mirror of
https://github.com/espressif/esp-idf.git
synced 2024-10-05 20:47:46 -04:00
431 lines
15 KiB
C
431 lines
15 KiB
C
// Copyright 2019 Espressif Systems (Shanghai) PTE LTD
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
// This is a driver for OpenCores Ethernet MAC (https://opencores.org/projects/ethmac).
|
|
// Espressif chips do not use this MAC, but it is supported in QEMU
|
|
// (see hw/net/opencores_eth.c). Since the interface of this MAC is a relatively
|
|
// simple one, it is used for the purpose of running IDF apps in QEMU.
|
|
// The QEMU driver also emulates the DP83848C PHY, which is supported in IDF.
|
|
// Note that this driver is written with QEMU in mind. For example, it doesn't
|
|
// handle errors which QEMU will not report, and doesn't wait for TX to be
|
|
// finished, since QEMU does this instantly.
|
|
|
|
#include <string.h>
|
|
#include <stdlib.h>
|
|
#include <sys/cdefs.h>
|
|
#include <sys/param.h>
|
|
#include "esp_log.h"
|
|
#include "esp_check.h"
|
|
#include "esp_eth.h"
|
|
#include "esp_intr_alloc.h"
|
|
#include "freertos/FreeRTOS.h"
|
|
#include "freertos/task.h"
|
|
#include "freertos/semphr.h"
|
|
#include "hal/cpu_hal.h"
|
|
#include "openeth.h"
|
|
|
|
static const char *TAG = "opencores.emac";
|
|
|
|
// Driver state structure
|
|
typedef struct {
|
|
esp_eth_mac_t parent;
|
|
esp_eth_mediator_t *eth;
|
|
intr_handle_t intr_hdl;
|
|
TaskHandle_t rx_task_hdl;
|
|
int cur_rx_desc;
|
|
int cur_tx_desc;
|
|
uint8_t addr[6];
|
|
uint8_t *rx_buf[RX_BUF_COUNT];
|
|
uint8_t *tx_buf[TX_BUF_COUNT];
|
|
} emac_opencores_t;
|
|
|
|
|
|
// Interrupt handler and the receive task
|
|
|
|
static esp_err_t emac_opencores_receive(esp_eth_mac_t *mac, uint8_t *buf, uint32_t *length);
|
|
|
|
static IRAM_ATTR void emac_opencores_isr_handler(void *args)
|
|
{
|
|
emac_opencores_t *emac = (emac_opencores_t *) args;
|
|
BaseType_t high_task_wakeup;
|
|
|
|
uint32_t status = REG_READ(OPENETH_INT_SOURCE_REG);
|
|
|
|
if (status & OPENETH_INT_RXB) {
|
|
// Notify receive task
|
|
vTaskNotifyGiveFromISR(emac->rx_task_hdl, &high_task_wakeup);
|
|
if (high_task_wakeup) {
|
|
portYIELD_FROM_ISR();
|
|
}
|
|
}
|
|
|
|
if (status & OPENETH_INT_BUSY) {
|
|
ESP_EARLY_LOGW(TAG, "%s: RX frame dropped (0x%x)", __func__, status);
|
|
}
|
|
|
|
// Clear interrupt
|
|
REG_WRITE(OPENETH_INT_SOURCE_REG, status);
|
|
}
|
|
|
|
static void emac_opencores_rx_task(void *arg)
|
|
{
|
|
emac_opencores_t *emac = (emac_opencores_t *)arg;
|
|
uint8_t *buffer = NULL;
|
|
uint32_t length = 0;
|
|
while (1) {
|
|
if (ulTaskNotifyTake(pdFALSE, portMAX_DELAY)) {
|
|
while (true) {
|
|
length = ETH_MAX_PACKET_SIZE;
|
|
buffer = malloc(length);
|
|
if (!buffer) {
|
|
ESP_LOGE(TAG, "no mem for receive buffer");
|
|
} else if (emac_opencores_receive(&emac->parent, buffer, &length) == ESP_OK) {
|
|
// pass the buffer to the upper layer
|
|
if (length) {
|
|
emac->eth->stack_input(emac->eth, buffer, length);
|
|
} else {
|
|
free(buffer);
|
|
}
|
|
} else {
|
|
free(buffer);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
vTaskDelete(NULL);
|
|
}
|
|
|
|
|
|
// Below functions implement the driver interface
|
|
|
|
static esp_err_t emac_opencores_set_mediator(esp_eth_mac_t *mac, esp_eth_mediator_t *eth)
|
|
{
|
|
esp_err_t ret = ESP_OK;
|
|
ESP_GOTO_ON_FALSE(eth, ESP_ERR_INVALID_ARG, err, TAG, "can't set mac's mediator to null");
|
|
emac_opencores_t *emac = __containerof(mac, emac_opencores_t, parent);
|
|
emac->eth = eth;
|
|
return ESP_OK;
|
|
err:
|
|
return ret;
|
|
}
|
|
|
|
static esp_err_t emac_opencores_write_phy_reg(esp_eth_mac_t *mac, uint32_t phy_addr, uint32_t phy_reg, uint32_t reg_value)
|
|
{
|
|
ESP_LOGV(TAG, "%s: addr=%d reg=0x%x val=0x%04x", __func__, phy_addr, phy_reg, reg_value);
|
|
REG_SET_FIELD(OPENETH_MIIADDRESS_REG, OPENETH_FIAD, phy_addr);
|
|
REG_SET_FIELD(OPENETH_MIIADDRESS_REG, OPENETH_RGAD, phy_reg);
|
|
REG_WRITE(OPENETH_MIITX_DATA_REG, reg_value & OPENETH_MII_DATA_MASK);
|
|
REG_SET_BIT(OPENETH_MIICOMMAND_REG, OPENETH_WCTRLDATA);
|
|
return ESP_OK;
|
|
}
|
|
|
|
static esp_err_t emac_opencores_read_phy_reg(esp_eth_mac_t *mac, uint32_t phy_addr, uint32_t phy_reg, uint32_t *reg_value)
|
|
{
|
|
esp_err_t ret = ESP_OK;
|
|
ESP_GOTO_ON_FALSE(reg_value, ESP_ERR_INVALID_ARG, err, TAG, "can't set reg_value to null");
|
|
REG_SET_FIELD(OPENETH_MIIADDRESS_REG, OPENETH_FIAD, phy_addr);
|
|
REG_SET_FIELD(OPENETH_MIIADDRESS_REG, OPENETH_RGAD, phy_reg);
|
|
REG_SET_BIT(OPENETH_MIICOMMAND_REG, OPENETH_RSTAT);
|
|
*reg_value = (REG_READ(OPENETH_MIIRX_DATA_REG) & OPENETH_MII_DATA_MASK);
|
|
ESP_LOGV(TAG, "%s: addr=%d reg=0x%x val=0x%04x", __func__, phy_addr, phy_reg, *reg_value);
|
|
return ESP_OK;
|
|
err:
|
|
return ret;
|
|
}
|
|
|
|
static esp_err_t emac_opencores_set_addr(esp_eth_mac_t *mac, uint8_t *addr)
|
|
{
|
|
ESP_LOGV(TAG, "%s: " MACSTR, __func__, MAC2STR(addr));
|
|
esp_err_t ret = ESP_OK;
|
|
ESP_GOTO_ON_FALSE(addr, ESP_ERR_INVALID_ARG, err, TAG, "can't set mac addr to null");
|
|
emac_opencores_t *emac = __containerof(mac, emac_opencores_t, parent);
|
|
memcpy(emac->addr, addr, 6);
|
|
const uint8_t mac0[4] = {addr[5], addr[4], addr[3], addr[2]};
|
|
const uint8_t mac1[4] = {addr[1], addr[0]};
|
|
uint32_t mac0_u32, mac1_u32;
|
|
memcpy(&mac0_u32, &mac0, 4);
|
|
memcpy(&mac1_u32, &mac1, 4);
|
|
REG_WRITE(OPENETH_MAC_ADDR0_REG, mac0_u32);
|
|
REG_WRITE(OPENETH_MAC_ADDR1_REG, mac1_u32);
|
|
return ESP_OK;
|
|
err:
|
|
return ret;
|
|
}
|
|
|
|
static esp_err_t emac_opencores_get_addr(esp_eth_mac_t *mac, uint8_t *addr)
|
|
{
|
|
ESP_LOGV(TAG, "%s: " MACSTR, __func__, MAC2STR(addr));
|
|
esp_err_t ret = ESP_OK;
|
|
ESP_GOTO_ON_FALSE(addr, ESP_ERR_INVALID_ARG, err, TAG, "can't set mac addr to null");
|
|
emac_opencores_t *emac = __containerof(mac, emac_opencores_t, parent);
|
|
memcpy(addr, emac->addr, 6);
|
|
return ESP_OK;
|
|
err:
|
|
return ret;
|
|
}
|
|
|
|
static esp_err_t emac_opencores_set_link(esp_eth_mac_t *mac, eth_link_t link)
|
|
{
|
|
ESP_LOGV(TAG, "%s: %s", __func__, link == ETH_LINK_UP ? "up" : "down");
|
|
esp_err_t ret = ESP_OK;
|
|
emac_opencores_t *emac = __containerof(mac, emac_opencores_t, parent);
|
|
switch (link) {
|
|
case ETH_LINK_UP:
|
|
ESP_GOTO_ON_ERROR(esp_intr_enable(emac->intr_hdl), err, TAG, "enable interrupt failed");
|
|
openeth_enable();
|
|
break;
|
|
case ETH_LINK_DOWN:
|
|
ESP_GOTO_ON_ERROR(esp_intr_disable(emac->intr_hdl), err, TAG, "disable interrupt failed");
|
|
openeth_disable();
|
|
break;
|
|
default:
|
|
ESP_GOTO_ON_FALSE(false, ESP_ERR_INVALID_ARG, err, TAG, "unknown link status");
|
|
break;
|
|
}
|
|
return ESP_OK;
|
|
err:
|
|
return ret;
|
|
}
|
|
|
|
static esp_err_t emac_opencores_set_speed(esp_eth_mac_t *mac, eth_speed_t speed)
|
|
{
|
|
/* QEMU doesn't emulate PHY speed, so accept any value */
|
|
return ESP_OK;
|
|
}
|
|
|
|
static esp_err_t emac_opencores_set_duplex(esp_eth_mac_t *mac, eth_duplex_t duplex)
|
|
{
|
|
/* QEMU doesn't emulate full/half duplex, so accept any value */
|
|
return ESP_OK;
|
|
}
|
|
|
|
static esp_err_t emac_opencores_set_promiscuous(esp_eth_mac_t *mac, bool enable)
|
|
{
|
|
if (enable) {
|
|
REG_SET_BIT(OPENETH_MODER_REG, OPENETH_PRO);
|
|
} else {
|
|
REG_CLR_BIT(OPENETH_MODER_REG, OPENETH_PRO);
|
|
}
|
|
return ESP_OK;
|
|
}
|
|
|
|
static esp_err_t emac_opencores_enable_flow_ctrl(esp_eth_mac_t *mac, bool enable)
|
|
{
|
|
/* QEMU doesn't emulate flow control function, so accept any value */
|
|
return ESP_OK;
|
|
}
|
|
|
|
static esp_err_t emac_opencores_set_peer_pause_ability(esp_eth_mac_t *mac, uint32_t ability)
|
|
{
|
|
/* QEMU doesn't emulate PAUSE function, so accept any value */
|
|
return ESP_OK;
|
|
}
|
|
|
|
static esp_err_t emac_opencores_transmit(esp_eth_mac_t *mac, uint8_t *buf, uint32_t length)
|
|
{
|
|
esp_err_t ret = ESP_OK;
|
|
emac_opencores_t *emac = __containerof(mac, emac_opencores_t, parent);
|
|
ESP_GOTO_ON_FALSE(length < DMA_BUF_SIZE * TX_BUF_COUNT, ESP_ERR_INVALID_SIZE, err, TAG, "insufficient TX buffer size");
|
|
|
|
uint32_t bytes_remaining = length;
|
|
// In QEMU, there never is a TX operation in progress, so start with descriptor 0.
|
|
|
|
ESP_LOGV(TAG, "%s: len=%d", __func__, length);
|
|
while (bytes_remaining > 0) {
|
|
uint32_t will_write = MIN(bytes_remaining, DMA_BUF_SIZE);
|
|
memcpy(emac->tx_buf[emac->cur_tx_desc], buf, will_write);
|
|
openeth_tx_desc_t *desc_ptr = openeth_tx_desc(emac->cur_tx_desc);
|
|
openeth_tx_desc_t desc_val = *desc_ptr;
|
|
desc_val.wr = (emac->cur_tx_desc == TX_BUF_COUNT - 1);
|
|
desc_val.len = will_write;
|
|
desc_val.rd = 1;
|
|
// TXEN is already set, and this triggers a TX operation for the descriptor
|
|
ESP_LOGV(TAG, "%s: desc %d (%p) len=%d wr=%d", __func__, emac->cur_tx_desc, desc_ptr, will_write, desc_val.wr);
|
|
*desc_ptr = desc_val;
|
|
bytes_remaining -= will_write;
|
|
buf += will_write;
|
|
emac->cur_tx_desc = (emac->cur_tx_desc + 1) % TX_BUF_COUNT;
|
|
}
|
|
|
|
return ESP_OK;
|
|
err:
|
|
return ret;
|
|
}
|
|
|
|
static esp_err_t emac_opencores_receive(esp_eth_mac_t *mac, uint8_t *buf, uint32_t *length)
|
|
{
|
|
esp_err_t ret = ESP_OK;
|
|
emac_opencores_t *emac = __containerof(mac, emac_opencores_t, parent);
|
|
|
|
openeth_rx_desc_t *desc_ptr = openeth_rx_desc(emac->cur_rx_desc);
|
|
openeth_rx_desc_t desc_val = *desc_ptr;
|
|
ESP_LOGV(TAG, "%s: desc %d (%p) e=%d len=%d wr=%d", __func__, emac->cur_rx_desc, desc_ptr, desc_val.e, desc_val.len, desc_val.wr);
|
|
if (desc_val.e) {
|
|
ret = ESP_ERR_INVALID_STATE;
|
|
goto err;
|
|
}
|
|
size_t rx_length = desc_val.len;
|
|
ESP_GOTO_ON_FALSE(*length >= rx_length, ESP_ERR_INVALID_SIZE, err, TAG, "RX length too large");
|
|
*length = rx_length;
|
|
memcpy(buf, desc_val.rxpnt, *length);
|
|
desc_val.e = 1;
|
|
*desc_ptr = desc_val;
|
|
|
|
emac->cur_rx_desc = (emac->cur_rx_desc + 1) % RX_BUF_COUNT;
|
|
return ESP_OK;
|
|
err:
|
|
return ret;
|
|
}
|
|
|
|
static esp_err_t emac_opencores_init(esp_eth_mac_t *mac)
|
|
{
|
|
esp_err_t ret = ESP_OK;
|
|
emac_opencores_t *emac = __containerof(mac, emac_opencores_t, parent);
|
|
esp_eth_mediator_t *eth = emac->eth;
|
|
ESP_GOTO_ON_ERROR(eth->on_state_changed(eth, ETH_STATE_LLINIT, NULL), err, TAG, "lowlevel init failed");
|
|
ESP_GOTO_ON_ERROR(esp_read_mac(emac->addr, ESP_MAC_ETH), err, TAG, "fetch ethernet mac address failed");
|
|
|
|
// Sanity check
|
|
if (REG_READ(OPENETH_MODER_REG) != OPENETH_MODER_DEFAULT) {
|
|
ESP_LOGE(TAG, "CONFIG_ETH_USE_OPENETH should only be used when running in QEMU.");
|
|
ESP_LOGE(TAG, "When running the app on the ESP32, use CONFIG_ETH_USE_ESP32_EMAC instead.");
|
|
abort();
|
|
}
|
|
// Initialize the MAC
|
|
openeth_reset();
|
|
openeth_set_tx_desc_cnt(TX_BUF_COUNT);
|
|
emac_opencores_set_addr(mac, emac->addr);
|
|
|
|
return ESP_OK;
|
|
err:
|
|
eth->on_state_changed(eth, ETH_STATE_DEINIT, NULL);
|
|
return ret;
|
|
}
|
|
|
|
static esp_err_t emac_opencores_deinit(esp_eth_mac_t *mac)
|
|
{
|
|
emac_opencores_t *emac = __containerof(mac, emac_opencores_t, parent);
|
|
esp_eth_mediator_t *eth = emac->eth;
|
|
eth->on_state_changed(eth, ETH_STATE_DEINIT, NULL);
|
|
return ESP_OK;
|
|
}
|
|
|
|
static esp_err_t emac_opencores_start(esp_eth_mac_t *mac)
|
|
{
|
|
openeth_enable();
|
|
return ESP_OK;
|
|
}
|
|
|
|
static esp_err_t emac_opencores_stop(esp_eth_mac_t *mac)
|
|
{
|
|
openeth_disable();
|
|
return ESP_OK;
|
|
}
|
|
|
|
static esp_err_t emac_opencores_del(esp_eth_mac_t *mac)
|
|
{
|
|
emac_opencores_t *emac = __containerof(mac, emac_opencores_t, parent);
|
|
esp_intr_free(emac->intr_hdl);
|
|
vTaskDelete(emac->rx_task_hdl);
|
|
for (int i = 0; i < RX_BUF_COUNT; i++) {
|
|
free(emac->rx_buf[i]);
|
|
}
|
|
for (int i = 0; i < TX_BUF_COUNT; i++) {
|
|
free(emac->tx_buf[i]);
|
|
}
|
|
free(emac);
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_eth_mac_t *esp_eth_mac_new_openeth(const eth_mac_config_t *config)
|
|
{
|
|
esp_eth_mac_t *ret = NULL;
|
|
emac_opencores_t *emac = NULL;
|
|
ESP_GOTO_ON_FALSE(config, NULL, out, TAG, "can't set mac config to null");
|
|
emac = calloc(1, sizeof(emac_opencores_t));
|
|
ESP_GOTO_ON_FALSE(emac, NULL, out, TAG, "calloc emac failed");
|
|
|
|
// Allocate DMA buffers
|
|
for (int i = 0; i < RX_BUF_COUNT; i++) {
|
|
emac->rx_buf[i] = heap_caps_calloc(1, DMA_BUF_SIZE, MALLOC_CAP_DMA);
|
|
if (!(emac->rx_buf[i])) {
|
|
goto out;
|
|
}
|
|
openeth_init_rx_desc(openeth_rx_desc(i), emac->rx_buf[i]);
|
|
}
|
|
openeth_rx_desc(RX_BUF_COUNT - 1)->wr = 1;
|
|
emac->cur_rx_desc = 0;
|
|
|
|
for (int i = 0; i < TX_BUF_COUNT; i++) {
|
|
emac->tx_buf[i] = heap_caps_calloc(1, DMA_BUF_SIZE, MALLOC_CAP_DMA);
|
|
if (!(emac->tx_buf[i])) {
|
|
goto out;
|
|
}
|
|
openeth_init_tx_desc(openeth_tx_desc(i), emac->tx_buf[i]);
|
|
}
|
|
openeth_tx_desc(TX_BUF_COUNT - 1)->wr = 1;
|
|
emac->cur_tx_desc = 0;
|
|
|
|
emac->parent.set_mediator = emac_opencores_set_mediator;
|
|
emac->parent.init = emac_opencores_init;
|
|
emac->parent.deinit = emac_opencores_deinit;
|
|
emac->parent.start = emac_opencores_start;
|
|
emac->parent.stop = emac_opencores_stop;
|
|
emac->parent.del = emac_opencores_del;
|
|
emac->parent.write_phy_reg = emac_opencores_write_phy_reg;
|
|
emac->parent.read_phy_reg = emac_opencores_read_phy_reg;
|
|
emac->parent.set_addr = emac_opencores_set_addr;
|
|
emac->parent.get_addr = emac_opencores_get_addr;
|
|
emac->parent.set_speed = emac_opencores_set_speed;
|
|
emac->parent.set_duplex = emac_opencores_set_duplex;
|
|
emac->parent.set_link = emac_opencores_set_link;
|
|
emac->parent.set_promiscuous = emac_opencores_set_promiscuous;
|
|
emac->parent.set_peer_pause_ability = emac_opencores_set_peer_pause_ability;
|
|
emac->parent.enable_flow_ctrl = emac_opencores_enable_flow_ctrl;
|
|
emac->parent.transmit = emac_opencores_transmit;
|
|
emac->parent.receive = emac_opencores_receive;
|
|
|
|
// Initialize the interrupt
|
|
ESP_GOTO_ON_FALSE(esp_intr_alloc(OPENETH_INTR_SOURCE, ESP_INTR_FLAG_IRAM, emac_opencores_isr_handler, emac, &(emac->intr_hdl)), NULL, out, TAG, "alloc emac interrupt failed");
|
|
|
|
// Create the RX task
|
|
BaseType_t core_num = tskNO_AFFINITY;
|
|
if (config->flags & ETH_MAC_FLAG_PIN_TO_CORE) {
|
|
core_num = cpu_hal_get_core_id();
|
|
}
|
|
BaseType_t xReturned = xTaskCreatePinnedToCore(emac_opencores_rx_task, "emac_rx", config->rx_task_stack_size, emac,
|
|
config->rx_task_prio, &emac->rx_task_hdl, core_num);
|
|
ESP_GOTO_ON_FALSE(xReturned == pdPASS, NULL, out, TAG, "create emac_rx task failed");
|
|
return &(emac->parent);
|
|
|
|
out:
|
|
if (emac) {
|
|
if (emac->rx_task_hdl) {
|
|
vTaskDelete(emac->rx_task_hdl);
|
|
}
|
|
if (emac->intr_hdl) {
|
|
esp_intr_free(emac->intr_hdl);
|
|
}
|
|
for (int i = 0; i < TX_BUF_COUNT; i++) {
|
|
free(emac->tx_buf[i]);
|
|
}
|
|
for (int i = 0; i < RX_BUF_COUNT; i++) {
|
|
free(emac->rx_buf[i]);
|
|
}
|
|
free(emac);
|
|
}
|
|
return ret;
|
|
}
|