esp-idf/components/driver/test/test_spi_master.c

1564 lines
60 KiB
C

/*
Tests for the spi_master device driver
*/
#include <esp_types.h>
#include <stdio.h>
#include <stdlib.h>
#include <malloc.h>
#include <string.h>
#include "rom/ets_sys.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/semphr.h"
#include "freertos/queue.h"
#include "freertos/xtensa_api.h"
#include "unity.h"
#include "driver/spi_master.h"
#include "driver/spi_slave.h"
#include "soc/dport_reg.h"
#include "esp_heap_caps.h"
#include "esp_log.h"
#include "soc/spi_periph.h"
#include "freertos/ringbuf.h"
#include "soc/gpio_periph.h"
#include "sdkconfig.h"
#include "unity_config.h"
const static char TAG[] = "test_spi";
#define SPI_BUS_TEST_DEFAULT_CONFIG() {\
.miso_io_num=PIN_NUM_MISO, \
.mosi_io_num=PIN_NUM_MOSI,\
.sclk_io_num=PIN_NUM_CLK,\
.quadwp_io_num=-1,\
.quadhd_io_num=-1\
}
#define SPI_DEVICE_TEST_DEFAULT_CONFIG() {\
.clock_speed_hz=10*1000*1000,\
.mode=0,\
.spics_io_num=PIN_NUM_CS,\
.queue_size=16,\
.pre_cb=NULL, \
.cs_ena_pretrans = 0,\
.cs_ena_posttrans = 0,\
.input_delay_ns = 62.5,\
}
#define FUNC_SPI 1
#define FUNC_GPIO 2
void gpio_output_sel(uint32_t gpio_num, int func, uint32_t signal_idx)
{
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[gpio_num], func);
GPIO.func_out_sel_cfg[gpio_num].func_sel=signal_idx;
}
static void check_spi_pre_n_for(int clk, int pre, int n)
{
esp_err_t ret;
spi_device_handle_t handle;
spi_device_interface_config_t devcfg={
.command_bits=0,
.address_bits=0,
.dummy_bits=0,
.clock_speed_hz=clk,
.duty_cycle_pos=128,
.mode=0,
.spics_io_num=21,
.queue_size=3
};
char sendbuf[16]="";
spi_transaction_t t;
memset(&t, 0, sizeof(t));
ret=spi_bus_add_device(HSPI_HOST, &devcfg, &handle);
TEST_ASSERT(ret==ESP_OK);
t.length=16*8;
t.tx_buffer=sendbuf;
ret=spi_device_transmit(handle, &t);
printf("Checking clk rate %dHz. expect pre %d n %d, got pre %d n %d\n", clk, pre, n, SPI2.clock.clkdiv_pre+1, SPI2.clock.clkcnt_n+1);
TEST_ASSERT(SPI2.clock.clkcnt_n+1==n);
TEST_ASSERT(SPI2.clock.clkdiv_pre+1==pre);
ret=spi_bus_remove_device(handle);
TEST_ASSERT(ret==ESP_OK);
}
TEST_CASE("SPI Master clockdiv calculation routines", "[spi]")
{
spi_bus_config_t buscfg={
.mosi_io_num=4,
.miso_io_num=26,
.sclk_io_num=25,
.quadwp_io_num=-1,
.quadhd_io_num=-1
};
esp_err_t ret;
ret=spi_bus_initialize(HSPI_HOST, &buscfg, 1);
TEST_ASSERT(ret==ESP_OK);
check_spi_pre_n_for(26000000, 1, 3);
check_spi_pre_n_for(20000000, 1, 4);
check_spi_pre_n_for(8000000, 1, 10);
check_spi_pre_n_for(800000, 2, 50);
check_spi_pre_n_for(100000, 16, 50);
check_spi_pre_n_for(333333, 4, 60);
check_spi_pre_n_for(900000, 2, 44);
check_spi_pre_n_for(1, 8192, 64); //Actually should generate the minimum clock speed, 152Hz
check_spi_pre_n_for(26000000, 1, 3);
ret=spi_bus_free(HSPI_HOST);
TEST_ASSERT(ret==ESP_OK);
}
static spi_device_handle_t setup_spi_bus(int clkspeed, bool dma) {
spi_bus_config_t buscfg={
.mosi_io_num=26,
.miso_io_num=26,
.sclk_io_num=25,
.quadwp_io_num=-1,
.quadhd_io_num=-1,
.max_transfer_sz=4096*3
};
spi_device_interface_config_t devcfg={
.command_bits=0,
.address_bits=0,
.dummy_bits=0,
.clock_speed_hz=clkspeed,
.duty_cycle_pos=128,
.mode=0,
.spics_io_num=21,
.queue_size=3,
};
esp_err_t ret;
spi_device_handle_t handle;
ret=spi_bus_initialize(HSPI_HOST, &buscfg, dma?1:0);
TEST_ASSERT(ret==ESP_OK);
ret=spi_bus_add_device(HSPI_HOST, &devcfg, &handle);
TEST_ASSERT(ret==ESP_OK);
//connect MOSI to two devices breaks the output, fix it.
gpio_output_sel(26, FUNC_GPIO, HSPID_OUT_IDX);
printf("Bus/dev inited.\n");
return handle;
}
static int spi_test(spi_device_handle_t handle, int num_bytes) {
esp_err_t ret;
int x;
bool success = true;
srand(num_bytes);
char *sendbuf=heap_caps_malloc((num_bytes+3)&(~3), MALLOC_CAP_DMA);
char *recvbuf=heap_caps_malloc((num_bytes+3)&(~3), MALLOC_CAP_DMA);
for (x=0; x<num_bytes; x++) {
sendbuf[x]=rand()&0xff;
recvbuf[x]=0x55;
}
spi_transaction_t t;
memset(&t, 0, sizeof(t));
t.length=num_bytes*8;
t.tx_buffer=sendbuf;
t.rx_buffer=recvbuf;
t.addr=0xA00000000000000FL;
t.cmd=0x55;
printf("Transmitting %d bytes...\n", num_bytes);
ret=spi_device_transmit(handle, &t);
TEST_ASSERT(ret==ESP_OK);
srand(num_bytes);
for (x=0; x<num_bytes; x++) {
if (sendbuf[x]!=(rand()&0xff)) {
printf("Huh? Sendbuf corrupted at byte %d\n", x);
TEST_ASSERT(0);
}
if (sendbuf[x]!=recvbuf[x]) break;
}
if (x!=num_bytes) {
int from=x-16;
if (from<0) from=0;
success = false;
printf("Error at %d! Sent vs recved: (starting from %d)\n" , x, from);
for (int i=0; i<32; i++) {
if (i+from<num_bytes) printf("%02X ", sendbuf[from+i]);
}
printf("\n");
for (int i=0; i<32; i++) {
if (i+from<num_bytes) printf("%02X ", recvbuf[from+i]);
}
printf("\n");
}
if (success) printf("Success!\n");
free(sendbuf);
free(recvbuf);
return success;
}
static void destroy_spi_bus(spi_device_handle_t handle) {
esp_err_t ret;
ret=spi_bus_remove_device(handle);
TEST_ASSERT(ret==ESP_OK);
ret=spi_bus_free(HSPI_HOST);
TEST_ASSERT(ret==ESP_OK);
}
#define TEST_LEN 111
TEST_CASE("SPI Master test", "[spi]")
{
bool success = true;
printf("Testing bus at 80KHz\n");
spi_device_handle_t handle=setup_spi_bus(80000, true);
success &= spi_test(handle, 16); //small
success &= spi_test(handle, 21); //small, unaligned
success &= spi_test(handle, 36); //aligned
success &= spi_test(handle, 128); //aligned
success &= spi_test(handle, 129); //unaligned
success &= spi_test(handle, 4096-2); //multiple descs, edge case 1
success &= spi_test(handle, 4096-1); //multiple descs, edge case 2
success &= spi_test(handle, 4096*3); //multiple descs
destroy_spi_bus(handle);
printf("Testing bus at 80KHz, non-DMA\n");
handle=setup_spi_bus(80000, false);
success &= spi_test(handle, 4); //aligned
success &= spi_test(handle, 16); //small
success &= spi_test(handle, 21); //small, unaligned
success &= spi_test(handle, 32); //small
success &= spi_test(handle, 47); //small, unaligned
success &= spi_test(handle, 63); //small
success &= spi_test(handle, 64); //small, unaligned
destroy_spi_bus(handle);
printf("Testing bus at 26MHz\n");
handle=setup_spi_bus(20000000, true);
success &= spi_test(handle, 128); //DMA, aligned
success &= spi_test(handle, 4096*3); //DMA, multiple descs
destroy_spi_bus(handle);
printf("Testing bus at 900KHz\n");
handle=setup_spi_bus(9000000, true);
success &= spi_test(handle, 128); //DMA, aligned
success &= spi_test(handle, 4096*3); //DMA, multiple descs
destroy_spi_bus(handle);
TEST_ASSERT(success);
}
TEST_CASE("SPI Master test, interaction of multiple devs", "[spi]") {
esp_err_t ret;
bool success = true;
spi_device_interface_config_t devcfg={
.command_bits=0,
.address_bits=0,
.dummy_bits=0,
.clock_speed_hz=1000000,
.duty_cycle_pos=128,
.mode=0,
.spics_io_num=23,
.queue_size=3,
};
spi_device_handle_t handle1=setup_spi_bus(80000, true);
spi_device_handle_t handle2;
spi_bus_add_device(HSPI_HOST, &devcfg, &handle2);
printf("Sending to dev 1\n");
success &= spi_test(handle1, 7);
printf("Sending to dev 1\n");
success &= spi_test(handle1, 15);
printf("Sending to dev 2\n");
success &= spi_test(handle2, 15);
printf("Sending to dev 1\n");
success &= spi_test(handle1, 32);
printf("Sending to dev 2\n");
success &= spi_test(handle2, 32);
printf("Sending to dev 1\n");
success &= spi_test(handle1, 63);
printf("Sending to dev 2\n");
success &= spi_test(handle2, 63);
printf("Sending to dev 1\n");
success &= spi_test(handle1, 5000);
printf("Sending to dev 2\n");
success &= spi_test(handle2, 5000);
ret=spi_bus_remove_device(handle2);
TEST_ASSERT(ret==ESP_OK);
destroy_spi_bus(handle1);
TEST_ASSERT(success);
}
TEST_CASE("spi bus setting with different pin configs", "[spi]")
{
spi_bus_config_t cfg;
uint32_t flags_o;
uint32_t flags_expected;
ESP_LOGI(TAG, "test 6 iomux output pins...");
flags_expected = SPICOMMON_BUSFLAG_SCLK | SPICOMMON_BUSFLAG_MOSI | SPICOMMON_BUSFLAG_MISO | SPICOMMON_BUSFLAG_NATIVE_PINS | SPICOMMON_BUSFLAG_QUAD;
cfg = (spi_bus_config_t){.mosi_io_num = HSPI_IOMUX_PIN_NUM_MOSI, .miso_io_num = HSPI_IOMUX_PIN_NUM_MISO, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = HSPI_IOMUX_PIN_NUM_HD, .quadwp_io_num = HSPI_IOMUX_PIN_NUM_WP,
.max_transfer_sz = 8, .flags = flags_expected};
TEST_ESP_OK(spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
TEST_ESP_OK(spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
ESP_LOGI(TAG, "test 4 iomux output pins...");
flags_expected = SPICOMMON_BUSFLAG_SCLK | SPICOMMON_BUSFLAG_MOSI | SPICOMMON_BUSFLAG_MISO | SPICOMMON_BUSFLAG_NATIVE_PINS | SPICOMMON_BUSFLAG_DUAL;
cfg = (spi_bus_config_t){.mosi_io_num = HSPI_IOMUX_PIN_NUM_MOSI, .miso_io_num = HSPI_IOMUX_PIN_NUM_MISO, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = -1, .quadwp_io_num = -1,
.max_transfer_sz = 8, .flags = flags_expected};
TEST_ESP_OK(spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
TEST_ESP_OK(spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
ESP_LOGI(TAG, "test 6 output pins...");
flags_expected = SPICOMMON_BUSFLAG_SCLK | SPICOMMON_BUSFLAG_MOSI | SPICOMMON_BUSFLAG_MISO | SPICOMMON_BUSFLAG_QUAD;
//swap MOSI and MISO
cfg = (spi_bus_config_t){.mosi_io_num = HSPI_IOMUX_PIN_NUM_MISO, .miso_io_num = HSPI_IOMUX_PIN_NUM_MOSI, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = HSPI_IOMUX_PIN_NUM_HD, .quadwp_io_num = HSPI_IOMUX_PIN_NUM_WP,
.max_transfer_sz = 8, .flags = flags_expected};
TEST_ESP_OK(spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
TEST_ESP_OK(spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
ESP_LOGI(TAG, "test 4 output pins...");
flags_expected = SPICOMMON_BUSFLAG_SCLK | SPICOMMON_BUSFLAG_MOSI | SPICOMMON_BUSFLAG_MISO | SPICOMMON_BUSFLAG_DUAL;
//swap MOSI and MISO
cfg = (spi_bus_config_t){.mosi_io_num = HSPI_IOMUX_PIN_NUM_MISO, .miso_io_num = HSPI_IOMUX_PIN_NUM_MOSI, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = -1, .quadwp_io_num = -1,
.max_transfer_sz = 8, .flags = flags_expected};
TEST_ESP_OK(spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
TEST_ESP_OK(spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
ESP_LOGI(TAG, "test master 5 output pins and MOSI on input-only pin...");
flags_expected = SPICOMMON_BUSFLAG_SCLK | SPICOMMON_BUSFLAG_MOSI | SPICOMMON_BUSFLAG_MISO | SPICOMMON_BUSFLAG_WPHD;
cfg = (spi_bus_config_t){.mosi_io_num = HSPI_IOMUX_PIN_NUM_MOSI, .miso_io_num = 34, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = HSPI_IOMUX_PIN_NUM_HD, .quadwp_io_num = HSPI_IOMUX_PIN_NUM_WP,
.max_transfer_sz = 8, .flags = flags_expected};
TEST_ESP_OK(spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
ESP_LOGI(TAG, "test slave 5 output pins and MISO on input-only pin...");
flags_expected = SPICOMMON_BUSFLAG_SCLK | SPICOMMON_BUSFLAG_MOSI | SPICOMMON_BUSFLAG_MISO | SPICOMMON_BUSFLAG_WPHD;
cfg = (spi_bus_config_t){.mosi_io_num = 34, .miso_io_num = HSPI_IOMUX_PIN_NUM_MISO, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = HSPI_IOMUX_PIN_NUM_HD, .quadwp_io_num = HSPI_IOMUX_PIN_NUM_WP,
.max_transfer_sz = 8, .flags = flags_expected};
TEST_ESP_OK(spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
ESP_LOGI(TAG, "test master 3 output pins and MOSI on input-only pin...");
flags_expected = SPICOMMON_BUSFLAG_SCLK | SPICOMMON_BUSFLAG_MOSI | SPICOMMON_BUSFLAG_MISO;
cfg = (spi_bus_config_t){.mosi_io_num = HSPI_IOMUX_PIN_NUM_MOSI, .miso_io_num = 34, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = -1, .quadwp_io_num = -1,
.max_transfer_sz = 8, .flags = flags_expected};
TEST_ESP_OK(spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
ESP_LOGI(TAG, "test slave 3 output pins and MISO on input-only pin...");
flags_expected = SPICOMMON_BUSFLAG_SCLK | SPICOMMON_BUSFLAG_MOSI | SPICOMMON_BUSFLAG_MISO;
cfg = (spi_bus_config_t){.mosi_io_num = 34, .miso_io_num = HSPI_IOMUX_PIN_NUM_MISO, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = -1, .quadwp_io_num = -1,
.max_transfer_sz = 8, .flags = flags_expected};
TEST_ESP_OK(spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
ESP_LOGI(TAG, "check native flag for 6 output pins...");
flags_expected = SPICOMMON_BUSFLAG_NATIVE_PINS;
//swap MOSI and MISO
cfg = (spi_bus_config_t){.mosi_io_num = HSPI_IOMUX_PIN_NUM_MISO, .miso_io_num = HSPI_IOMUX_PIN_NUM_MOSI, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = HSPI_IOMUX_PIN_NUM_HD, .quadwp_io_num = HSPI_IOMUX_PIN_NUM_WP,
.max_transfer_sz = 8, .flags = flags_expected};
TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
ESP_LOGI(TAG, "check native flag for 4 output pins...");
flags_expected = SPICOMMON_BUSFLAG_NATIVE_PINS;
//swap MOSI and MISO
cfg = (spi_bus_config_t){.mosi_io_num = HSPI_IOMUX_PIN_NUM_MISO, .miso_io_num = HSPI_IOMUX_PIN_NUM_MOSI, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = -1, .quadwp_io_num = -1,
.max_transfer_sz = 8, .flags = flags_expected};
TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
ESP_LOGI(TAG, "check dual flag for master 5 output pins and MISO/MOSI on input-only pin...");
flags_expected = SPICOMMON_BUSFLAG_DUAL;
cfg = (spi_bus_config_t){.mosi_io_num = HSPI_IOMUX_PIN_NUM_MOSI, .miso_io_num = 34, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = HSPI_IOMUX_PIN_NUM_HD, .quadwp_io_num = HSPI_IOMUX_PIN_NUM_WP,
.max_transfer_sz = 8, .flags = flags_expected};
TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
cfg = (spi_bus_config_t){.mosi_io_num = 34, .miso_io_num = HSPI_IOMUX_PIN_NUM_MISO, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = HSPI_IOMUX_PIN_NUM_HD, .quadwp_io_num = HSPI_IOMUX_PIN_NUM_WP,
.max_transfer_sz = 8, .flags = flags_expected};
TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
ESP_LOGI(TAG, "check dual flag for master 3 output pins and MISO/MOSI on input-only pin...");
flags_expected = SPICOMMON_BUSFLAG_DUAL;
cfg = (spi_bus_config_t){.mosi_io_num = HSPI_IOMUX_PIN_NUM_MOSI, .miso_io_num = 34, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = -1, .quadwp_io_num = -1,
.max_transfer_sz = 8, .flags = flags_expected};
TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
cfg = (spi_bus_config_t){.mosi_io_num = 34, .miso_io_num = HSPI_IOMUX_PIN_NUM_MISO, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = -1, .quadwp_io_num = -1,
.max_transfer_sz = 8, .flags = flags_expected};
TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
ESP_LOGI(TAG, "check sclk flag...");
flags_expected = SPICOMMON_BUSFLAG_SCLK;
cfg = (spi_bus_config_t){.mosi_io_num = HSPI_IOMUX_PIN_NUM_MOSI, .miso_io_num = HSPI_IOMUX_PIN_NUM_MISO, .sclk_io_num = -1, .quadhd_io_num = HSPI_IOMUX_PIN_NUM_HD, .quadwp_io_num = HSPI_IOMUX_PIN_NUM_WP,
.max_transfer_sz = 8, .flags = flags_expected};
TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
ESP_LOGI(TAG, "check mosi flag...");
flags_expected = SPICOMMON_BUSFLAG_MOSI;
cfg = (spi_bus_config_t){.mosi_io_num = -1, .miso_io_num = HSPI_IOMUX_PIN_NUM_MISO, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = HSPI_IOMUX_PIN_NUM_HD, .quadwp_io_num = HSPI_IOMUX_PIN_NUM_WP,
.max_transfer_sz = 8, .flags = flags_expected};
TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
ESP_LOGI(TAG, "check miso flag...");
flags_expected = SPICOMMON_BUSFLAG_MISO;
cfg = (spi_bus_config_t){.mosi_io_num = HSPI_IOMUX_PIN_NUM_MOSI, .miso_io_num = -1, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = HSPI_IOMUX_PIN_NUM_HD, .quadwp_io_num = HSPI_IOMUX_PIN_NUM_WP,
.max_transfer_sz = 8, .flags = flags_expected};
TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
ESP_LOGI(TAG, "check quad flag...");
flags_expected = SPICOMMON_BUSFLAG_QUAD;
cfg = (spi_bus_config_t){.mosi_io_num = HSPI_IOMUX_PIN_NUM_MOSI, .miso_io_num = HSPI_IOMUX_PIN_NUM_MISO, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = -1, .quadwp_io_num = HSPI_IOMUX_PIN_NUM_WP,
.max_transfer_sz = 8, .flags = flags_expected};
TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
cfg = (spi_bus_config_t){.mosi_io_num = HSPI_IOMUX_PIN_NUM_MOSI, .miso_io_num = HSPI_IOMUX_PIN_NUM_MISO, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = HSPI_IOMUX_PIN_NUM_HD, .quadwp_io_num = -1,
.max_transfer_sz = 8, .flags = flags_expected};
TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
}
TEST_CASE("SPI Master no response when switch from host1 (HSPI) to host2 (VSPI)", "[spi]")
{
//spi config
spi_bus_config_t bus_config;
spi_device_interface_config_t device_config;
spi_device_handle_t spi;
spi_host_device_t host;
int dma = 1;
memset(&bus_config, 0, sizeof(spi_bus_config_t));
memset(&device_config, 0, sizeof(spi_device_interface_config_t));
bus_config.miso_io_num = -1;
bus_config.mosi_io_num = 26;
bus_config.sclk_io_num = 25;
bus_config.quadwp_io_num = -1;
bus_config.quadhd_io_num = -1;
device_config.clock_speed_hz = 50000;
device_config.mode = 0;
device_config.spics_io_num = -1;
device_config.queue_size = 1;
device_config.flags = SPI_DEVICE_TXBIT_LSBFIRST | SPI_DEVICE_RXBIT_LSBFIRST;
struct spi_transaction_t transaction = {
.flags = SPI_TRANS_USE_TXDATA | SPI_TRANS_USE_RXDATA,
.length = 16,
.rx_buffer = NULL,
.tx_data = {0x04, 0x00}
};
//initialize for first host
host = 1;
TEST_ASSERT(spi_bus_initialize(host, &bus_config, dma) == ESP_OK);
TEST_ASSERT(spi_bus_add_device(host, &device_config, &spi) == ESP_OK);
printf("before first xmit\n");
TEST_ASSERT(spi_device_transmit(spi, &transaction) == ESP_OK);
printf("after first xmit\n");
TEST_ASSERT(spi_bus_remove_device(spi) == ESP_OK);
TEST_ASSERT(spi_bus_free(host) == ESP_OK);
//for second host and failed before
host = 2;
TEST_ASSERT(spi_bus_initialize(host, &bus_config, dma) == ESP_OK);
TEST_ASSERT(spi_bus_add_device(host, &device_config, &spi) == ESP_OK);
printf("before second xmit\n");
// the original version (bit mis-written) stucks here.
TEST_ASSERT(spi_device_transmit(spi, &transaction) == ESP_OK);
// test case success when see this.
printf("after second xmit\n");
TEST_ASSERT(spi_bus_remove_device(spi) == ESP_OK);
TEST_ASSERT(spi_bus_free(host) == ESP_OK);
}
IRAM_ATTR static uint32_t data_iram[80];
DRAM_ATTR static uint32_t data_dram[80]={0};
//force to place in code area.
static const uint8_t data_drom[320+3] = {
0xD8, 0xD1, 0x0A, 0xB8, 0xCE, 0x67, 0x1B, 0x11, 0x17, 0xA0, 0xDA, 0x89, 0x55, 0xC1, 0x40, 0x0F, 0x55, 0xEB, 0xF7, 0xEC, 0xF0, 0x3C, 0x0F, 0x4D, 0x2B, 0x9E, 0xBF, 0xCD, 0x57, 0x2C, 0x48, 0x1A,
0x8B, 0x47, 0xC5, 0x01, 0x0C, 0x05, 0x80, 0x30, 0xF4, 0xEA, 0xE5, 0x92, 0x56, 0x97, 0x98, 0x78, 0x21, 0x34, 0xA1, 0xBC, 0xAE, 0x93, 0x7E, 0x96, 0x08, 0xE6, 0x54, 0x6A, 0x6C, 0x67, 0xCF, 0x58,
0xEE, 0x15, 0xA8, 0xB6, 0x32, 0x8C, 0x85, 0xF7, 0xE9, 0x88, 0x5E, 0xB1, 0x76, 0xE4, 0xB2, 0xC7, 0x0F, 0x57, 0x51, 0x7A, 0x2F, 0xAB, 0x12, 0xC3, 0x37, 0x99, 0x4E, 0x67, 0x75, 0x28, 0xE4, 0x1D,
0xF8, 0xBA, 0x22, 0xCB, 0xA1, 0x18, 0x4C, 0xAB, 0x5F, 0xC9, 0xF3, 0xA2, 0x39, 0x92, 0x44, 0xE6, 0x7B, 0xE3, 0xD0, 0x16, 0xC5, 0xC2, 0xCB, 0xD9, 0xC0, 0x7F, 0x06, 0xBF, 0x3E, 0xCE, 0xE1, 0x26,
0xD5, 0x3C, 0xAD, 0x0E, 0xC1, 0xC7, 0x7D, 0x0D, 0x56, 0x85, 0x6F, 0x32, 0xC8, 0x63, 0x8D, 0x12, 0xAB, 0x1E, 0x81, 0x7B, 0xF4, 0xF1, 0xA9, 0xAF, 0xD9, 0x74, 0x60, 0x05, 0x3D, 0xCC, 0x0C, 0x34,
0x11, 0x44, 0xAE, 0x2A, 0x13, 0x2F, 0x04, 0xC3, 0x59, 0xF0, 0x54, 0x07, 0xBA, 0x26, 0xD9, 0xFB, 0x80, 0x95, 0xC0, 0x14, 0xFA, 0x27, 0xEF, 0xD3, 0x58, 0xB8, 0xE4, 0xA2, 0xE3, 0x5E, 0x94, 0xB3,
0xCD, 0x2C, 0x4F, 0xAC, 0x3B, 0xD1, 0xCA, 0xBE, 0x61, 0x71, 0x7B, 0x62, 0xEB, 0xF0, 0xFC, 0xEF, 0x22, 0xB7, 0x3F, 0x56, 0x65, 0x19, 0x61, 0x73, 0x1A, 0x4D, 0xE4, 0x23, 0xE5, 0x3A, 0x91, 0x5C,
0xE6, 0x1B, 0x5F, 0x0E, 0x10, 0x94, 0x7C, 0x9F, 0xCF, 0x75, 0xB3, 0xEB, 0x42, 0x4C, 0xCF, 0xFE, 0xAF, 0x68, 0x62, 0x3F, 0x9A, 0x3C, 0x81, 0x3E, 0x7A, 0x45, 0x92, 0x79, 0x91, 0x4F, 0xFF, 0xDE,
0x25, 0x18, 0x33, 0xB9, 0xA9, 0x3A, 0x3F, 0x1F, 0x4F, 0x4B, 0x5C, 0x71, 0x82, 0x75, 0xB0, 0x1F, 0xE9, 0x98, 0xA3, 0xE2, 0x65, 0xBB, 0xCA, 0x4F, 0xB7, 0x1D, 0x23, 0x43, 0x16, 0x73, 0xBD, 0x83,
0x70, 0x22, 0x7D, 0x0A, 0x6D, 0xD3, 0x77, 0x73, 0xD0, 0xF4, 0x06, 0xB2, 0x19, 0x8C, 0xFF, 0x58, 0xE4, 0xDB, 0xE9, 0xEC, 0x89, 0x6A, 0xF4, 0x0E, 0x67, 0x12, 0xEC, 0x11, 0xD2, 0x1F, 0x8D, 0xD7,
};
#if 1 //HSPI
#define PIN_NUM_MISO HSPI_IOMUX_PIN_NUM_MISO
#define PIN_NUM_MOSI HSPI_IOMUX_PIN_NUM_MOSI
#define PIN_NUM_CLK HSPI_IOMUX_PIN_NUM_CLK
#define PIN_NUM_CS HSPI_IOMUX_PIN_NUM_CS
#elif 1 //VSPI
#define PIN_NUM_MISO VSPI_IOMUX_PIN_NUM_MISO
#define PIN_NUM_MOSI VSPI_IOMUX_PIN_NUM_MOSI
#define PIN_NUM_CLK VSPI_IOMUX_PIN_NUM_CLK
#define PIN_NUM_CS VSPI_IOMUX_PIN_NUM_CS
#endif
#define PIN_NUM_DC 21
#define PIN_NUM_RST 18
#define PIN_NUM_BCKL 5
TEST_CASE("SPI Master DMA test, TX and RX in different regions", "[spi]")
{
#ifdef CONFIG_SPIRAM_SUPPORT
//test psram if enabled
ESP_LOGI(TAG, "testing PSRAM...");
uint32_t* data_malloc = (uint32_t*)heap_caps_calloc(1, 324, MALLOC_CAP_SPIRAM);
#else
uint32_t* data_malloc = (uint32_t*)heap_caps_calloc(1, 324, MALLOC_CAP_DMA);
#endif
TEST_ASSERT(data_malloc != NULL);
srand(52);
for (int i = 0; i < 320/4; i++) {
data_iram[i] = rand();
data_dram[i] = rand();
data_malloc[i] = rand();
}
esp_err_t ret;
spi_device_handle_t spi;
spi_bus_config_t buscfg=SPI_BUS_TEST_DEFAULT_CONFIG();
buscfg.miso_io_num = PIN_NUM_MOSI;
spi_device_interface_config_t devcfg=SPI_DEVICE_TEST_DEFAULT_CONFIG();
//Initialize the SPI bus
ret=spi_bus_initialize(HSPI_HOST, &buscfg, 1);
TEST_ASSERT(ret==ESP_OK);
//Attach the LCD to the SPI bus
ret=spi_bus_add_device(HSPI_HOST, &devcfg, &spi);
TEST_ASSERT(ret==ESP_OK);
//connect MOSI to two devices breaks the output, fix it.
gpio_output_sel(buscfg.mosi_io_num, FUNC_GPIO, HSPID_OUT_IDX);
#define TEST_REGION_SIZE 5
static spi_transaction_t trans[TEST_REGION_SIZE];
int x;
ESP_LOGI(TAG, "iram: %p, dram: %p", data_iram, data_dram);
ESP_LOGI(TAG, "drom: %p, malloc: %p", data_drom, data_malloc);
memset(trans, 0, sizeof(trans));
trans[0].length = 320*8,
trans[0].tx_buffer = data_iram;
trans[0].rx_buffer = data_malloc+1;
trans[1].length = 320*8,
trans[1].tx_buffer = data_dram;
trans[1].rx_buffer = data_iram;
trans[2].length = 320*8,
trans[2].tx_buffer = data_malloc+2;
trans[2].rx_buffer = data_dram;
trans[3].length = 320*8,
trans[3].tx_buffer = data_drom;
trans[3].rx_buffer = data_iram;
trans[4].length = 4*8,
trans[4].flags = SPI_TRANS_USE_RXDATA | SPI_TRANS_USE_TXDATA;
uint32_t* ptr = (uint32_t*)trans[4].rx_data;
*ptr = 0x54545454;
ptr = (uint32_t*)trans[4].tx_data;
*ptr = 0xbc124960;
//Queue all transactions.
for (x=0; x<TEST_REGION_SIZE; x++) {
ESP_LOGI(TAG, "transmitting %d...", x);
ret=spi_device_transmit(spi,&trans[x]);
TEST_ASSERT(ret==ESP_OK);
if (trans[x].flags & SPI_TRANS_USE_RXDATA) {
TEST_ASSERT_EQUAL_HEX8_ARRAY(trans[x].tx_data, trans[x].rx_data, 4);
} else {
TEST_ASSERT_EQUAL_HEX32_ARRAY(trans[x].tx_buffer, trans[x].rx_buffer, trans[x].length / 8 /4);
}
}
TEST_ASSERT(spi_bus_remove_device(spi) == ESP_OK);
TEST_ASSERT(spi_bus_free(HSPI_HOST) == ESP_OK);
free(data_malloc);
}
//this part tests 3 DMA issues in master mode, full-duplex in IDF2.1
// 1. RX buffer not aligned (start and end)
// 2. not setting rx_buffer
// 3. setting rx_length != length
TEST_CASE("SPI Master DMA test: length, start, not aligned", "[spi]")
{
uint8_t tx_buf[320]={0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0xaa, 0xcc, 0xff, 0xee, 0x55, 0x77, 0x88, 0x43};
uint8_t rx_buf[320];
esp_err_t ret;
spi_device_handle_t spi;
spi_bus_config_t buscfg={
.miso_io_num=PIN_NUM_MOSI,
.mosi_io_num=PIN_NUM_MOSI,
.sclk_io_num=PIN_NUM_CLK,
.quadwp_io_num=-1,
.quadhd_io_num=-1
};
spi_device_interface_config_t devcfg={
.clock_speed_hz=10*1000*1000, //Clock out at 10 MHz
.mode=0, //SPI mode 0
.spics_io_num=PIN_NUM_CS, //CS pin
.queue_size=7, //We want to be able to queue 7 transactions at a time
.pre_cb=NULL,
};
//Initialize the SPI bus
ret=spi_bus_initialize(HSPI_HOST, &buscfg, 1);
TEST_ASSERT(ret==ESP_OK);
//Attach the LCD to the SPI bus
ret=spi_bus_add_device(HSPI_HOST, &devcfg, &spi);
TEST_ASSERT(ret==ESP_OK);
//connect MOSI to two devices breaks the output, fix it.
gpio_output_sel(buscfg.mosi_io_num, FUNC_GPIO, HSPID_OUT_IDX);
memset(rx_buf, 0x66, 320);
for ( int i = 0; i < 8; i ++ ) {
memset( rx_buf, 0x66, sizeof(rx_buf));
spi_transaction_t t = {};
t.length = 8*(i+1);
t.rxlength = 0;
t.tx_buffer = tx_buf+2*i;
t.rx_buffer = rx_buf + i;
if ( i == 1 ) {
//test set no start
t.rx_buffer = NULL;
} else if ( i == 2 ) {
//test rx length != tx_length
t.rxlength = t.length - 8;
}
spi_device_transmit( spi, &t );
for( int i = 0; i < 16; i ++ ) {
printf("%02X ", rx_buf[i]);
}
printf("\n");
if ( i == 1 ) {
// no rx, skip check
} else if ( i == 2 ) {
//test rx length = tx length-1
TEST_ASSERT_EQUAL_HEX8_ARRAY(t.tx_buffer, t.rx_buffer, t.length/8-1 );
} else {
//normal check
TEST_ASSERT_EQUAL_HEX8_ARRAY(t.tx_buffer, t.rx_buffer, t.length/8 );
}
}
TEST_ASSERT(spi_bus_remove_device(spi) == ESP_OK);
TEST_ASSERT(spi_bus_free(HSPI_HOST) == ESP_OK);
}
static const char MASTER_TAG[] = "test_master";
static const char SLAVE_TAG[] = "test_slave";
DRAM_ATTR static uint8_t master_send[] = {
0x93, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0xaa, 0xcc, 0xff, 0xee, 0x55, 0x77, 0x88, 0x43,
0x74,
0x93, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0xaa, 0xcc, 0xff, 0xee, 0x55, 0x77, 0x88, 0x43,
0x74,
0x93, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0xaa, 0xcc, 0xff, 0xee, 0x55, 0x77, 0x88, 0x43,
0x74,
};
DRAM_ATTR static uint8_t slave_send[] = {
0xaa, 0xdc, 0xba, 0x98, 0x76, 0x54, 0x32, 0x10, 0x13, 0x57, 0x9b, 0xdf, 0x24, 0x68, 0xac, 0xe0,
0xda,
0xaa, 0xdc, 0xba, 0x98, 0x76, 0x54, 0x32, 0x10, 0x13, 0x57, 0x9b, 0xdf, 0x24, 0x68, 0xac, 0xe0,
0xda,
0xaa, 0xdc, 0xba, 0x98, 0x76, 0x54, 0x32, 0x10, 0x13, 0x57, 0x9b, 0xdf, 0x24, 0x68, 0xac, 0xe0,
0xda,
};
static void master_deinit(spi_device_handle_t spi)
{
TEST_ESP_OK( spi_bus_remove_device(spi) );
TEST_ESP_OK( spi_bus_free(HSPI_HOST) );
}
#define SPI_SLAVE_TEST_DEFAULT_CONFIG() {\
.mode=0,\
.spics_io_num=PIN_NUM_CS,\
.queue_size=3,\
.flags=0,\
}
static void slave_pull_up(const spi_bus_config_t* cfg, int spics_io_num)
{
gpio_set_pull_mode(cfg->mosi_io_num, GPIO_PULLUP_ENABLE);
gpio_set_pull_mode(cfg->sclk_io_num, GPIO_PULLUP_ENABLE);
gpio_set_pull_mode(spics_io_num, GPIO_PULLUP_ENABLE);
}
typedef struct {
uint32_t len;
uint8_t *start;
} slave_txdata_t;
typedef struct {
uint32_t len;
uint8_t* tx_start;
uint8_t data[1];
} slave_rxdata_t;
typedef struct {
spi_host_device_t spi;
RingbufHandle_t data_received;
QueueHandle_t data_to_send;
} spi_slave_task_context_t;
esp_err_t init_slave_context(spi_slave_task_context_t *context)
{
context->data_to_send = xQueueCreate( 16, sizeof( slave_txdata_t ));
if ( context->data_to_send == NULL ) {
return ESP_ERR_NO_MEM;
}
context->data_received = xRingbufferCreate( 1024, RINGBUF_TYPE_NOSPLIT );
if ( context->data_received == NULL ) {
return ESP_ERR_NO_MEM;
}
context->spi=VSPI_HOST;
return ESP_OK;
}
void deinit_slave_context(spi_slave_task_context_t *context)
{
TEST_ASSERT( context->data_to_send != NULL );
vQueueDelete( context->data_to_send );
context->data_to_send = NULL;
TEST_ASSERT( context->data_received != NULL );
vRingbufferDelete( context->data_received );
context->data_received = NULL;
}
/* The task requires a queue and a ringbuf, which should be initialized before task starts.
Send ``slave_txdata_t`` to the queue to make the task send data;
the task returns data got to the ringbuf, which should have sufficient size.
*/
static void task_slave(void* arg)
{
spi_slave_task_context_t* context = (spi_slave_task_context_t*) arg;
QueueHandle_t queue = context->data_to_send;
RingbufHandle_t ringbuf = context->data_received;
uint8_t recvbuf[320+8];
slave_txdata_t txdata;
ESP_LOGI( SLAVE_TAG, "slave up" );
//never quit, but blocked by the queue, waiting to be killed, when no more send from main task.
while( 1 ) {
xQueueReceive( queue, &txdata, portMAX_DELAY );
ESP_LOGI( "test", "to send: %p", txdata.start );
spi_slave_transaction_t t = {};
t.length = txdata.len;
t.tx_buffer = txdata.start;
t.rx_buffer = recvbuf+8;
//loop until trans_len != 0 to skip glitches
do {
TEST_ESP_OK( spi_slave_transmit( context->spi, &t, portMAX_DELAY ) );
} while ( t.trans_len == 0 );
memcpy(recvbuf, &t.trans_len, sizeof(uint32_t));
*(uint8_t**)(recvbuf+4) = txdata.start;
ESP_LOGI( SLAVE_TAG, "received: %d", t.trans_len );
xRingbufferSend( ringbuf, recvbuf, 8+(t.trans_len+7)/8, portMAX_DELAY );
}
}
TEST_CASE("SPI master variable cmd & addr test","[spi]")
{
uint8_t *tx_buf=master_send;
uint8_t rx_buf[320];
uint8_t *rx_buf_ptr = rx_buf;
spi_slave_task_context_t slave_context = {};
esp_err_t err = init_slave_context( &slave_context );
TEST_ASSERT( err == ESP_OK );
spi_device_handle_t spi;
//initial master, mode 0, 1MHz
spi_bus_config_t buscfg=SPI_BUS_TEST_DEFAULT_CONFIG();
TEST_ESP_OK(spi_bus_initialize(HSPI_HOST, &buscfg, 1));
spi_device_interface_config_t devcfg=SPI_DEVICE_TEST_DEFAULT_CONFIG();
devcfg.clock_speed_hz = 1*1000*1000; //currently only up to 4MHz for internel connect
devcfg.mode = 0;
devcfg.cs_ena_posttrans = 2;
TEST_ESP_OK(spi_bus_add_device(HSPI_HOST, &devcfg, &spi));
//initial slave, mode 0, no dma
int dma_chan = 0;
int slave_mode = 0;
spi_bus_config_t slv_buscfg=SPI_BUS_TEST_DEFAULT_CONFIG();
spi_slave_interface_config_t slvcfg=SPI_SLAVE_TEST_DEFAULT_CONFIG();
slvcfg.mode = slave_mode;
//Enable pull-ups on SPI lines so we don't detect rogue pulses when no master is connected.
slave_pull_up(&buscfg, slvcfg.spics_io_num);
//Initialize SPI slave interface
TEST_ESP_OK( spi_slave_initialize(VSPI_HOST, &slv_buscfg, &slvcfg, dma_chan) );
//connecting pins to two peripherals breaks the output, fix it.
gpio_output_sel(PIN_NUM_MOSI, FUNC_GPIO, HSPID_OUT_IDX);
gpio_output_sel(PIN_NUM_MISO, FUNC_GPIO, VSPIQ_OUT_IDX);
gpio_output_sel(PIN_NUM_CS, FUNC_GPIO, HSPICS0_OUT_IDX);
gpio_output_sel(PIN_NUM_CLK, FUNC_GPIO, HSPICLK_OUT_IDX);
TaskHandle_t handle_slave;
xTaskCreate( task_slave, "spi_slave", 4096, &slave_context, 0, &handle_slave);
slave_txdata_t slave_txdata[16];
spi_transaction_ext_t trans[16];
for( int i= 0; i < 16; i ++ ) {
//prepare slave tx data
slave_txdata[i] = (slave_txdata_t) {
.start = slave_send + 4*(i%3),
.len = 256,
};
xQueueSend( slave_context.data_to_send, &slave_txdata[i], portMAX_DELAY );
//prepare master tx data
trans[i] = (spi_transaction_ext_t) {
.base = {
.flags = SPI_TRANS_VARIABLE_CMD | SPI_TRANS_VARIABLE_ADDR,
.addr = 0x456789ab,
.cmd = 0xcdef,
.length = 8*i,
.tx_buffer = tx_buf+i,
.rx_buffer = rx_buf_ptr,
},
.command_bits = ((i+1)%3) * 8,
.address_bits = ((i/3)%5) * 8,
};
if ( trans[i].base.length == 0 ) {
trans[i].base.tx_buffer = NULL;
trans[i].base.rx_buffer = NULL;
} else {
rx_buf_ptr += (trans[i].base.length + 31)/32*4;
}
}
vTaskDelay(10);
for ( int i = 0; i < 16; i ++ ) {
TEST_ESP_OK (spi_device_queue_trans( spi, (spi_transaction_t*)&trans[i], portMAX_DELAY ) );
vTaskDelay(10);
}
for( int i= 0; i < 16; i ++ ) {
//wait for both master and slave end
ESP_LOGI( MASTER_TAG, "===== test%d =====", i );
spi_transaction_ext_t *t;
size_t rcv_len;
spi_device_get_trans_result( spi, (spi_transaction_t**)&t, portMAX_DELAY );
TEST_ASSERT( t == &trans[i] );
if ( trans[i].base.length != 0 ) {
ESP_LOG_BUFFER_HEX( "master tx", trans[i].base.tx_buffer, trans[i].base.length/8 );
ESP_LOG_BUFFER_HEX( "master rx", trans[i].base.rx_buffer, trans[i].base.length/8 );
} else {
ESP_LOGI( "master tx", "no data" );
ESP_LOGI( "master rx", "no data" );
}
slave_rxdata_t *rcv_data = xRingbufferReceive( slave_context.data_received, &rcv_len, portMAX_DELAY );
uint8_t *buffer = rcv_data->data;
rcv_len = rcv_data->len;
ESP_LOGI(SLAVE_TAG, "trans_len: %d", rcv_len);
ESP_LOG_BUFFER_HEX( "slave tx", slave_txdata[i].start, (rcv_len+7)/8);
ESP_LOG_BUFFER_HEX( "slave rx", buffer, (rcv_len+7)/8);
//check result
uint8_t *ptr_addr = (uint8_t*)&t->base.addr;
uint8_t *ptr_cmd = (uint8_t*)&t->base.cmd;
for ( int j = 0; j < t->command_bits/8; j ++ ) {
TEST_ASSERT_EQUAL( buffer[j], ptr_cmd[t->command_bits/8-j-1] );
}
for ( int j = 0; j < t->address_bits/8; j ++ ) {
TEST_ASSERT_EQUAL( buffer[t->command_bits/8+j], ptr_addr[t->address_bits/8-j-1] );
}
if ( t->base.length != 0) {
TEST_ASSERT_EQUAL_HEX8_ARRAY(t->base.tx_buffer, buffer + (t->command_bits + t->address_bits)/8, t->base.length/8);
TEST_ASSERT_EQUAL_HEX8_ARRAY(slave_txdata[i].start + (t->command_bits + t->address_bits)/8, t->base.rx_buffer, t->base.length/8);
}
TEST_ASSERT_EQUAL( t->base.length + t->command_bits + t->address_bits, rcv_len );
//clean
vRingbufferReturnItem( slave_context.data_received, buffer );
}
vTaskDelete( handle_slave );
handle_slave = 0;
deinit_slave_context(&slave_context);
TEST_ASSERT(spi_slave_free(VSPI_HOST) == ESP_OK);
TEST_ASSERT(spi_bus_remove_device(spi) == ESP_OK);
TEST_ASSERT(spi_bus_free(HSPI_HOST) == ESP_OK);
ESP_LOGI(MASTER_TAG, "test passed.");
}
/********************************************************************************
* Test Timing By Internal Connections
********************************************************************************/
typedef enum {
FULL_DUPLEX = 0,
HALF_DUPLEX_MISO = 1,
HALF_DUPLEX_MOSI = 2,
} spi_dup_t;
static int timing_speed_array[]={/**/
SPI_MASTER_FREQ_8M ,
SPI_MASTER_FREQ_9M ,
SPI_MASTER_FREQ_10M,
SPI_MASTER_FREQ_11M,
SPI_MASTER_FREQ_13M,
SPI_MASTER_FREQ_16M,
SPI_MASTER_FREQ_20M,
SPI_MASTER_FREQ_26M,
SPI_MASTER_FREQ_40M,
SPI_MASTER_FREQ_80M,
};
typedef struct {
uint8_t master_rxbuf[320];
spi_transaction_t master_trans[16];
TaskHandle_t handle_slave;
spi_slave_task_context_t slave_context;
slave_txdata_t slave_trans[16];
} timing_context_t;
void master_print_data(spi_transaction_t *t, spi_dup_t dup)
{
if (t->tx_buffer) {
ESP_LOG_BUFFER_HEX( "master tx", t->tx_buffer, t->length/8 );
} else {
ESP_LOGI( "master tx", "no data" );
}
int rxlength;
if (dup!=HALF_DUPLEX_MISO) {
rxlength = t->length/8;
} else {
rxlength = t->rxlength/8;
}
if (t->rx_buffer) {
ESP_LOG_BUFFER_HEX( "master rx", t->rx_buffer, rxlength );
} else {
ESP_LOGI( "master rx", "no data" );
}
}
void slave_print_data(slave_rxdata_t *t)
{
int rcv_len = (t->len+7)/8;
ESP_LOGI(SLAVE_TAG, "trans_len: %d", t->len);
ESP_LOG_BUFFER_HEX( "slave tx", t->tx_start, rcv_len);
ESP_LOG_BUFFER_HEX( "slave rx", t->data, rcv_len);
}
esp_err_t check_data(spi_transaction_t *t, spi_dup_t dup, slave_rxdata_t *slave_t)
{
int length;
if (dup!=HALF_DUPLEX_MISO) {
length = t->length;
} else {
length = t->rxlength;
}
TEST_ASSERT(length!=0);
//currently the rcv_len can be in range of [t->length-1, t->length+3]
uint32_t rcv_len = slave_t->len;
TEST_ASSERT(rcv_len >= length-1 && rcv_len <= length+3);
//the timing speed is temporarily only for master
if (dup!=HALF_DUPLEX_MISO) {
// TEST_ASSERT_EQUAL_HEX8_ARRAY(t->tx_buffer, slave_t->data, (t->length+7)/8);
}
if (dup!=HALF_DUPLEX_MOSI) {
TEST_ASSERT_EQUAL_HEX8_ARRAY(slave_t->tx_start, t->rx_buffer, (length+7)/8);
}
return ESP_OK;
}
int test_len[] = {1, 3, 5, 7, 9, 11, 33, 64};
static void timing_init_transactions(spi_dup_t dup, timing_context_t* context)
{
spi_transaction_t* trans = context->master_trans;
uint8_t *rx_buf_ptr = context->master_rxbuf;
if (dup==HALF_DUPLEX_MISO) {
for (int i = 0; i < 8; i++ ) {
trans[i] = (spi_transaction_t) {
.flags = 0,
.rxlength = 8*test_len[i],
.rx_buffer = rx_buf_ptr,
};
rx_buf_ptr += ((context->master_trans[i].rxlength + 31)/8)&(~3);
}
} else if (dup==HALF_DUPLEX_MOSI) {
for (int i = 0; i < 8; i++ ) {
trans[i] = (spi_transaction_t) {
.flags = 0,
.length = 8*test_len[i],
.tx_buffer = master_send+i,
};
}
} else {
for (int i = 0; i < 8; i++ ) {
trans[i] = (spi_transaction_t) {
.flags = 0,
.length = 8*test_len[i],
.tx_buffer = master_send+i,
.rx_buffer = rx_buf_ptr,
};
rx_buf_ptr += ((context->master_trans[i].length + 31)/8)&(~3);
}
}
//prepare slave tx data
for (int i = 0; i < 8; i ++) {
context->slave_trans[i] = (slave_txdata_t) {
.start = slave_send + 4*(i%3),
.len = 512,
};
}
}
typedef struct {
const char cfg_name[30];
/*The test work till the frequency below,
*set the frequency to higher and remove checks in the driver to know how fast the system can run.
*/
int freq_limit;
spi_dup_t dup;
bool master_iomux;
bool slave_iomux;
int slave_tv_ns;
} test_timing_config_t;
#define ESP_SPI_SLAVE_TV (12.5*3)
#define GPIO_DELAY (12.5*2)
#define SAMPLE_DELAY 12.5
#define TV_INT_CONNECT_GPIO (ESP_SPI_SLAVE_TV+GPIO_DELAY)
#define TV_INT_CONNECT (ESP_SPI_SLAVE_TV)
#define TV_WITH_ESP_SLAVE_GPIO (ESP_SPI_SLAVE_TV+SAMPLE_DELAY+GPIO_DELAY)
#define TV_WITH_ESP_SLAVE (ESP_SPI_SLAVE_TV+SAMPLE_DELAY)
//currently ESP32 slave only supports up to 20MHz, but 40MHz on the same board
#define ESP_SPI_SLAVE_MAX_FREQ SPI_MASTER_FREQ_20M
#define ESP_SPI_SLAVE_MAX_FREQ_SYNC SPI_MASTER_FREQ_40M
static test_timing_config_t timing_master_conf_t[] = {
{ .cfg_name = "FULL_DUP, MASTER IOMUX",
.freq_limit = SPI_MASTER_FREQ_13M,
.dup = FULL_DUPLEX,
.master_iomux = true,
.slave_iomux = false,
.slave_tv_ns = TV_INT_CONNECT_GPIO,
},
{ .cfg_name = "FULL_DUP, SLAVE IOMUX",
.freq_limit = SPI_MASTER_FREQ_13M,
.dup = FULL_DUPLEX,
.master_iomux = false,
.slave_iomux = true,
.slave_tv_ns = TV_INT_CONNECT,
},
{ .cfg_name = "FULL_DUP, BOTH GPIO",
.freq_limit = SPI_MASTER_FREQ_10M,
.dup = FULL_DUPLEX,
.master_iomux = false,
.slave_iomux = false,
.slave_tv_ns = TV_INT_CONNECT_GPIO,
},
{ .cfg_name = "HALF_DUP, MASTER IOMUX",
.freq_limit = ESP_SPI_SLAVE_MAX_FREQ_SYNC,
.dup = HALF_DUPLEX_MISO,
.master_iomux = true,
.slave_iomux = false,
.slave_tv_ns = TV_INT_CONNECT_GPIO,
},
{ .cfg_name = "HALF_DUP, SLAVE IOMUX",
.freq_limit = ESP_SPI_SLAVE_MAX_FREQ_SYNC,
.dup = HALF_DUPLEX_MISO,
.master_iomux = false,
.slave_iomux = true,
.slave_tv_ns = TV_INT_CONNECT,
},
{ .cfg_name = "HALF_DUP, BOTH GPIO",
.freq_limit = ESP_SPI_SLAVE_MAX_FREQ_SYNC,
.dup = HALF_DUPLEX_MISO,
.master_iomux = false,
.slave_iomux = false,
.slave_tv_ns = TV_INT_CONNECT_GPIO,
},
{ .cfg_name = "MOSI_DUP, MASTER IOMUX",
.freq_limit = ESP_SPI_SLAVE_MAX_FREQ_SYNC,
.dup = HALF_DUPLEX_MOSI,
.master_iomux = true,
.slave_iomux = false,
.slave_tv_ns = TV_INT_CONNECT_GPIO,
},
{ .cfg_name = "MOSI_DUP, SLAVE IOMUX",
.freq_limit = ESP_SPI_SLAVE_MAX_FREQ_SYNC,
.dup = HALF_DUPLEX_MOSI,
.master_iomux = false,
.slave_iomux = true,
.slave_tv_ns = TV_INT_CONNECT,
},
{ .cfg_name = "MOSI_DUP, BOTH GPIO",
.freq_limit = ESP_SPI_SLAVE_MAX_FREQ_SYNC,
.dup = HALF_DUPLEX_MOSI,
.master_iomux = false,
.slave_iomux = false,
.slave_tv_ns = TV_INT_CONNECT_GPIO,
},
};
//this case currently only checks master read
TEST_CASE("test timing_master","[spi][timeout=120]")
{
timing_context_t context;
//Enable pull-ups on SPI lines so we don't detect rogue pulses when no master is connected.
//slave_pull_up(&slv_buscfg, slvcfg.spics_io_num);
context.slave_context = (spi_slave_task_context_t){};
esp_err_t err = init_slave_context( &context.slave_context );
TEST_ASSERT( err == ESP_OK );
xTaskCreate( task_slave, "spi_slave", 4096, &context.slave_context, 0, &context.handle_slave);
const int test_size = sizeof(timing_master_conf_t)/sizeof(test_timing_config_t);
for (int i = 0; i < test_size; i++) {
test_timing_config_t* conf = &timing_master_conf_t[i];
spi_device_handle_t spi;
timing_init_transactions(conf->dup, &context);
ESP_LOGI(MASTER_TAG, "****************** %s ***************", conf->cfg_name);
for (int j=0; j<sizeof(timing_speed_array)/sizeof(int); j++ ) {
if (timing_speed_array[j] > conf->freq_limit) break;
ESP_LOGI(MASTER_TAG, "======> %dk", timing_speed_array[j]/1000);
//master config
const int master_mode = 0;
spi_bus_config_t buscfg=SPI_BUS_TEST_DEFAULT_CONFIG();
spi_device_interface_config_t devcfg=SPI_DEVICE_TEST_DEFAULT_CONFIG();
devcfg.mode = master_mode;
if (conf->dup==HALF_DUPLEX_MISO||conf->dup==HALF_DUPLEX_MOSI) {
devcfg.cs_ena_pretrans = 20;
devcfg.flags |= SPI_DEVICE_HALFDUPLEX;
} else {
devcfg.cs_ena_pretrans = 1;
}
devcfg.cs_ena_posttrans = 20;
devcfg.input_delay_ns = conf->slave_tv_ns;
devcfg.clock_speed_hz = timing_speed_array[j];
//slave config
int slave_mode = 0;
spi_slave_interface_config_t slvcfg=SPI_SLAVE_TEST_DEFAULT_CONFIG();
slvcfg.mode = slave_mode;
//pin config & initialize
//we can't have two sets of iomux pins on the same pins
assert(!conf->master_iomux || !conf->slave_iomux);
if (conf->slave_iomux) {
//only in this case, use VSPI iomux pins
buscfg.miso_io_num = VSPI_IOMUX_PIN_NUM_MISO;
buscfg.mosi_io_num = VSPI_IOMUX_PIN_NUM_MOSI;
buscfg.sclk_io_num = VSPI_IOMUX_PIN_NUM_CLK;
devcfg.spics_io_num = VSPI_IOMUX_PIN_NUM_CS;
slvcfg.spics_io_num = VSPI_IOMUX_PIN_NUM_CS;
} else {
buscfg.miso_io_num = HSPI_IOMUX_PIN_NUM_MISO;
buscfg.mosi_io_num = HSPI_IOMUX_PIN_NUM_MOSI;
buscfg.sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK;
devcfg.spics_io_num = HSPI_IOMUX_PIN_NUM_CS;
slvcfg.spics_io_num = HSPI_IOMUX_PIN_NUM_CS;
}
slave_pull_up(&buscfg, slvcfg.spics_io_num);
//this does nothing, but avoid the driver from using iomux pins if required
buscfg.quadhd_io_num = (!conf->master_iomux && !conf->slave_iomux? VSPI_IOMUX_PIN_NUM_MISO: -1);
TEST_ESP_OK(spi_bus_initialize(HSPI_HOST, &buscfg, 0));
TEST_ESP_OK(spi_bus_add_device(HSPI_HOST, &devcfg, &spi));
//slave automatically use iomux pins if pins are on VSPI_* pins
buscfg.quadhd_io_num = -1;
TEST_ESP_OK( spi_slave_initialize(VSPI_HOST, &buscfg, &slvcfg, 0) );
//initialize master and slave on the same pins break some of the output configs, fix them
if (conf->master_iomux) {
gpio_output_sel(buscfg.mosi_io_num, FUNC_SPI, HSPID_OUT_IDX);
gpio_output_sel(buscfg.miso_io_num, FUNC_GPIO, VSPIQ_OUT_IDX);
gpio_output_sel(devcfg.spics_io_num, FUNC_SPI, HSPICS0_OUT_IDX);
gpio_output_sel(buscfg.sclk_io_num, FUNC_SPI, HSPICLK_OUT_IDX);
} else if (conf->slave_iomux) {
gpio_output_sel(buscfg.mosi_io_num, FUNC_GPIO, HSPID_OUT_IDX);
gpio_output_sel(buscfg.miso_io_num, FUNC_SPI, VSPIQ_OUT_IDX);
gpio_output_sel(devcfg.spics_io_num, FUNC_GPIO, HSPICS0_OUT_IDX);
gpio_output_sel(buscfg.sclk_io_num, FUNC_GPIO, HSPICLK_OUT_IDX);
} else {
gpio_output_sel(buscfg.mosi_io_num, FUNC_GPIO, HSPID_OUT_IDX);
gpio_output_sel(buscfg.miso_io_num, FUNC_GPIO, VSPIQ_OUT_IDX);
gpio_output_sel(devcfg.spics_io_num, FUNC_GPIO, HSPICS0_OUT_IDX);
gpio_output_sel(buscfg.sclk_io_num, FUNC_GPIO, HSPICLK_OUT_IDX);
}
//clear master receive buffer
memset(context.master_rxbuf, 0x66, sizeof(context.master_rxbuf));
//prepare slave tx data
for (int k = 0; k < 8; k ++) xQueueSend( context.slave_context.data_to_send, &context.slave_trans[k], portMAX_DELAY );
for( int k= 0; k < 8; k ++ ) {
//wait for both master and slave end
ESP_LOGI( MASTER_TAG, "=> test%d", k );
//send master tx data
vTaskDelay(9);
spi_transaction_t *t = &context.master_trans[k];
TEST_ESP_OK (spi_device_transmit( spi, t) );
master_print_data(t, conf->dup);
size_t rcv_len;
slave_rxdata_t *rcv_data = xRingbufferReceive( context.slave_context.data_received, &rcv_len, portMAX_DELAY );
slave_print_data(rcv_data);
//check result
TEST_ESP_OK(check_data(t, conf->dup, rcv_data));
//clean
vRingbufferReturnItem(context.slave_context.data_received, rcv_data);
}
master_deinit(spi);
TEST_ASSERT(spi_slave_free(VSPI_HOST) == ESP_OK);
}
}
vTaskDelete( context.handle_slave );
context.handle_slave = 0;
deinit_slave_context(&context.slave_context);
ESP_LOGI(MASTER_TAG, "test passed.");
}
/********************************************************************************
* Test SPI transaction interval
********************************************************************************/
#define RECORD_TIME_PREPARE() uint32_t __t1, __t2
#define RECORD_TIME_START() do {__t1 = xthal_get_ccount();}while(0)
#define RECORD_TIME_END(p_time) do{__t2 = xthal_get_ccount(); *p_time = (__t2-__t1)/240;}while(0)
static void speed_setup(spi_device_handle_t* spi, bool use_dma)
{
esp_err_t ret;
spi_bus_config_t buscfg=SPI_BUS_TEST_DEFAULT_CONFIG();
spi_device_interface_config_t devcfg=SPI_DEVICE_TEST_DEFAULT_CONFIG();
devcfg.queue_size=8; //We want to be able to queue 7 transactions at a time
//Initialize the SPI bus and the device to test
ret=spi_bus_initialize(HSPI_HOST, &buscfg, (use_dma?1:0));
TEST_ASSERT(ret==ESP_OK);
ret=spi_bus_add_device(HSPI_HOST, &devcfg, spi);
TEST_ASSERT(ret==ESP_OK);
}
static void speed_deinit(spi_device_handle_t spi)
{
TEST_ESP_OK( spi_bus_remove_device(spi) );
TEST_ESP_OK( spi_bus_free(HSPI_HOST) );
}
static void sorted_array_insert(uint32_t* array, int* size, uint32_t item)
{
int pos;
for (pos = *size; pos>0; pos--) {
if (array[pos-1] < item) break;
array[pos] = array[pos-1];
}
array[pos]=item;
(*size)++;
}
#define TEST_TIMES 11
TEST_CASE("spi_speed","[spi]")
{
RECORD_TIME_PREPARE();
uint32_t t_flight;
//to get rid of the influence of randomly interrupts, we measured the performance by median value
uint32_t t_flight_sorted[TEST_TIMES];
esp_err_t ret;
int t_flight_num = 0;
spi_device_handle_t spi;
const bool use_dma = true;
WORD_ALIGNED_ATTR spi_transaction_t trans = {
.length = 1*8,
.flags = SPI_TRANS_USE_TXDATA,
};
//first work with DMA
speed_setup(&spi, use_dma);
//record flight time by isr, with DMA
t_flight_num = 0;
for (int i = 0; i < TEST_TIMES; i++) {
spi_device_transmit(spi, &trans); // prime the flash cache
RECORD_TIME_START();
spi_device_transmit(spi, &trans);
RECORD_TIME_END(&t_flight);
sorted_array_insert(t_flight_sorted, &t_flight_num, t_flight);
}
TEST_PERFORMANCE_LESS_THAN(SPI_PER_TRANS_NO_POLLING, "%d us", t_flight_sorted[(TEST_TIMES+1)/2]);
for (int i = 0; i < TEST_TIMES; i++) {
ESP_LOGI(TAG, "%d", t_flight_sorted[i]);
}
//acquire the bus to send polling transactions faster
ret = spi_device_acquire_bus(spi, portMAX_DELAY);
TEST_ESP_OK(ret);
//record flight time by polling and with DMA
t_flight_num = 0;
for (int i = 0; i < TEST_TIMES; i++) {
spi_device_polling_transmit(spi, &trans); // prime the flash cache
RECORD_TIME_START();
spi_device_polling_transmit(spi, &trans);
RECORD_TIME_END(&t_flight);
sorted_array_insert(t_flight_sorted, &t_flight_num, t_flight);
}
TEST_PERFORMANCE_LESS_THAN(SPI_PER_TRANS_POLLING, "%d us", t_flight_sorted[(TEST_TIMES+1)/2]);
for (int i = 0; i < TEST_TIMES; i++) {
ESP_LOGI(TAG, "%d", t_flight_sorted[i]);
}
//release the bus
spi_device_release_bus(spi);
speed_deinit(spi);
speed_setup(&spi, !use_dma);
//record flight time by isr, without DMA
t_flight_num = 0;
for (int i = 0; i < TEST_TIMES; i++) {
spi_device_transmit(spi, &trans); // prime the flash cache
RECORD_TIME_START();
spi_device_transmit(spi, &trans);
RECORD_TIME_END(&t_flight);
sorted_array_insert(t_flight_sorted, &t_flight_num, t_flight);
}
TEST_PERFORMANCE_LESS_THAN( SPI_PER_TRANS_NO_POLLING_NO_DMA, "%d us", t_flight_sorted[(TEST_TIMES+1)/2]);
for (int i = 0; i < TEST_TIMES; i++) {
ESP_LOGI(TAG, "%d", t_flight_sorted[i]);
}
//acquire the bus to send polling transactions faster
ret = spi_device_acquire_bus(spi, portMAX_DELAY);
TEST_ESP_OK(ret);
//record flight time by polling, without DMA
t_flight_num = 0;
for (int i = 0; i < TEST_TIMES; i++) {
spi_device_polling_transmit(spi, &trans); // prime the flash cache
RECORD_TIME_START();
spi_device_polling_transmit(spi, &trans);
RECORD_TIME_END(&t_flight);
sorted_array_insert(t_flight_sorted, &t_flight_num, t_flight);
}
TEST_PERFORMANCE_LESS_THAN(SPI_PER_TRANS_POLLING_NO_DMA, "%d us", t_flight_sorted[(TEST_TIMES+1)/2]);
for (int i = 0; i < TEST_TIMES; i++) {
ESP_LOGI(TAG, "%d", t_flight_sorted[i]);
}
//release the bus
spi_device_release_bus(spi);
speed_deinit(spi);
}
typedef struct {
spi_device_handle_t handle;
bool finished;
} task_context_t;
void spi_task1(void* arg)
{
//task1 send 50 polling transactions, acquire the bus and send another 50
int count=0;
spi_transaction_t t = {
.flags = SPI_TRANS_USE_TXDATA,
.tx_data = { 0x80, 0x12, 0x34, 0x56 },
.length = 4*8,
};
spi_device_handle_t handle = ((task_context_t*)arg)->handle;
for( int j = 0; j < 50; j ++ ) {
TEST_ESP_OK(spi_device_polling_transmit( handle, &t ));
ESP_LOGI( TAG, "task1:%d", count++ );
}
TEST_ESP_OK(spi_device_acquire_bus( handle, portMAX_DELAY ));
for( int j = 0; j < 50; j ++ ) {
TEST_ESP_OK(spi_device_polling_transmit( handle, &t ));
ESP_LOGI( TAG, "task1:%d", count++ );
}
spi_device_release_bus(handle);
ESP_LOGI(TAG, "task1 terminates");
((task_context_t*)arg)->finished = true;
vTaskDelete(NULL);
}
void spi_task2(void* arg)
{
int count=0;
//task2 acquire the bus, send 50 polling transactions and then 50 non-polling
spi_transaction_t t = {
.flags = SPI_TRANS_USE_TXDATA,
.tx_data = { 0x80, 0x12, 0x34, 0x56 },
.length = 4*8,
};
spi_transaction_t *ret_t;
spi_device_handle_t handle = ((task_context_t*)arg)->handle;
TEST_ESP_OK(spi_device_acquire_bus( handle, portMAX_DELAY ));
for (int i = 0; i < 50; i ++) {
TEST_ESP_OK(spi_device_polling_transmit(handle, &t));
ESP_LOGI( TAG, "task2: %d", count++ );
}
for( int j = 0; j < 50; j ++ ) {
TEST_ESP_OK(spi_device_queue_trans( handle, &t, portMAX_DELAY ));
}
for( int j = 0; j < 50; j ++ ) {
TEST_ESP_OK(spi_device_get_trans_result(handle, &ret_t, portMAX_DELAY));
assert(ret_t == &t);
ESP_LOGI( TAG, "task2: %d", count++ );
}
spi_device_release_bus(handle);
vTaskDelay(1);
ESP_LOGI(TAG, "task2 terminates");
((task_context_t*)arg)->finished = true;
vTaskDelete(NULL);
}
void spi_task3(void* arg)
{
//task3 send 30 polling transactions, acquire the bus, send 20 polling transactions and then 50 non-polling
int count=0;
spi_transaction_t t = {
.flags = SPI_TRANS_USE_TXDATA,
.tx_data = { 0x80, 0x12, 0x34, 0x56 },
.length = 4*8,
};
spi_transaction_t *ret_t;
spi_device_handle_t handle = ((task_context_t*)arg)->handle;
for (int i = 0; i < 30; i ++) {
TEST_ESP_OK(spi_device_polling_transmit(handle, &t));
ESP_LOGI( TAG, "task3: %d", count++ );
}
TEST_ESP_OK(spi_device_acquire_bus( handle, portMAX_DELAY ));
for (int i = 0; i < 20; i ++) {
TEST_ESP_OK(spi_device_polling_transmit(handle, &t));
ESP_LOGI( TAG, "task3: %d", count++ );
}
for (int j = 0; j < 50; j++) {
TEST_ESP_OK(spi_device_queue_trans(handle, &t, portMAX_DELAY));
}
for (int j = 0; j < 50; j++) {
TEST_ESP_OK(spi_device_get_trans_result(handle, &ret_t, portMAX_DELAY));
assert(ret_t == &t);
ESP_LOGI(TAG, "task3: %d", count++);
}
spi_device_release_bus(handle);
ESP_LOGI(TAG, "task3 terminates");
((task_context_t*)arg)->finished = true;
vTaskDelete(NULL);
}
TEST_CASE("spi poll tasks","[spi]")
{
task_context_t context1={};
task_context_t context2={};
task_context_t context3={};
TaskHandle_t task1, task2, task3;
esp_err_t ret;
spi_bus_config_t buscfg=SPI_BUS_TEST_DEFAULT_CONFIG();
spi_device_interface_config_t devcfg=SPI_DEVICE_TEST_DEFAULT_CONFIG();
devcfg.queue_size = 100;
//Initialize the SPI bus and 3 devices
ret=spi_bus_initialize(HSPI_HOST, &buscfg, 1);
TEST_ASSERT(ret==ESP_OK);
ret=spi_bus_add_device(HSPI_HOST, &devcfg, &context1.handle);
TEST_ASSERT(ret==ESP_OK);
ret=spi_bus_add_device(HSPI_HOST, &devcfg, &context2.handle);
TEST_ASSERT(ret==ESP_OK);
ret=spi_bus_add_device(HSPI_HOST, &devcfg, &context3.handle);
TEST_ASSERT(ret==ESP_OK);
xTaskCreate( spi_task1, "task1", 2048, &context1, 0, &task1 );
xTaskCreate( spi_task2, "task2", 2048, &context2, 0, &task2 );
xTaskCreate( spi_task3, "task3", 2048, &context3, 0, &task3 );
for(;;){
vTaskDelay(10);
if (context1.finished && context2.finished && context3.finished) break;
}
TEST_ESP_OK( spi_bus_remove_device(context1.handle) );
TEST_ESP_OK( spi_bus_remove_device(context2.handle) );
TEST_ESP_OK( spi_bus_remove_device(context3.handle) );
TEST_ESP_OK( spi_bus_free(HSPI_HOST) );
}
//TODO: add a case when a non-polling transaction happened in the bus-acquiring time and then release the bus then queue a new trans