_meas_ctx_t time_ctx = {.name = name, .len = total_len * TEST_TIMES};
|
|
|
|
time_measure_start(&time_ctx);
|
|
for (int i = 0; i < TEST_TIMES; i ++) {
|
|
size_t len = total_len;
|
|
int offset = 0;
|
|
|
|
while (len) {
|
|
int len_read = MIN(seg_len, len);
|
|
esp_err_t err = esp_flash_read(part->flash_chip, data_read + offset, part->address + offset, len_read);
|
|
TEST_ESP_OK(err);
|
|
|
|
offset += len_read;
|
|
len -= len_read;
|
|
}
|
|
}
|
|
return time_measure_end(&time_ctx);
|
|
}
|
|
|
|
static const char* get_chip_vendor(uint32_t id)
|
|
{
|
|
switch (id)
|
|
{
|
|
case 0x20:
|
|
return "XMC";
|
|
break;
|
|
case 0x68:
|
|
return "BOYA";
|
|
break;
|
|
case 0xC8:
|
|
return "GigaDevice";
|
|
break;
|
|
case 0x9D:
|
|
return "ISSI";
|
|
break;
|
|
case 0xC2:
|
|
return "MXIC";
|
|
break;
|
|
case 0xEF:
|
|
return "Winbond";
|
|
break;
|
|
case 0xA1:
|
|
return "Fudan Micro";
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return "generic";
|
|
}
|
|
|
|
#define MEAS_WRITE(n) (measure_write("write in "#n"-byte chunks", part, data_to_write, n))
|
|
#define MEAS_READ(n) (measure_read("read in "#n"-byte chunks", part, data_read, n))
|
|
|
|
static void test_flash_read_write_performance(const esp_partition_t *part)
|
|
{
|
|
esp_flash_t* chip = part->flash_chip;
|
|
const int total_len = SPI_FLASH_SEC_SIZE;
|
|
uint8_t *data_to_write = heap_caps_malloc(total_len, MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
|
|
uint8_t *data_read = heap_caps_malloc(total_len, MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
|
|
|
|
srand(777);
|
|
for (int i = 0; i < total_len; i++) {
|
|
data_to_write[i] = rand();
|
|
}
|
|
|
|
uint32_t erase_1 = measure_erase(part);
|
|
uint32_t speed_WR_4B = MEAS_WRITE(4);
|
|
uint32_t speed_RD_4B = MEAS_READ(4);
|
|
uint32_t erase_2 = measure_erase(part);
|
|
uint32_t speed_WR_2KB = MEAS_WRITE(2048);
|
|
uint32_t speed_RD_2KB = MEAS_READ(2048);
|
|
|
|
TEST_ASSERT_EQUAL_HEX8_ARRAY(data_to_write, data_read, total_len);
|
|
|
|
#define LOG_DATA(bus, suffix, chip) IDF_LOG_PERFORMANCE("FLASH_SPEED_BYTE_PER_SEC_"#bus#suffix, "%d, flash_chip: %s", speed_##suffix, chip)
|
|
#define LOG_ERASE(bus, var, chip) IDF_LOG_PERFORMANCE("FLASH_SPEED_BYTE_PER_SEC_"#bus"ERASE", "%d, flash_chip: %s", var, chip)
|
|
|
|
// Erase time may vary a lot, can increase threshold if this fails with a reasonable speed
|
|
#define LOG_PERFORMANCE(bus, chip) do {\
|
|
LOG_DATA(bus, WR_4B, chip); \
|
|
LOG_DATA(bus, RD_4B, chip); \
|
|
LOG_DATA(bus, WR_2KB, chip); \
|
|
LOG_DATA(bus, RD_2KB, chip); \
|
|
LOG_ERASE(bus, erase_1, chip); \
|
|
LOG_ERASE(bus, erase_2, chip); \
|
|
} while (0)
|
|
|
|
spi_host_device_t host_id;
|
|
int cs_id;
|
|
uint32_t id;
|
|
esp_flash_read_id(chip, &id);
|
|
const char *chip_name = get_chip_vendor(id >> 16);
|
|
|
|
get_chip_host(chip, &host_id, &cs_id);
|
|
if (host_id != SPI1_HOST) {
|
|
// Chips on other SPI buses
|
|
LOG_PERFORMANCE(EXT_, chip_name);
|
|
} else if (cs_id == 0) {
|
|
// Main flash
|
|
LOG_PERFORMANCE(,chip_name);
|
|
} else {
|
|
// Other cs pins on SPI1
|
|
LOG_PERFORMANCE(SPI1_, chip_name);
|
|
}
|
|
free(data_to_write);
|
|
free(data_read);
|
|
}
|
|
|
|
TEST_CASE("Test esp_flash read/write performance", "[esp_flash][test_env=UT_T1_ESP_FLASH]") {flash_test_func(test_flash_read_write_performance, 1);}
|
|
#endif // !CONFIG_SPIRAM
|
|
FLASH_TEST_CASE_3("Test esp_flash read/write performance"", 3 chips", test_flash_read_write_performance);
|
|
|
|
#ifdef CONFIG_SPIRAM_USE_MALLOC
|
|
|
|
/* Utility: Read into a small internal RAM buffer using esp_flash_read() and compare what
|
|
we read with 'buffer' */
|
|
static void s_test_compare_flash_contents_small_reads(esp_flash_t *chip, const uint8_t *buffer, size_t offs, size_t len)
|
|
{
|
|
const size_t INTERNAL_BUF_SZ = 1024; // Should fit in internal RAM
|
|
uint8_t *ibuf = heap_caps_malloc(INTERNAL_BUF_SZ, MALLOC_CAP_8BIT|MALLOC_CAP_INTERNAL);
|
|
TEST_ASSERT_NOT_NULL(ibuf);
|
|
|
|
for (int i = 0; i < len; i += INTERNAL_BUF_SZ) {
|
|
size_t to_read = MIN(INTERNAL_BUF_SZ, len - i);
|
|
ESP_ERROR_CHECK( esp_flash_read(chip, ibuf, offs + i, to_read) );
|
|
TEST_ASSERT_EQUAL_HEX8_ARRAY(buffer + i, ibuf, to_read);
|
|
}
|
|
|
|
free(ibuf);
|
|
}
|
|
|
|
static void test_flash_read_large_psram_buffer(const esp_partition_t *part)
|
|
{
|
|
esp_flash_t* chip = part->flash_chip;
|
|
const size_t BUF_SZ = 256 * 1024; // Too large for internal RAM
|
|
const size_t TEST_OFFS = 0x1000; // Can be any offset, really
|
|
|
|
uint8_t *buf = heap_caps_malloc(BUF_SZ, MALLOC_CAP_8BIT|MALLOC_CAP_SPIRAM);
|
|
TEST_ASSERT_NOT_NULL(buf);
|
|
|
|
ESP_ERROR_CHECK( esp_flash_read(chip, buf, TEST_OFFS, BUF_SZ) );
|
|
|
|
// Read back the same into smaller internal memory buffer and check it all matches
|
|
s_test_compare_flash_contents_small_reads(chip, buf, TEST_OFFS, BUF_SZ);
|
|
|
|
free(buf);
|
|
}
|
|
|
|
FLASH_TEST_CASE("esp_flash_read large PSRAM buffer", test_flash_read_large_psram_buffer);
|
|
|
|
|
|
/* similar to above test, but perform it under memory pressure */
|
|
static void test_flash_read_large_psram_buffer_low_internal_mem(const esp_partition_t *part)
|
|
{
|
|
esp_flash_t* chip = part->flash_chip;
|
|
const size_t BUF_SZ = 256 * 1024; // Too large for internal RAM
|
|
const size_t REMAINING_INTERNAL = 1024; // Exhaust internal memory until maximum free block is less than this
|
|
const size_t TEST_OFFS = 0x8000;
|
|
|
|
/* Exhaust the available free internal memory */
|
|
test_utils_exhaust_memory_rec erec = test_utils_exhaust_memory(MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT, REMAINING_INTERNAL);
|
|
|
|
uint8_t *buf = heap_caps_malloc(BUF_SZ, MALLOC_CAP_8BIT|MALLOC_CAP_SPIRAM);
|
|
TEST_ASSERT_NOT_NULL(buf);
|
|
|
|
/* Calling esp_flash_read() here will need to allocate a small internal buffer,
|
|
so check it works. */
|
|
ESP_ERROR_CHECK( esp_flash_read(chip, buf, TEST_OFFS, BUF_SZ) );
|
|
|
|
test_utils_free_exhausted_memory(erec);
|
|
|
|
// Read back the same into smaller internal memory buffer and check it all matches
|
|
s_test_compare_flash_contents_small_reads(chip, buf, TEST_OFFS, BUF_SZ);
|
|
|
|
free(buf);
|
|
}
|
|
|
|
FLASH_TEST_CASE("esp_flash_read large PSRAM buffer low memory", test_flash_read_large_psram_buffer_low_internal_mem);
|
|
|
|
|
|
#endif
|