mirror of
https://github.com/espressif/esp-idf.git
synced 2024-10-05 20:47:46 -04:00
90f2d3199a
ESP32 V1 and V2 - protection bits. ESP32xx V2: revoke bits, protection bits - refactor efuse component - adds some APIs for esp32 chips as well as for esp32xx chips
238 lines
9.5 KiB
C
238 lines
9.5 KiB
C
// Copyright 2019-2020 Espressif Systems (Shanghai) PTE LTD
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include <stdint.h>
|
|
#include "esp_types.h"
|
|
#include "driver/adc.h"
|
|
#include "soc/efuse_periph.h"
|
|
#include "esp_err.h"
|
|
#include "assert.h"
|
|
#include "esp_adc_cal.h"
|
|
#include "esp_efuse.h"
|
|
#include "esp_efuse_table.h"
|
|
#include "esp_efuse_rtc_table.h"
|
|
#include "hal/adc_hal.h"
|
|
|
|
#define ADC_CAL_CHECK(cond, ret) ({ \
|
|
if(!(cond)){ \
|
|
return ret; \
|
|
} \
|
|
})
|
|
const static char LOG_TAG[] = "adc_calib";
|
|
|
|
/* ------------------------ Characterization Constants ---------------------- */
|
|
|
|
// coeff_a and coeff_b are actually floats
|
|
// they are scaled to put them into uint32_t so that the headers do not have to be changed
|
|
static const int coeff_a_scaling = 65536;
|
|
static const int coeff_b_scaling = 1024;
|
|
/* -------------------- Characterization Helper Data Types ------------------ */
|
|
typedef struct {
|
|
int adc_calib_high;
|
|
int adc_calib_low;
|
|
} adc_calib_data_ver1;
|
|
|
|
typedef struct {
|
|
int adc_calib_high; // the reading of adc ...
|
|
int adc_calib_high_voltage; // ... at this voltage (mV)
|
|
} adc_calib_data_ver2;
|
|
|
|
typedef struct {
|
|
char version_num;
|
|
adc_unit_t adc_num;
|
|
adc_atten_t atten_level;
|
|
union {
|
|
adc_calib_data_ver1 ver1;
|
|
adc_calib_data_ver2 ver2;
|
|
} efuse_data;
|
|
} adc_calib_parsed_info;
|
|
|
|
static bool prepare_calib_data_for(adc_unit_t adc_num, adc_atten_t atten, adc_calib_parsed_info *parsed_data_storage)
|
|
{
|
|
int version_num = esp_efuse_rtc_table_read_calib_version();
|
|
int tag;
|
|
parsed_data_storage->version_num = version_num;
|
|
parsed_data_storage->adc_num = adc_num;
|
|
parsed_data_storage->atten_level = atten;
|
|
switch (version_num) {
|
|
case 1:
|
|
// note: use the adc_num as in hal, which start from 0.
|
|
tag = esp_efuse_rtc_table_get_tag(version_num, adc_num, atten, RTCCALIB_V1_PARAM_VLOW);
|
|
parsed_data_storage->efuse_data.ver1.adc_calib_low = esp_efuse_rtc_table_get_parsed_efuse_value(tag, false);
|
|
tag = esp_efuse_rtc_table_get_tag(version_num, adc_num, atten, RTCCALIB_V1_PARAM_VHIGH);
|
|
parsed_data_storage->efuse_data.ver1.adc_calib_high = esp_efuse_rtc_table_get_parsed_efuse_value(tag, false);
|
|
break;
|
|
case 2:
|
|
tag = esp_efuse_rtc_table_get_tag(version_num, adc_num, atten, RTCCALIB_V2_PARAM_VHIGH);
|
|
parsed_data_storage->efuse_data.ver2.adc_calib_high = esp_efuse_rtc_table_get_parsed_efuse_value(tag, false);
|
|
switch (parsed_data_storage->atten_level) {
|
|
case ADC_ATTEN_DB_0:
|
|
parsed_data_storage->efuse_data.ver2.adc_calib_high_voltage = 600;
|
|
break;
|
|
case ADC_ATTEN_DB_2_5:
|
|
parsed_data_storage->efuse_data.ver2.adc_calib_high_voltage = 800;
|
|
break;
|
|
case ADC_ATTEN_DB_6:
|
|
parsed_data_storage->efuse_data.ver2.adc_calib_high_voltage = 1000;
|
|
break;
|
|
case ADC_ATTEN_DB_11:
|
|
parsed_data_storage->efuse_data.ver2.adc_calib_high_voltage = 2000;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
default:
|
|
// fall back to case 1 with zeros as params.
|
|
parsed_data_storage->version_num = 1;
|
|
tag = esp_efuse_rtc_table_get_tag(version_num, adc_num, atten, RTCCALIB_V1_PARAM_VLOW);
|
|
parsed_data_storage->efuse_data.ver1.adc_calib_high = esp_efuse_rtc_table_get_parsed_efuse_value(tag, true);
|
|
tag = esp_efuse_rtc_table_get_tag(version_num, adc_num, atten, RTCCALIB_V1_PARAM_VHIGH);
|
|
parsed_data_storage->efuse_data.ver1.adc_calib_low = esp_efuse_rtc_table_get_parsed_efuse_value(tag, true);
|
|
break;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* ----------------------- Characterization Functions ----------------------- */
|
|
/**
|
|
* (Used in V1 of calibration scheme)
|
|
* The Two Point calibration measures the reading at two specific input voltages, and calculates the (assumed linear) relation
|
|
* between input voltage and ADC response. (Response = A * Vinput + B)
|
|
* A and B are scaled ints.
|
|
* @param high The ADC response at the higher voltage of the corresponding attenuation (600mV, 800mV, 1000mV, 2000mV).
|
|
* @param low The ADC response at the lower voltage of the corresponding attenuation (all 250mV).
|
|
*
|
|
*/
|
|
static void characterize_using_two_point(adc_unit_t adc_num,
|
|
adc_atten_t atten,
|
|
uint32_t high,
|
|
uint32_t low,
|
|
uint32_t *coeff_a,
|
|
uint32_t *coeff_b)
|
|
{
|
|
// once we have recovered the reference high(Dhigh) and low(Dlow) readings, we can calculate a and b from
|
|
// the measured high and low readings
|
|
static const uint32_t v_high[] = {600, 800, 1000, 2000};
|
|
static const uint32_t v_low = 250;
|
|
*coeff_a = coeff_a_scaling * (v_high[atten] - v_low) / (high - low);
|
|
*coeff_b = coeff_b_scaling * (v_low * high - v_high[atten] * low) / (high - low);
|
|
}
|
|
|
|
/*
|
|
* Estimate the (assumed) linear relationship btwn the measured raw value and the voltage
|
|
* with the previously done measurement when the chip was manufactured.
|
|
* */
|
|
static bool calculate_characterization_coefficients(const adc_calib_parsed_info *parsed_data, esp_adc_cal_characteristics_t *chars)
|
|
{
|
|
switch (parsed_data->version_num) {
|
|
case 1:
|
|
ESP_LOGD(LOG_TAG, "Calib V1, low%dmV, high%dmV\n", parsed_data->efuse_data.ver1.adc_calib_low, parsed_data->efuse_data.ver1.adc_calib_high);
|
|
|
|
characterize_using_two_point(parsed_data->adc_num, parsed_data->atten_level,
|
|
parsed_data->efuse_data.ver1.adc_calib_high, parsed_data->efuse_data.ver1.adc_calib_low,
|
|
&(chars->coeff_a), &(chars->coeff_b));
|
|
break;
|
|
case 2:
|
|
ESP_LOGD(LOG_TAG, "Calib V2, volt%dmV\n", parsed_data->efuse_data.ver2.adc_calib_high);
|
|
chars->coeff_a = coeff_a_scaling * parsed_data->efuse_data.ver2.adc_calib_high_voltage /
|
|
parsed_data->efuse_data.ver2.adc_calib_high;
|
|
chars->coeff_b = 0;
|
|
break;
|
|
default:
|
|
return false;
|
|
break;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* ------------------------- Public API ------------------------------------- */
|
|
esp_err_t esp_adc_cal_check_efuse(esp_adc_cal_value_t source)
|
|
{
|
|
if (source != ESP_ADC_CAL_VAL_EFUSE_TP) {
|
|
return ESP_ERR_NOT_SUPPORTED;
|
|
}
|
|
uint8_t adc_encoding_version = esp_efuse_rtc_table_read_calib_version();
|
|
if (adc_encoding_version != 1 && adc_encoding_version != 2) {
|
|
// current version only accepts encoding ver 1 and ver 2.
|
|
return ESP_ERR_INVALID_VERSION;
|
|
}
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_adc_cal_value_t esp_adc_cal_characterize(adc_unit_t adc_num,
|
|
adc_atten_t atten,
|
|
adc_bits_width_t bit_width,
|
|
uint32_t default_vref,
|
|
esp_adc_cal_characteristics_t *chars)
|
|
{
|
|
bool res;
|
|
adc_calib_parsed_info efuse_parsed_data = {0};
|
|
// Check parameters
|
|
assert((adc_num == ADC_UNIT_1) || (adc_num == ADC_UNIT_2));
|
|
assert(chars != NULL);
|
|
assert(bit_width == ADC_WIDTH_BIT_13);
|
|
|
|
// make sure adc is calibrated.
|
|
res = prepare_calib_data_for(adc_num, atten, &efuse_parsed_data);
|
|
assert(res);
|
|
res = calculate_characterization_coefficients(&efuse_parsed_data, chars);
|
|
assert(res);
|
|
ESP_LOGD(LOG_TAG, "adc%d (atten leven %d) calibration done: A:%d B:%d\n", adc_num, atten, chars->coeff_a, chars->coeff_b);
|
|
|
|
// Initialize remaining fields
|
|
chars->adc_num = adc_num;
|
|
chars->atten = atten;
|
|
chars->bit_width = bit_width;
|
|
|
|
// these values are not used as the corresponding calibration themes are deprecated.
|
|
chars->vref = 0;
|
|
chars->low_curve = NULL;
|
|
chars->high_curve = NULL;
|
|
|
|
// in esp32s2 we only use the two point method to calibrate the adc.
|
|
return ESP_ADC_CAL_VAL_EFUSE_TP;
|
|
}
|
|
|
|
uint32_t esp_adc_cal_raw_to_voltage(uint32_t adc_reading, const esp_adc_cal_characteristics_t *chars)
|
|
{
|
|
ADC_CAL_CHECK(chars != NULL, ESP_ERR_INVALID_ARG);
|
|
|
|
return adc_reading * chars->coeff_a / coeff_a_scaling + chars->coeff_b / coeff_b_scaling;
|
|
}
|
|
|
|
esp_err_t esp_adc_cal_get_voltage(adc_channel_t channel,
|
|
const esp_adc_cal_characteristics_t *chars,
|
|
uint32_t *voltage)
|
|
{
|
|
// Check parameters
|
|
ADC_CAL_CHECK(chars != NULL, ESP_ERR_INVALID_ARG);
|
|
ADC_CAL_CHECK(voltage != NULL, ESP_ERR_INVALID_ARG);
|
|
|
|
int adc_reading;
|
|
if (chars->adc_num == ADC_UNIT_1) {
|
|
//Check if channel is valid on ADC1
|
|
ADC_CAL_CHECK((adc1_channel_t)channel < ADC1_CHANNEL_MAX, ESP_ERR_INVALID_ARG);
|
|
adc_reading = adc1_get_raw(channel);
|
|
} else {
|
|
//Check if channel is valid on ADC2
|
|
ADC_CAL_CHECK((adc2_channel_t)channel < ADC2_CHANNEL_MAX, ESP_ERR_INVALID_ARG);
|
|
if (adc2_get_raw(channel, chars->bit_width, &adc_reading) != ESP_OK) {
|
|
return ESP_ERR_TIMEOUT; //Timed out waiting for ADC2
|
|
}
|
|
}
|
|
*voltage = esp_adc_cal_raw_to_voltage((uint32_t)adc_reading, chars);
|
|
return ESP_OK;
|
|
}
|