esp-idf/components/driver/test/test_spi_slave_hd.c

596 lines
20 KiB
C

/*
Tests for the spi slave hd mode
*/
#include "esp_log.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/semphr.h"
#include "unity.h"
#include "soc/spi_periph.h"
#include "driver/spi_master.h"
#include "esp_serial_slave_link/essl_spi.h"
#if !DISABLED_FOR_TARGETS(ESP32C3)
//There is only one GPSPI controller on ESP32C3, so single-board test is disabled.
#if SOC_SPI_SUPPORT_SLAVE_HD_VER2
#include "driver/spi_slave_hd.h"
#include "esp_rom_gpio.h"
#include "unity.h"
#include "test/test_common_spi.h"
#define TEST_DMA_MAX_SIZE 4092
#define TEST_BUFFER_SIZE 256 ///< buffer size of each wrdma buffer in fifo mode
#define TEST_SEG_SIZE 25
//ESP32-S2 cannot do single board test over IOMUX+GPIO matrix
#define TEST_MASTER_GPIO_MATRIX 1
#define SPI_SLOT_TEST_DEFAULT_CONFIG() {\
.spics_io_num = PIN_NUM_CS, \
.flags = 0, \
.mode = 0, \
.command_bits = 8,\
.address_bits = 8,\
.dummy_bits = 8,\
.queue_size = 10,\
}
//context definition for the tcf framework
typedef struct {
WORD_ALIGNED_ATTR uint8_t master_wrdma_buf[TEST_DMA_MAX_SIZE];
WORD_ALIGNED_ATTR uint8_t master_rddma_buf[TEST_DMA_MAX_SIZE];
WORD_ALIGNED_ATTR uint8_t slave_wrdma_buf[TEST_DMA_MAX_SIZE];
WORD_ALIGNED_ATTR uint8_t slave_rddma_buf[TEST_DMA_MAX_SIZE];
SemaphoreHandle_t ev_rdbuf;
SemaphoreHandle_t ev_wrbuf;
spi_slave_hd_data_t tx_data;
spi_slave_hd_data_t rx_data;
} testhd_context_t;
static uint32_t get_hd_flags(void)
{
#if !defined(SLAVE_SUPPORT_QIO)
return 0;
#endif
int flag_id = rand() % 5;
ESP_LOGI("io mode", "%d", flag_id);
switch (flag_id) {
case 1:
return SPI_TRANS_MODE_DIO;
case 2:
return SPI_TRANS_MODE_DIO | SPI_TRANS_MODE_DIOQIO_ADDR;
case 3:
return SPI_TRANS_MODE_QIO;
case 4:
return SPI_TRANS_MODE_QIO | SPI_TRANS_MODE_DIOQIO_ADDR;
default:
return 0;
}
}
void config_single_board_test_pin(void)
{
esp_rom_gpio_connect_out_signal(PIN_NUM_MOSI, spi_periph_signal[TEST_SPI_HOST].spid_out, 0, 0);
esp_rom_gpio_connect_in_signal(PIN_NUM_MOSI, spi_periph_signal[TEST_SLAVE_HOST].spid_in, 0);
esp_rom_gpio_connect_out_signal(PIN_NUM_MISO, spi_periph_signal[TEST_SLAVE_HOST].spiq_out, 0, 0);
esp_rom_gpio_connect_in_signal(PIN_NUM_MISO, spi_periph_signal[TEST_SPI_HOST].spiq_in, 0);
esp_rom_gpio_connect_out_signal(PIN_NUM_CS, spi_periph_signal[TEST_SPI_HOST].spics_out[0], 0, 0);
esp_rom_gpio_connect_in_signal(PIN_NUM_CS, spi_periph_signal[TEST_SLAVE_HOST].spics_in, 0);
esp_rom_gpio_connect_out_signal(PIN_NUM_CLK, spi_periph_signal[TEST_SPI_HOST].spiclk_out, 0, 0);
esp_rom_gpio_connect_in_signal(PIN_NUM_CLK, spi_periph_signal[TEST_SLAVE_HOST].spiclk_in, 0);
}
static void init_master_hd(spi_device_handle_t* spi, const spitest_param_set_t* config, int freq)
{
spi_bus_config_t bus_cfg = SPI_BUS_TEST_DEFAULT_CONFIG();
bus_cfg.max_transfer_sz = TEST_DMA_MAX_SIZE*30;
bus_cfg.quadhd_io_num = PIN_NUM_HD;
bus_cfg.quadwp_io_num = PIN_NUM_WP;
#if defined(TEST_MASTER_GPIO_MATRIX) && CONFIG_IDF_TARGET_ESP32S2
bus_cfg.flags |= SPICOMMON_BUSFLAG_GPIO_PINS;
#endif
TEST_ESP_OK(spi_bus_initialize(TEST_SPI_HOST, &bus_cfg, SPI_DMA_CH_AUTO));
spi_device_interface_config_t dev_cfg = SPI_DEVICE_TEST_DEFAULT_CONFIG();
dev_cfg.flags = SPI_DEVICE_HALFDUPLEX;
dev_cfg.command_bits = 8;
dev_cfg.address_bits = 8;
dev_cfg.dummy_bits = 8;
dev_cfg.clock_speed_hz = freq;
dev_cfg.mode = config->mode;
dev_cfg.input_delay_ns = config->slave_tv_ns;
TEST_ESP_OK(spi_bus_add_device(TEST_SPI_HOST, &dev_cfg, spi));
}
static void init_slave_hd(int mode, bool append_mode, const spi_slave_hd_callback_config_t* callback)
{
spi_bus_config_t bus_cfg = SPI_BUS_TEST_DEFAULT_CONFIG();
bus_cfg.max_transfer_sz = TEST_DMA_MAX_SIZE*30;
bus_cfg.quadwp_io_num = -1;
bus_cfg.quadhd_io_num = -1;
#ifdef TEST_SLAVE_GPIO_MATRIX
bus_cfg.flags |= SPICOMMON_BUSFLAG_FORCE_GPIO;
#endif
spi_slave_hd_slot_config_t slave_hd_cfg = SPI_SLOT_TEST_DEFAULT_CONFIG();
slave_hd_cfg.mode = mode;
slave_hd_cfg.dma_chan = SPI_DMA_CH_AUTO;
if (append_mode) {
slave_hd_cfg.flags |= SPI_SLAVE_HD_APPEND_MODE;
}
if (callback) {
slave_hd_cfg.cb_config = *callback;
} else {
slave_hd_cfg.cb_config = (spi_slave_hd_callback_config_t){};
}
TEST_ESP_OK(spi_slave_hd_init(TEST_SLAVE_HOST, &bus_cfg, &slave_hd_cfg));
}
static void test_hd_init(void** arg)
{
TEST_ASSERT(*arg==NULL);
*arg = heap_caps_malloc(sizeof(testhd_context_t), MALLOC_CAP_DMA);
assert(((int)arg%4)==0);
testhd_context_t* context = (testhd_context_t*)*arg;
TEST_ASSERT(context!=NULL);
context->ev_rdbuf = xSemaphoreCreateBinary();
context->ev_wrbuf = xSemaphoreCreateBinary();
}
static void test_hd_deinit(void* arg)
{
testhd_context_t *context = arg;
vSemaphoreDelete(context->ev_rdbuf);
vSemaphoreDelete(context->ev_wrbuf);
}
esp_err_t wait_wrbuf_sig(testhd_context_t* context, TickType_t wait)
{
BaseType_t r = xSemaphoreTake(context->ev_wrbuf, wait);
if (r==pdTRUE) {
return ESP_OK;
} else {
return ESP_ERR_TIMEOUT;
}
}
esp_err_t wait_rdbuf_sig(testhd_context_t* context, TickType_t wait)
{
BaseType_t r = xSemaphoreTake(context->ev_rdbuf, wait);
if (r==pdTRUE) {
return ESP_OK;
} else {
return ESP_ERR_TIMEOUT;
}
}
static void check_no_rx(testhd_context_t* context)
{
spi_slave_hd_data_t* ret_trans;
esp_err_t ret = spi_slave_hd_get_trans_res(TEST_SLAVE_HOST, SPI_SLAVE_CHAN_RX, &ret_trans, 0);
TEST_ASSERT_EQUAL(ESP_ERR_TIMEOUT, ret);
}
static void check_no_tx(testhd_context_t* context)
{
spi_slave_hd_data_t* ret_trans;
esp_err_t ret = spi_slave_hd_get_trans_res(TEST_SLAVE_HOST, SPI_SLAVE_CHAN_TX, &ret_trans, 0);
TEST_ASSERT_EQUAL(ESP_ERR_TIMEOUT, ret);
}
bool wrbuf_cb(void* arg, spi_slave_hd_event_t* ev, BaseType_t* awoken)
{
TEST_ASSERT_EQUAL(SPI_EV_BUF_RX, ev->event);
testhd_context_t* ctx = (testhd_context_t*)arg;
BaseType_t r = xSemaphoreGiveFromISR(ctx->ev_wrbuf, awoken);
TEST_ASSERT_TRUE(r);
return true;
}
bool rdbuf_cb(void* arg, spi_slave_hd_event_t* ev, BaseType_t* awoken)
{
TEST_ASSERT_EQUAL(SPI_EV_BUF_TX, ev->event);
testhd_context_t* ctx = (testhd_context_t*)arg;
BaseType_t r = xSemaphoreGiveFromISR(ctx->ev_rdbuf, awoken);
TEST_ASSERT_TRUE(r);
return true;
}
static void test_hd_start(spi_device_handle_t *spi, int freq, const spitest_param_set_t* cfg, testhd_context_t* ctx)
{
init_master_hd(spi, cfg, freq);
spi_slave_hd_callback_config_t callback = {
.cb_buffer_rx = wrbuf_cb,
.cb_buffer_tx = rdbuf_cb,
.arg = ctx,
};
init_slave_hd(cfg->mode, 0, &callback);
//when test with single board via same set of mosi, miso, clk and cs pins.
config_single_board_test_pin();
wait_wrbuf_sig(ctx, 0);
wait_rdbuf_sig(ctx, 0);
check_no_rx(ctx);
check_no_tx(ctx);
srand(9322);
for (int i = 0; i < TEST_DMA_MAX_SIZE; i++) ctx->slave_rddma_buf[i] = rand();
for (int i = 0; i < TEST_DMA_MAX_SIZE; i++) ctx->master_wrdma_buf[i] = rand();
int pos = rand() % TEST_DMA_MAX_SIZE;
int len = rand() % TEST_DMA_MAX_SIZE + 1;
if (pos + len > TEST_DMA_MAX_SIZE) len = TEST_DMA_MAX_SIZE - pos;
ESP_LOGI("rddma_load_len", "%d", len);
ctx->tx_data = (spi_slave_hd_data_t) {
.data = &ctx->slave_rddma_buf[pos],
.len = len,
};
esp_err_t err = spi_slave_hd_queue_trans(TEST_SLAVE_HOST, SPI_SLAVE_CHAN_TX, &ctx->tx_data, portMAX_DELAY);
TEST_ESP_OK(err);
ctx->rx_data = (spi_slave_hd_data_t) {
.data = ctx->slave_wrdma_buf,
.len = TEST_DMA_MAX_SIZE,
};
err = spi_slave_hd_queue_trans(TEST_SLAVE_HOST, SPI_SLAVE_CHAN_RX, &ctx->rx_data, portMAX_DELAY);
TEST_ESP_OK(err);
}
#define REG_REGION_SIZE SOC_SPI_MAXIMUM_BUFFER_SIZE
void check_no_signal(testhd_context_t* context)
{
vTaskDelay(1);
TEST_ASSERT(wait_wrbuf_sig(context, 0) == ESP_ERR_TIMEOUT);
TEST_ASSERT(wait_rdbuf_sig(context, 0) == ESP_ERR_TIMEOUT);
check_no_rx(context);
check_no_tx(context);
}
void test_wrdma(testhd_context_t* ctx, const spitest_param_set_t *cfg, spi_device_handle_t spi)
{
int pos = rand() % TEST_DMA_MAX_SIZE;
int len = rand() % TEST_DMA_MAX_SIZE+1;
if (pos+len > TEST_DMA_MAX_SIZE) len = TEST_DMA_MAX_SIZE - pos;
int test_seg_size = len;//TEST_SEG_SIZE;
ESP_LOGW("test_wrdma", "len: %d, seg_size: %d\n", len, test_seg_size);
TEST_ESP_OK(essl_spi_wrdma(spi, &ctx->master_wrdma_buf[pos], len, test_seg_size, get_hd_flags()));
spi_slave_hd_data_t* ret_trans;
esp_err_t ret = spi_slave_hd_get_trans_res(TEST_SLAVE_HOST, SPI_SLAVE_CHAN_RX, &ret_trans, portMAX_DELAY);
TEST_ESP_OK(ret);
TEST_ASSERT_EQUAL(&ctx->rx_data, ret_trans);
TEST_ASSERT_EQUAL(len, ret_trans->trans_len);
TEST_ASSERT_EQUAL_HEX8_ARRAY(&ctx->master_wrdma_buf[pos], ctx->slave_wrdma_buf, len);
ctx->rx_data = (spi_slave_hd_data_t) {
.data = ctx->slave_wrdma_buf,
.len = TEST_DMA_MAX_SIZE,
};
esp_err_t err = spi_slave_hd_queue_trans(TEST_SLAVE_HOST, SPI_SLAVE_CHAN_RX, &ctx->rx_data, portMAX_DELAY);
TEST_ESP_OK(err);
}
void test_rddma(testhd_context_t* ctx, const spitest_param_set_t* cfg, spi_device_handle_t spi)
{
uint8_t* data_expected = ctx->tx_data.data;
int len;
int test_seg_size;
len = ctx->tx_data.len;
test_seg_size = TEST_SEG_SIZE;
ESP_LOGW("test_rddma", "pos: %d, len: %d, slave_tx: %d, seg_size: %d\n", data_expected - ctx->slave_rddma_buf, len, ctx->tx_data.len, test_seg_size);
TEST_ESP_OK(essl_spi_rddma(spi, ctx->master_rddma_buf, len, test_seg_size, get_hd_flags()));
spi_slave_hd_data_t* ret_trans;
esp_err_t ret = spi_slave_hd_get_trans_res(TEST_SLAVE_HOST, SPI_SLAVE_CHAN_TX, &ret_trans, portMAX_DELAY);
TEST_ESP_OK(ret);
TEST_ASSERT_EQUAL(&ctx->tx_data, ret_trans);
spitest_cmp_or_dump(data_expected, ctx->master_rddma_buf, len);
int pos = rand() % TEST_DMA_MAX_SIZE;
len = rand() % TEST_DMA_MAX_SIZE+1;
if (pos + len > TEST_DMA_MAX_SIZE) len = TEST_DMA_MAX_SIZE - pos;
ctx->tx_data = (spi_slave_hd_data_t) {
.data = &ctx->slave_rddma_buf[pos],
.len = len,
};
esp_err_t err = spi_slave_hd_queue_trans(TEST_SLAVE_HOST, SPI_SLAVE_CHAN_TX, &ctx->tx_data, portMAX_DELAY);
TEST_ESP_OK(err);
}
static void test_hd_loop(const void* arg1, void* arg2)
{
const spitest_param_set_t *test_cfg = arg1;
testhd_context_t *context = arg2;
const int *timing_speed_array = test_cfg->freq_list;
ESP_LOGI(MASTER_TAG, "****************** %s ***************", test_cfg->pset_name);
for (int j = 0; ; j++) {
spi_device_handle_t spi;
const int freq = timing_speed_array[j];
if (freq==0) break;
if (test_cfg->freq_limit && freq > test_cfg->freq_limit) break;
ESP_LOGI(MASTER_TAG, "======> %dk", freq / 1000);
test_hd_start(&spi, freq, test_cfg, context);
uint8_t* mem_ptr;
uint8_t slave_mem[REG_REGION_SIZE];
uint8_t recv_buffer[REG_REGION_SIZE];
srand(123);
uint32_t mem[(REG_REGION_SIZE/4)];
for (int i = 0; i < (REG_REGION_SIZE/4); i++) {
mem[i] = rand();
}
mem_ptr = (uint8_t*)mem;
check_no_signal(context);
spi_slave_hd_write_buffer(TEST_SLAVE_HOST, 0, (uint8_t *) mem, SOC_SPI_MAXIMUM_BUFFER_SIZE);
srand(123);
for (int i = 0; i < (REG_REGION_SIZE/4); i++) {
TEST_ASSERT(mem[i] == rand());
}
check_no_signal(context);
test_rddma(context, test_cfg, spi);
for (int i = 0; i < 128; i ++) {
int pos = rand()%REG_REGION_SIZE;
int len = rand()%REG_REGION_SIZE+1;
if (len+pos>REG_REGION_SIZE) len = REG_REGION_SIZE-pos;
memset(recv_buffer, 0xcc, sizeof(recv_buffer));
check_no_signal(context);
test_wrdma(context, test_cfg, spi);
check_no_signal(context);
test_rddma(context, test_cfg, spi);
check_no_signal(context);
TEST_ESP_OK(essl_spi_rdbuf(spi, recv_buffer, pos, len, get_hd_flags()));
wait_rdbuf_sig(context, portMAX_DELAY);
ESP_LOGI("mem", "pos: %d, len: %d", pos, len);
// ESP_LOG_BUFFER_HEX("recv_buffer", recv_buffer, len);
// ESP_LOG_BUFFER_HEX("mem", &mem_ptr[pos], len);
TEST_ASSERT_EQUAL_HEX8_ARRAY(&mem_ptr[pos], recv_buffer, len);
}
check_no_signal(context);
//clear slave buffer
memset(mem, 0xcc, REG_REGION_SIZE);
memcpy(slave_mem, mem, REG_REGION_SIZE);
TEST_ESP_OK(essl_spi_wrbuf(spi, mem_ptr, 0, REG_REGION_SIZE, get_hd_flags()));
wait_wrbuf_sig(context, portMAX_DELAY);
TEST_ESP_OK(essl_spi_rdbuf(spi, recv_buffer, 0, REG_REGION_SIZE, get_hd_flags()));
wait_rdbuf_sig(context, portMAX_DELAY);
TEST_ASSERT_EQUAL_HEX8_ARRAY(slave_mem, recv_buffer, REG_REGION_SIZE);
srand(466);
for (int i = 0; i < 64; i ++) {
ESP_LOGI("temp_i", "^^^^^^^^^^^^^^^^ %d ^^^^^^^^^^", i);
for (int j = 0; j < (REG_REGION_SIZE/4); j++) {
mem[j] = rand();
}
for (int k = 0; k < 2; k++) {
int pos = rand() % REG_REGION_SIZE;
int len = rand() % REG_REGION_SIZE + 1;
if (len + pos > REG_REGION_SIZE) len = REG_REGION_SIZE - pos;
printf("pos: %d, len: %d\n", pos, len);
TEST_ESP_OK(essl_spi_wrbuf(spi, &mem_ptr[pos], pos, len, get_hd_flags()));
wait_wrbuf_sig(context, portMAX_DELAY);
memcpy(&slave_mem[pos], &mem_ptr[pos], len);
}
check_no_signal(context);
test_rddma(context, test_cfg, spi);
check_no_signal(context);
test_wrdma(context, test_cfg, spi);
TEST_ESP_OK(essl_spi_rdbuf(spi, recv_buffer, 0, REG_REGION_SIZE, get_hd_flags()));
wait_rdbuf_sig(context, portMAX_DELAY);
check_no_signal(context);
TEST_ASSERT_EQUAL_HEX8_ARRAY(&slave_mem, recv_buffer, REG_REGION_SIZE);
}
master_free_device_bus(spi);
spi_slave_hd_deinit(TEST_SLAVE_HOST);
}
}
static const ptest_func_t hd_test_func = {
.pre_test = test_hd_init,
.post_test = test_hd_deinit,
.loop = test_hd_loop,
.def_param = spitest_def_param,
};
#define TEST_SPI_HD(name, test_set) \
PARAM_GROUP_DECLARE(name, test_set) \
TEST_SINGLE_BOARD(name, test_set, "[spi][timeout=120]", &hd_test_func)
static int test_freq_hd[] = {
// 100*1000,
// SPI_MASTER_FREQ_10M, //maximum freq MISO stable before next latch edge
// SPI_MASTER_FREQ_20M, //maximum freq MISO stable before next latch edge
SPI_MASTER_FREQ_40M, //maximum freq MISO stable before next latch edge
0,
};
#define TEST_HD_IN_CONTINUOUS_MODE true
static spitest_param_set_t hd_conf[] = {
{ .pset_name = "MODE0",
.freq_list = test_freq_hd,
.dup = FULL_DUPLEX,
.master_iomux = false,
.slave_iomux = false,
.slave_tv_ns = TV_WITH_ESP_SLAVE,
.mode = 0,
},
{ .pset_name = "MODE1",
.freq_list = test_freq_hd,
.dup = FULL_DUPLEX,
.master_iomux = false,
.slave_iomux = false,
.slave_tv_ns = TV_WITH_ESP_SLAVE,
.mode = 1,
},
{ .pset_name = "MODE2",
.freq_list = test_freq_hd,
.dup = FULL_DUPLEX,
.master_iomux = false,
.slave_iomux = false,
.slave_tv_ns = TV_WITH_ESP_SLAVE,
.mode = 2,
},
{ .pset_name = "MODE3",
.freq_list = test_freq_hd,
.dup = FULL_DUPLEX,
.master_iomux = false,
.slave_iomux = false,
.slave_tv_ns = TV_WITH_ESP_SLAVE,
.mode = 3,
},
};
TEST_SPI_HD(HD, hd_conf);
/*
* When the previous transaction of master exceeds the length of slave prepared too long, the
* interrupt of slave will be triggered in side that transaction. In the ISR slave has to prepare
* for the next transaction, while the master is still sending the previous one.
*
* This test checks that the previous trans will not influence the data slave prepared for the next transaction.
*/
TEST_CASE("test spi slave hd segment mode, master too long", "[spi][spi_slv_hd]")
{
spi_device_handle_t spi;
spitest_param_set_t *cfg = &hd_conf[0];
int freq = 100*1000; // the frequency should be small enough for the slave to prepare new trans
init_master_hd(&spi, cfg, freq);
//no callback needed
init_slave_hd(cfg->mode, 0, NULL);
//Use GPIO matrix to connect signal of master and slave via same set of pins on one board.
config_single_board_test_pin();
const int send_buf_size = 1024;
WORD_ALIGNED_ATTR uint8_t* slave_send_buf = malloc(send_buf_size * 2);
WORD_ALIGNED_ATTR uint8_t* master_send_buf = malloc(send_buf_size * 2);
WORD_ALIGNED_ATTR uint8_t* slave_recv_buf = malloc(send_buf_size * 2);
WORD_ALIGNED_ATTR uint8_t* master_recv_buf = malloc(send_buf_size * 2);
memset(slave_recv_buf, 0xcc, send_buf_size * 2);
memset(master_recv_buf, 0xcc, send_buf_size * 2);
srand (939);
for (int i = 0; i< send_buf_size * 2; i++) {
master_send_buf[i] = rand();
slave_send_buf[i] = rand();
}
//make the first transaction short, so that the second one will be loaded while the master is
//still doing the first transaction.
int trans_len[] = {5, send_buf_size};
spi_slave_hd_data_t slave_trans[4] = {
//recv, the buffer size should be aligned to 4
{
.data = slave_recv_buf,
.len = (trans_len[0] + 3) & (~3),
},
{
.data = slave_recv_buf + send_buf_size,
.len = (trans_len[1] + 3) & (~3),
},
//send
{
.data = slave_send_buf,
.len = trans_len[0],
},
{
.data = slave_send_buf + send_buf_size,
.len = trans_len[1],
},
};
for (int i = 0; i < 2; i ++) {
TEST_ESP_OK(spi_slave_hd_queue_trans(TEST_SLAVE_HOST, SPI_SLAVE_CHAN_RX, &slave_trans[i], portMAX_DELAY));
}
for (int i = 2; i < 4; i ++) {
TEST_ESP_OK(spi_slave_hd_queue_trans(TEST_SLAVE_HOST, SPI_SLAVE_CHAN_TX, &slave_trans[i], portMAX_DELAY));
}
essl_spi_wrdma(spi, master_send_buf, send_buf_size, -1, 0);
essl_spi_wrdma(spi, master_send_buf + send_buf_size, send_buf_size, 5, 0);
essl_spi_rddma(spi, master_recv_buf, send_buf_size, -1, 0);
essl_spi_rddma(spi, master_recv_buf + send_buf_size, send_buf_size, 5, 0);
for (int i = 0; i < 2; i ++) {
spi_slave_hd_data_t *ret_trans;
TEST_ESP_OK(spi_slave_hd_get_trans_res(TEST_SLAVE_HOST, SPI_SLAVE_CHAN_RX, &ret_trans, portMAX_DELAY));
TEST_ASSERT(ret_trans == &slave_trans[i]);
TEST_ASSERT_EQUAL(slave_trans[i].len, ret_trans->trans_len);
}
for (int i = 2; i < 4; i ++) {
spi_slave_hd_data_t *ret_trans;
TEST_ESP_OK(spi_slave_hd_get_trans_res(TEST_SLAVE_HOST, SPI_SLAVE_CHAN_TX, &ret_trans, portMAX_DELAY));
TEST_ASSERT(ret_trans == &slave_trans[i]);
}
spitest_cmp_or_dump(slave_send_buf, master_recv_buf, trans_len[0]);
spitest_cmp_or_dump(slave_send_buf + send_buf_size, master_recv_buf + send_buf_size, trans_len[1]);
spitest_cmp_or_dump(master_send_buf, slave_recv_buf, trans_len[0]);
spitest_cmp_or_dump(master_send_buf + send_buf_size, slave_recv_buf + send_buf_size, trans_len[1]);
free(master_recv_buf);
free(slave_recv_buf);
free(master_send_buf);
free(slave_send_buf);
spi_slave_hd_deinit(TEST_SLAVE_HOST);
master_free_device_bus(spi);
}
#endif //SOC_SPI_SUPPORT_SLAVE_HD_VER2
#endif //#if !DISABLED_FOR_TARGETS(ESP32C3)