esp-idf/components/esp_adc_cal/esp_adc_cal_esp32s2.c
Angus Gratton 66fb5a29bb Whitespace: Automated whitespace fixes (large commit)
Apply the pre-commit hook whitespace fixes to all files in the repo.

(Line endings, blank lines at end of file, trailing whitespace)
2020-11-11 07:36:35 +00:00

293 lines
12 KiB
C

// Copyright 2019-2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdint.h>
#include "esp_types.h"
#include "driver/adc.h"
#include "soc/efuse_periph.h"
#include "esp_err.h"
#include "assert.h"
#include "esp_adc_cal.h"
#include "esp_efuse.h"
#define ADC_CAL_CHECK(cond, ret) ({ \
if(!(cond)){ \
return ret; \
} \
})
/* ------------------------ Characterization Constants ---------------------- */
#define ADC_CHAR_VERSION1_EFUSEVAL 1
static const uint32_t adc1_D_mean_low[] = {2231, 1643, 1290, 701};
static const uint32_t adc2_D_mean_low[] = {2305, 1693, 1343, 723};
static const uint32_t adc1_D_mean_high[] = {5775, 5692, 5725, 6209};
static const uint32_t adc2_D_mean_high[] = {5817, 5703, 5731, 6157};
static const int Dlow_data_length = 6;
static const int Dhigh_data_length = 8;
static const int adc_efuse_block = 2;
static const int adc_calib_ver_block = 2;
static const int adc_calib_ver_word_loc = 4;
static const int adc_calib_ver_offset = 4;
static const int adc_calib_ver_len = 3;
static const int adc1_atten0_Dlow_word_loc = 6;
static const int adc2_atten0_Dlow_word_loc = 7;
static const int adc1_atten0_Dhigh_word_loc = 4;
static const int adc2_atten0_Dhigh_word_loc = 5;
static const int adc1_atten0_Dlow_offset = 16;
static const int adc2_atten0_Dlow_offset = 8;
static const int adc1_atten0_Dhigh_offset = 16;
static const int adc2_atten0_Dhigh_offset = 16;
/* ----------------------- EFuse Access Functions --------------------------- */
/**
* Convenience function that reads a few bits from efuse and assembles them.
* For example, if the contents of the EFuse are:
* Word2: 0x1234 Word3:0x5678
* Then, setting base=2, offset=24, len=24 will yield 0x456.
* @note does not check for boundaries, make sure parameters are correct
* @param blk EFuse Block
* @param base the starting word
* @param offset the bit offset in the starting word
* @param bit how many consecutive bits to fetch
* @return the assembled number
*/
static uint32_t get_consecutive_bits_from_blk(int blk, uint32_t base, int offset, int len)
{
base += offset / 32;
offset %= 32;
if (offset + len <= 32 || base == 7) {
uint32_t result = esp_efuse_read_reg(blk, base);
result <<= (32 - offset - len);
result >>= (32 - len);
return result;
} else {
// need to fetch both bytes.
uint64_t result = ((uint64_t)esp_efuse_read_reg(blk, base + 1) << 32) + esp_efuse_read_reg(blk, base);
result &= ((uint64_t)1 << (offset + len)) - 1;
result >>= offset;
return result;
}
}
/**
* To save space in EFuse, the calibration values for adc are compressed.
* The compression scheme is: for X bits of ADC Efuse data,
* The actual ADC reading is: BASE_VALUE + 4*ADC_OFFSET
* where ADC_OFFSET = bits X-1:0 in Efuse, the highest bit is the sign bit (0:+, 1:-).
*
* The following functions do this conversion.
* @param efuse_val raw values read from efuse.
* @param adc_num Specifies the channel number. The 2 adc channels each have different calibration values.
* @param attem Specifies the attenuation. Different attenuation level have different calibration values.
*/
static uint32_t efuse_low_val_to_d(uint16_t efuse_val, adc_unit_t adc_num, adc_atten_t atten)
{
// efuse_val is 5 bits + 6th sign bit.
int32_t rawoffsetval = efuse_val & ((1 << (Dlow_data_length - 1)) - 1);
// if the sign bit is 1, it means it is a negative sign.
int32_t offset = (efuse_val & (1 << (Dlow_data_length - 1))) ? (-rawoffsetval * 4) : (rawoffsetval * 4);
if (adc_num == ADC_UNIT_1) {
return offset + adc1_D_mean_low[atten - ADC_ATTEN_DB_0];
} else {
return offset + adc2_D_mean_low[atten - ADC_ATTEN_DB_0];
}
}
static uint32_t efuse_high_val_to_d (uint16_t efuse_val, adc_unit_t adc_num, adc_atten_t atten)
{
// efuse_val is 7 bits + 8th sign bit.
int32_t rawoffsetval = efuse_val & ((1 << (Dhigh_data_length - 1)) - 1);
int32_t offset = (efuse_val & (1 << (Dhigh_data_length - 1))) ? (-rawoffsetval * 4) : (rawoffsetval * 4);
if (adc_num == ADC_UNIT_1) {
return offset + adc1_D_mean_high[atten - ADC_ATTEN_DB_0];
} else {
return offset + adc2_D_mean_high[atten - ADC_ATTEN_DB_0];
}
}
/**
* To save space in EFuse, the calibration values for adc are compressed.
* The compression scheme is: for X bits of ADC Efuse data,
* The actual ADC reading is: BASE_VALUE + 4*ADC_OFFSET
* where ADC_OFFSET = bits X-1:0 in Efuse, the highest bit is the sign bit (0:+, 1:-).
*
* The following functions do the reading.
* @param efuse_val raw values read from efuse.
* @param adc_num Specifies the channel number. The 2 adc channels each have different calibration values.
* @param attem Specifies the attenuation. Different attenuation level have different calibration values.
*/
static uint32_t read_efuse_tp_low(adc_unit_t adc_num, adc_atten_t atten)
{
// this fcn retrieves and decodes the calibration value stored in efuse.
uint32_t base;
int offset;
// may need to move magic numbers out
if (adc_num == ADC_UNIT_1) {
// the first value is at the 16th bit of the 6th word of the efuse block 2, each value is 6 bits long.
base = adc1_atten0_Dlow_word_loc;
offset = adc1_atten0_Dlow_offset + Dlow_data_length * (atten - ADC_ATTEN_DB_0);
} else {
// the first value is at the 8th bit of the 7th word of the efuse block 2, each value is 6 bits long.
base = adc2_atten0_Dlow_word_loc;
offset = adc2_atten0_Dlow_offset + Dlow_data_length * (atten - ADC_ATTEN_DB_0);
}
uint32_t read_result = get_consecutive_bits_from_blk(adc_efuse_block, base, offset, Dlow_data_length);
return read_result;
}
static uint32_t read_efuse_tp_high(adc_unit_t adc_num, adc_atten_t atten)
{
// this fcn retrieves and decodes the calibration value stored in efuse.
uint32_t base;
int offset;
if (adc_num == ADC_UNIT_1) {
// the first value is at the 16th bit of the 4th word of the efuse block 2, each value is 8 bits long.
base = adc1_atten0_Dhigh_word_loc;
offset = adc1_atten0_Dhigh_offset + Dhigh_data_length * (atten - ADC_ATTEN_DB_0);
} else {
// the first value is at the 16th bit of the 5th word of the efuse block 2, each value is 8 bits long.
base = adc2_atten0_Dhigh_word_loc;
offset = adc2_atten0_Dhigh_offset + Dhigh_data_length * (atten - ADC_ATTEN_DB_0);
}
uint32_t read_result = get_consecutive_bits_from_blk(adc_efuse_block, base, offset, Dhigh_data_length);
return read_result;
}
/* ----------------------- Characterization Functions ----------------------- */
// coeff_a and coeff_b are actually floats
// they are scaled to put them into uint32_t so that the headers do not have to be changed
static const int coeff_a_scaling = 65536;
static const int coeff_b_scaling = 1024;
/**
* The Two Point calibration measures the reading at two specific input voltages, and calculates the (assumed linear) relation
* between input voltage and ADC response. (Response = A * Vinput + B)
* A and B are scaled ints.
* @param high The ADC response at the higher voltage of the corresponding attenuation (600mV, 800mV, 1000mV, 2000mV).
* @param low The ADC response at the lower voltage of the corresponding attenuation (all 250mV).
*
*/
static void characterize_using_two_point(adc_unit_t adc_num,
adc_atten_t atten,
uint32_t high,
uint32_t low,
uint32_t *coeff_a,
uint32_t *coeff_b)
{
// once we have recovered the reference high(Dhigh) and low(Dlow) readings, we can calculate a and b from
// the measured high and low readings
static const uint32_t v_high[] = {600, 800, 1000, 2000};
static const uint32_t v_low = 250;
*coeff_a = coeff_a_scaling * (v_high[atten] - v_low) / (high - low);
*coeff_b = coeff_b_scaling * (v_low * high - v_high[atten] * low) / (high - low);
}
/* ------------------------- Public API ------------------------------------- */
esp_err_t esp_adc_cal_check_efuse(esp_adc_cal_value_t source)
{
if (source != ESP_ADC_CAL_VAL_EFUSE_TP) {
return ESP_ERR_NOT_SUPPORTED;
}
uint8_t adc1_atten0_dh = get_consecutive_bits_from_blk(adc_efuse_block, adc1_atten0_Dhigh_word_loc, adc1_atten0_Dhigh_offset, Dhigh_data_length);
uint8_t adc2_atten0_dh = get_consecutive_bits_from_blk(adc_efuse_block, adc2_atten0_Dhigh_word_loc, adc2_atten0_Dhigh_offset, Dhigh_data_length);
if (!adc1_atten0_dh || !adc2_atten0_dh) {
return ESP_ERR_NOT_SUPPORTED;
}
uint8_t adc_encoding_version = get_consecutive_bits_from_blk(adc_calib_ver_block, adc_calib_ver_word_loc, adc_calib_ver_offset, adc_calib_ver_len);
if (adc_encoding_version != 1) {
// current version only accepts encoding ver 1.
return ESP_ERR_INVALID_VERSION;
}
return ESP_OK;
}
esp_adc_cal_value_t esp_adc_cal_characterize(adc_unit_t adc_num,
adc_atten_t atten,
adc_bits_width_t bit_width,
uint32_t default_vref,
esp_adc_cal_characteristics_t *chars)
{
// Check parameters
assert((adc_num == ADC_UNIT_1) || (adc_num == ADC_UNIT_2));
assert(chars != NULL);
assert(bit_width == ADC_WIDTH_BIT_13);
// Characterize based on efuse Two Point values. If these values are not present in efuse,
// or efuse values are of a version that we do not recognize, automatically assume default values.
uint32_t adc_calib_high, adc_calib_low;
if (esp_adc_cal_check_efuse(ESP_ADC_CAL_VAL_EFUSE_TP) == ESP_OK) {
adc_calib_high = read_efuse_tp_high(adc_num, atten);
adc_calib_low = read_efuse_tp_low(adc_num, atten);
} else {
adc_calib_high = 0;
adc_calib_low = 0;
}
uint32_t high = efuse_high_val_to_d(adc_calib_high, adc_num, atten);
uint32_t low = efuse_low_val_to_d(adc_calib_low, adc_num, atten);
characterize_using_two_point(adc_num, atten, high, low, &(chars->coeff_a), &(chars->coeff_b));
// Initialize remaining fields
chars->adc_num = adc_num;
chars->atten = atten;
chars->bit_width = bit_width;
// these values are not used as the corresponding calibration themes are deprecated.
chars->vref = 0;
chars->low_curve = NULL;
chars->high_curve = NULL;
// in esp32s2 we only use the two point method to calibrate the adc.
return ESP_ADC_CAL_VAL_EFUSE_TP;
}
uint32_t esp_adc_cal_raw_to_voltage(uint32_t adc_reading, const esp_adc_cal_characteristics_t *chars)
{
ADC_CAL_CHECK(chars != NULL, ESP_ERR_INVALID_ARG);
return adc_reading * chars->coeff_a / coeff_a_scaling + chars->coeff_b / coeff_b_scaling;
}
esp_err_t esp_adc_cal_get_voltage(adc_channel_t channel,
const esp_adc_cal_characteristics_t *chars,
uint32_t *voltage)
{
// Check parameters
ADC_CAL_CHECK(chars != NULL, ESP_ERR_INVALID_ARG);
ADC_CAL_CHECK(voltage != NULL, ESP_ERR_INVALID_ARG);
int adc_reading;
if (chars->adc_num == ADC_UNIT_1) {
//Check if channel is valid on ADC1
ADC_CAL_CHECK((adc1_channel_t)channel < ADC1_CHANNEL_MAX, ESP_ERR_INVALID_ARG);
adc_reading = adc1_get_raw(channel);
} else {
//Check if channel is valid on ADC2
ADC_CAL_CHECK((adc2_channel_t)channel < ADC2_CHANNEL_MAX, ESP_ERR_INVALID_ARG);
if (adc2_get_raw(channel, chars->bit_width, &adc_reading) != ESP_OK) {
return ESP_ERR_TIMEOUT; //Timed out waiting for ADC2
}
}
*voltage = esp_adc_cal_raw_to_voltage((uint32_t)adc_reading, chars);
return ESP_OK;
}