esp-idf/components/efuse/esp32/include/esp_efuse.h
Konstantin Kondrashov f339b3fc96 efuse(esp32): Deprecate esp_efuse_burn_new_values() & esp_efuse_write_random_key()
These functions were used only for esp32 in secure_boot and flash encryption.
Use idf efuse APIs instead of efuse regs.
2021-06-17 07:21:36 +08:00

115 lines
4.3 KiB
C

/*
* SPDX-FileCopyrightText: 2019-2021 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#pragma once
#include <esp_types.h>
#include <esp_err.h>
#ifdef __cplusplus
extern "C" {
#endif
/**
* @brief Type of eFuse blocks for ESP32
*/
typedef enum {
EFUSE_BLK0 = 0, /**< Number of eFuse block. Reserved. */
EFUSE_BLK1 = 1, /**< Number of eFuse block. Used for Flash Encryption. If not using that Flash Encryption feature, they can be used for another purpose. */
EFUSE_BLK_KEY0 = 1, /**< Number of eFuse block. Used for Flash Encryption. If not using that Flash Encryption feature, they can be used for another purpose. */
EFUSE_BLK_ENCRYPT_FLASH = 1, /**< Number of eFuse block. Used for Flash Encryption. If not using that Flash Encryption feature, they can be used for another purpose. */
EFUSE_BLK2 = 2, /**< Number of eFuse block. Used for Secure Boot. If not using that Secure Boot feature, they can be used for another purpose. */
EFUSE_BLK_KEY1 = 2, /**< Number of eFuse block. Used for Secure Boot. If not using that Secure Boot feature, they can be used for another purpose. */
EFUSE_BLK_SECURE_BOOT = 2, /**< Number of eFuse block. Used for Secure Boot. If not using that Secure Boot feature, they can be used for another purpose. */
EFUSE_BLK3 = 3, /**< Number of eFuse block. Uses for the purpose of the user. */
EFUSE_BLK_KEY2 = 3, /**< Number of eFuse block. Uses for the purpose of the user. */
EFUSE_BLK_KEY_MAX = 4,
EFUSE_BLK_MAX = 4,
} esp_efuse_block_t;
/**
* @brief Type of coding scheme
*/
typedef enum {
EFUSE_CODING_SCHEME_NONE = 0, /**< None */
EFUSE_CODING_SCHEME_3_4 = 1, /**< 3/4 coding */
EFUSE_CODING_SCHEME_REPEAT = 2, /**< Repeat coding */
} esp_efuse_coding_scheme_t;
/**
* @brief Type of key purpose (virtual because ESP32 has only fixed purposes for blocks)
*/
typedef enum {
ESP_EFUSE_KEY_PURPOSE_USER = 0, /**< BLOCK3 */
ESP_EFUSE_KEY_PURPOSE_SYSTEM = 1, /**< BLOCK0 */
ESP_EFUSE_KEY_PURPOSE_FLASH_ENCRYPTION = 2, /**< BLOCK1 */
ESP_EFUSE_KEY_PURPOSE_SECURE_BOOT_V2 = 3, /**< BLOCK2 */
ESP_EFUSE_KEY_PURPOSE_MAX, /**< MAX PURPOSE*/
} esp_efuse_purpose_t;
/**
* @brief Permanently update values written to the efuse write registers
*
* After updating EFUSE_BLKx_WDATAx_REG registers with new values to
* write, call this function to permanently write them to efuse.
*
* @note Setting bits in efuse is permanent, they cannot be unset.
*
* @note Due to this restriction you don't need to copy values to
* Efuse write registers from the matching read registers, bits which
* are set in the read register but unset in the matching write
* register will be unchanged when new values are burned.
*
* @note This function is not threadsafe, if calling code updates
* efuse values from multiple tasks then this is caller's
* responsibility to serialise.
*
* @deprecated Use the batch mode instead of directly call the burn command.
*
* After burning new efuses, the read registers are updated to match
* the new efuse values.
*/
void esp_efuse_burn_new_values(void) __attribute__ ((deprecated));
/* @brief Write random data to efuse key block write registers
*
* @note Caller is responsible for ensuring efuse
* block is empty and not write protected, before calling.
*
* @note Behaviour depends on coding scheme: a 256-bit key is
* generated and written for Coding Scheme "None", a 192-bit key
* is generated, extended to 256-bits by the Coding Scheme,
* and then writtten for 3/4 Coding Scheme.
*
* @note This function does not burn the new values, caller should
* call esp_efuse_burn_new_values() when ready to do this.
*
* @deprecated Use the code below instead of this function:
*
* @code{c}
* uint32_t key[8];
* size_t key_size = 256;
* if (coding_scheme == EFUSE_CODING_SCHEME_3_4) {
* key_size = 192;
* }
* bootloader_fill_random(key, key_size / 8);
* esp_efuse_write_block(EFUSE_BLK1, key, 0, key_size);
* @endcode
*
* @param blk_wdata0_reg Address of the first data write register
* in the block
*/
void esp_efuse_write_random_key(uint32_t blk_wdata0_reg) __attribute__ ((deprecated));
#ifdef __cplusplus
}
#endif