esp-idf/components/usb/usb_host.c
Darian Leung 095b541125 change(usb/host): Remove some handler function event flags
This commit removes internal event flags in the USB Host Library event handling
functions (i.e., usb_host_lib_handle_events() and usb_host_client_handle_events()).

Previously, these flags were added to reduce the number of times semaphores
were given. However, these flags were removed as the performance gain is
negligible and made the logic more complicated.

For usb_host_client_handle_events(), the following flags were removed:

- Remove 'events_pending' flag. The semaphore is now always given
- Remove 'blocked' flag. The 'handling_events' flag is already sufficient
- Critical sections are now shortened due to simplication of semaphore usage.

For usb_host_lib_handle_events(), the following flags were removed:

- Remove 'process_pending' flag. The semaphore is now always given
- Renamed 'blocked' flag to 'handling_events'
2023-11-24 22:08:57 +08:00

1307 lines
45 KiB
C

/*
* SPDX-FileCopyrightText: 2015-2023 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
/*
Warning: The USB Host Library API is still a beta version and may be subject to change
*/
#include <stdlib.h>
#include <stdint.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/queue.h"
#include "freertos/semphr.h"
#include "esp_err.h"
#include "esp_log.h"
#include "esp_heap_caps.h"
#include "hub.h"
#include "usbh.h"
#include "hcd.h"
#include "esp_private/usb_phy.h"
#include "usb/usb_host.h"
static portMUX_TYPE host_lock = portMUX_INITIALIZER_UNLOCKED;
#define HOST_ENTER_CRITICAL_ISR() portENTER_CRITICAL_ISR(&host_lock)
#define HOST_EXIT_CRITICAL_ISR() portEXIT_CRITICAL_ISR(&host_lock)
#define HOST_ENTER_CRITICAL() portENTER_CRITICAL(&host_lock)
#define HOST_EXIT_CRITICAL() portEXIT_CRITICAL(&host_lock)
#define HOST_ENTER_CRITICAL_SAFE() portENTER_CRITICAL_SAFE(&host_lock)
#define HOST_EXIT_CRITICAL_SAFE() portEXIT_CRITICAL_SAFE(&host_lock)
#define HOST_CHECK(cond, ret_val) ({ \
if (!(cond)) { \
return (ret_val); \
} \
})
#define HOST_CHECK_FROM_CRIT(cond, ret_val) ({ \
if (!(cond)) { \
HOST_EXIT_CRITICAL(); \
return ret_val; \
} \
})
#define PROCESS_REQUEST_PENDING_FLAG_USBH 0x01
#define PROCESS_REQUEST_PENDING_FLAG_HUB 0x02
typedef struct ep_wrapper_s ep_wrapper_t;
typedef struct interface_s interface_t;
typedef struct client_s client_t;
struct ep_wrapper_s {
// Dynamic members require a critical section
struct {
TAILQ_ENTRY(ep_wrapper_s) tailq_entry;
union {
struct {
uint32_t pending: 1;
uint32_t reserved31: 31;
};
} flags;
uint32_t num_urb_inflight;
usbh_ep_event_t last_event;
} dynamic;
// Constant members do no change after claiming the interface thus do not require a critical section
struct {
usbh_ep_handle_t ep_hdl;
interface_t *intf_obj;
} constant;
};
struct interface_s {
// Dynamic members require a critical section
struct {
TAILQ_ENTRY(interface_s) tailq_entry;
} mux_protected;
// Constant members do no change after claiming the interface thus do not require a critical section
struct {
const usb_intf_desc_t *intf_desc;
usb_device_handle_t dev_hdl;
client_t *client_obj;
ep_wrapper_t *endpoints[0];
} constant;
};
struct client_s {
// Dynamic members require a critical section
struct {
TAILQ_ENTRY(client_s) tailq_entry;
TAILQ_HEAD(tailhead_pending_ep, ep_wrapper_s) pending_ep_tailq;
TAILQ_HEAD(tailhead_idle_ep, ep_wrapper_s) idle_ep_tailq;
TAILQ_HEAD(tailhead_done_ctrl_xfers, urb_s) done_ctrl_xfer_tailq;
union {
struct {
uint32_t handling_events: 1;
uint32_t taking_mux: 1;
uint32_t reserved6: 6;
uint32_t num_intf_claimed: 8;
uint32_t reserved16: 16;
};
uint32_t val;
} flags;
uint32_t num_done_ctrl_xfer;
uint32_t opened_dev_addr_map;
} dynamic;
// Mux protected members must be protected by host library the mux_lock when accessed
struct {
TAILQ_HEAD(tailhead_interfaces, interface_s) interface_tailq;
} mux_protected;
// Constant members do no change after registration thus do not require a critical section
struct {
SemaphoreHandle_t event_sem;
usb_host_client_event_cb_t event_callback;
void *callback_arg;
QueueHandle_t event_msg_queue;
} constant;
};
typedef struct {
// Dynamic members require a critical section
struct {
// Access to these should be done in a critical section
uint32_t process_pending_flags;
uint32_t lib_event_flags;
union {
struct {
uint32_t handling_events: 1;
uint32_t reserved7: 7;
uint32_t num_clients: 8;
uint32_t reserved16: 16;
};
uint32_t val;
} flags;
} dynamic;
// Mux protected members must be protected by host library the mux_lock when accessed
struct {
TAILQ_HEAD(tailhead_clients, client_s) client_tailq; // List of all clients registered
} mux_protected;
// Constant members do no change after installation thus do not require a critical section
struct {
SemaphoreHandle_t event_sem;
SemaphoreHandle_t mux_lock;
usb_phy_handle_t phy_handle; // Will be NULL if host library is installed with skip_phy_setup
} constant;
} host_lib_t;
static host_lib_t *p_host_lib_obj = NULL;
const char *USB_HOST_TAG = "USB HOST";
// ----------------------------------------------------- Helpers -------------------------------------------------------
static inline void _record_client_opened_device(client_t *client_obj, uint8_t dev_addr)
{
assert(dev_addr != 0);
client_obj->dynamic.opened_dev_addr_map |= (1 << (dev_addr - 1));
}
static inline void _clear_client_opened_device(client_t *client_obj, uint8_t dev_addr)
{
assert(dev_addr != 0);
client_obj->dynamic.opened_dev_addr_map &= ~(1 << (dev_addr - 1));
}
static inline bool _check_client_opened_device(client_t *client_obj, uint8_t dev_addr)
{
assert(dev_addr != 0);
return (client_obj->dynamic.opened_dev_addr_map & (1 << (dev_addr - 1)));
}
static bool _unblock_client(client_t *client_obj, bool in_isr)
{
bool yield;
HOST_EXIT_CRITICAL_SAFE();
if (in_isr) {
BaseType_t xTaskWoken = pdFALSE;
xSemaphoreGiveFromISR(client_obj->constant.event_sem, &xTaskWoken);
yield = (xTaskWoken == pdTRUE);
} else {
xSemaphoreGive(client_obj->constant.event_sem);
yield = false;
}
HOST_ENTER_CRITICAL_SAFE();
return yield;
}
static bool _unblock_lib(bool in_isr)
{
bool yield;
HOST_EXIT_CRITICAL_SAFE();
if (in_isr) {
BaseType_t xTaskWoken = pdFALSE;
xSemaphoreGiveFromISR(p_host_lib_obj->constant.event_sem, &xTaskWoken);
yield = (xTaskWoken == pdTRUE);
} else {
xSemaphoreGive(p_host_lib_obj->constant.event_sem);
yield = false;
}
HOST_ENTER_CRITICAL_SAFE();
return yield;
}
static void send_event_msg_to_clients(const usb_host_client_event_msg_t *event_msg, bool send_to_all, uint8_t opened_dev_addr)
{
// Lock client list
xSemaphoreTake(p_host_lib_obj->constant.mux_lock, portMAX_DELAY);
// Send event message to relevant or all clients
client_t *client_obj;
TAILQ_FOREACH(client_obj, &p_host_lib_obj->mux_protected.client_tailq, dynamic.tailq_entry) {
if (!send_to_all) {
// Check if client opened the device
HOST_ENTER_CRITICAL();
bool send = _check_client_opened_device(client_obj, opened_dev_addr);
HOST_EXIT_CRITICAL();
if (!send) {
continue;
}
}
// Send the event message
if (xQueueSend(client_obj->constant.event_msg_queue, event_msg, 0) == pdTRUE) {
HOST_ENTER_CRITICAL();
_unblock_client(client_obj, false);
HOST_EXIT_CRITICAL();
} else {
ESP_LOGE(USB_HOST_TAG, "Client event message queue full");
}
}
// Unlock client list
xSemaphoreGive(p_host_lib_obj->constant.mux_lock);
}
// ---------------------------------------------------- Callbacks ------------------------------------------------------
// ------------------- Library Related ---------------------
static bool proc_req_callback(usb_proc_req_source_t source, bool in_isr, void *arg)
{
HOST_ENTER_CRITICAL_SAFE();
// Store the processing request source
switch (source) {
case USB_PROC_REQ_SOURCE_USBH:
p_host_lib_obj->dynamic.process_pending_flags |= PROCESS_REQUEST_PENDING_FLAG_USBH;
break;
case USB_PROC_REQ_SOURCE_HUB:
p_host_lib_obj->dynamic.process_pending_flags |= PROCESS_REQUEST_PENDING_FLAG_HUB;
break;
}
bool yield = _unblock_lib(in_isr);
HOST_EXIT_CRITICAL_SAFE();
return yield;
}
static void ctrl_xfer_callback(usb_device_handle_t dev_hdl, urb_t *urb, void *arg)
{
assert(urb->usb_host_client != NULL);
// Redistribute done control transfer to the clients that submitted them
client_t *client_obj = (client_t *)urb->usb_host_client;
HOST_ENTER_CRITICAL();
TAILQ_INSERT_TAIL(&client_obj->dynamic.done_ctrl_xfer_tailq, urb, tailq_entry);
client_obj->dynamic.num_done_ctrl_xfer++;
_unblock_client(client_obj, false);
HOST_EXIT_CRITICAL();
}
static void dev_event_callback(usb_device_handle_t dev_hdl, usbh_event_t usbh_event, void *arg)
{
// Check usbh_event. The data type of event_arg depends on the type of event
switch (usbh_event) {
case USBH_EVENT_DEV_NEW: {
// Prepare a NEW_DEV client event message, the send it to all clients
uint8_t dev_addr;
ESP_ERROR_CHECK(usbh_dev_get_addr(dev_hdl, &dev_addr));
usb_host_client_event_msg_t event_msg = {
.event = USB_HOST_CLIENT_EVENT_NEW_DEV,
.new_dev.address = dev_addr,
};
send_event_msg_to_clients(&event_msg, true, 0);
break;
}
case USBH_EVENT_DEV_GONE: {
// Prepare event msg, send only to clients that have opened the device
uint8_t dev_addr;
ESP_ERROR_CHECK(usbh_dev_get_addr(dev_hdl, &dev_addr));
usb_host_client_event_msg_t event_msg = {
.event = USB_HOST_CLIENT_EVENT_DEV_GONE,
.dev_gone.dev_hdl = dev_hdl,
};
send_event_msg_to_clients(&event_msg, false, dev_addr);
break;
}
case USBH_EVENT_DEV_ALL_FREE: {
// Notify the lib handler that all devices are free
HOST_ENTER_CRITICAL();
p_host_lib_obj->dynamic.lib_event_flags |= USB_HOST_LIB_EVENT_FLAGS_ALL_FREE;
_unblock_lib(false);
HOST_EXIT_CRITICAL();
break;
}
default:
abort(); // Should never occur
break;
}
}
// ------------------- Client Related ----------------------
static bool endpoint_callback(usbh_ep_handle_t ep_hdl, usbh_ep_event_t ep_event, void *user_arg, bool in_isr)
{
ep_wrapper_t *ep_wrap = (ep_wrapper_t *)user_arg;
client_t *client_obj = (client_t *)ep_wrap->constant.intf_obj->constant.client_obj;
HOST_ENTER_CRITICAL_SAFE();
// Store the event to be handled later. Note that we allow overwriting of events because more severe will halt the pipe prevent any further events.
ep_wrap->dynamic.last_event = ep_event;
// Add the EP to the client's pending list if it's not in the list already
if (!ep_wrap->dynamic.flags.pending) {
ep_wrap->dynamic.flags.pending = 1;
TAILQ_REMOVE(&client_obj->dynamic.idle_ep_tailq, ep_wrap, dynamic.tailq_entry);
TAILQ_INSERT_TAIL(&client_obj->dynamic.pending_ep_tailq, ep_wrap, dynamic.tailq_entry);
}
bool yield = _unblock_client(client_obj, in_isr);
HOST_EXIT_CRITICAL_SAFE();
return yield;
}
// ------------------------------------------------ Library Functions --------------------------------------------------
// ----------------------- Public --------------------------
esp_err_t usb_host_install(const usb_host_config_t *config)
{
HOST_CHECK(config != NULL, ESP_ERR_INVALID_ARG);
HOST_ENTER_CRITICAL();
HOST_CHECK_FROM_CRIT(p_host_lib_obj == NULL, ESP_ERR_INVALID_STATE);
HOST_EXIT_CRITICAL();
esp_err_t ret;
host_lib_t *host_lib_obj = heap_caps_calloc(1, sizeof(host_lib_t), MALLOC_CAP_DEFAULT);
SemaphoreHandle_t event_sem = xSemaphoreCreateBinary();
SemaphoreHandle_t mux_lock = xSemaphoreCreateMutex();
if (host_lib_obj == NULL || event_sem == NULL || mux_lock == NULL) {
ret = ESP_ERR_NO_MEM;
goto alloc_err;
}
// Initialize host library object
TAILQ_INIT(&host_lib_obj->mux_protected.client_tailq);
host_lib_obj->constant.event_sem = event_sem;
host_lib_obj->constant.mux_lock = mux_lock;
/*
Install each layer of the Host stack (listed below) from the lowest layer to the highest
- USB PHY
- HCD
- USBH
- Hub
*/
// Install USB PHY (if necessary). USB PHY driver will also enable the underlying Host Controller
if (!config->skip_phy_setup) {
// Host Library defaults to internal PHY
usb_phy_config_t phy_config = {
.controller = USB_PHY_CTRL_OTG,
.target = USB_PHY_TARGET_INT,
.otg_mode = USB_OTG_MODE_HOST,
.otg_speed = USB_PHY_SPEED_UNDEFINED, // In Host mode, the speed is determined by the connected device
.ext_io_conf = NULL,
.otg_io_conf = NULL,
};
ret = usb_new_phy(&phy_config, &host_lib_obj->constant.phy_handle);
if (ret != ESP_OK) {
goto phy_err;
}
}
// Install HCD
hcd_config_t hcd_config = {
.intr_flags = config->intr_flags
};
ret = hcd_install(&hcd_config);
if (ret != ESP_OK) {
goto hcd_err;
}
// Install USBH
usbh_config_t usbh_config = {
.proc_req_cb = proc_req_callback,
.proc_req_cb_arg = NULL,
.ctrl_xfer_cb = ctrl_xfer_callback,
.ctrl_xfer_cb_arg = NULL,
.event_cb = dev_event_callback,
.event_cb_arg = NULL,
};
ret = usbh_install(&usbh_config);
if (ret != ESP_OK) {
goto usbh_err;
}
// Install Hub
hub_config_t hub_config = {
.proc_req_cb = proc_req_callback,
.proc_req_cb_arg = NULL,
};
ret = hub_install(&hub_config);
if (ret != ESP_OK) {
goto hub_err;
}
// Assign host library object
HOST_ENTER_CRITICAL();
if (p_host_lib_obj != NULL) {
HOST_EXIT_CRITICAL();
ret = ESP_ERR_INVALID_STATE;
goto assign_err;
}
p_host_lib_obj = host_lib_obj;
HOST_EXIT_CRITICAL();
// Start the root hub
ESP_ERROR_CHECK(hub_root_start());
ret = ESP_OK;
return ret;
assign_err:
ESP_ERROR_CHECK(hub_uninstall());
hub_err:
ESP_ERROR_CHECK(usbh_uninstall());
usbh_err:
ESP_ERROR_CHECK(hcd_uninstall());
hcd_err:
if (host_lib_obj->constant.phy_handle) {
ESP_ERROR_CHECK(usb_del_phy(host_lib_obj->constant.phy_handle));
}
phy_err:
alloc_err:
if (mux_lock) {
vSemaphoreDelete(mux_lock);
}
if (event_sem) {
vSemaphoreDelete(event_sem);
}
heap_caps_free(host_lib_obj);
return ret;
}
esp_err_t usb_host_uninstall(void)
{
// All devices must have been freed at this point
HOST_ENTER_CRITICAL();
HOST_CHECK_FROM_CRIT(p_host_lib_obj != NULL, ESP_ERR_INVALID_STATE);
HOST_CHECK_FROM_CRIT(p_host_lib_obj->dynamic.process_pending_flags == 0 &&
p_host_lib_obj->dynamic.lib_event_flags == 0 &&
p_host_lib_obj->dynamic.flags.val == 0,
ESP_ERR_INVALID_STATE);
HOST_EXIT_CRITICAL();
// Stop the root hub
ESP_ERROR_CHECK(hub_root_stop());
// Unassign the host library object
HOST_ENTER_CRITICAL();
host_lib_t *host_lib_obj = p_host_lib_obj;
p_host_lib_obj = NULL;
HOST_EXIT_CRITICAL();
/*
Uninstall each layer of the Host stack (listed below) from the highest layer to the lowest
- Hub
- USBH
- HCD
- USB PHY
*/
ESP_ERROR_CHECK(hub_uninstall());
ESP_ERROR_CHECK(usbh_uninstall());
ESP_ERROR_CHECK(hcd_uninstall());
// If the USB PHY was setup, then delete it
if (host_lib_obj->constant.phy_handle) {
ESP_ERROR_CHECK(usb_del_phy(host_lib_obj->constant.phy_handle));
}
// Free memory objects
vSemaphoreDelete(host_lib_obj->constant.mux_lock);
vSemaphoreDelete(host_lib_obj->constant.event_sem);
heap_caps_free(host_lib_obj);
return ESP_OK;
}
esp_err_t usb_host_lib_handle_events(TickType_t timeout_ticks, uint32_t *event_flags_ret)
{
// Check arguments and state
HOST_CHECK(p_host_lib_obj != NULL, ESP_ERR_INVALID_STATE);
esp_err_t ret = (timeout_ticks == 0) ? ESP_OK : ESP_ERR_TIMEOUT; // We don't want to return ESP_ERR_TIMEOUT if we aren't blocking
uint32_t event_flags;
HOST_ENTER_CRITICAL();
// Set handling_events flag. This prevents the host library from being uninstalled
p_host_lib_obj->dynamic.flags.handling_events = 1;
HOST_EXIT_CRITICAL();
while (1) {
// Loop until there are no more events
if (xSemaphoreTake(p_host_lib_obj->constant.event_sem, timeout_ticks) == pdFALSE) {
// Timed out waiting for semaphore or currently no events
break;
}
// Read and clear process pending flags
HOST_ENTER_CRITICAL();
uint32_t process_pending_flags = p_host_lib_obj->dynamic.process_pending_flags;
p_host_lib_obj->dynamic.process_pending_flags = 0;
HOST_EXIT_CRITICAL();
if (process_pending_flags & PROCESS_REQUEST_PENDING_FLAG_USBH) {
ESP_ERROR_CHECK(usbh_process());
}
if (process_pending_flags & PROCESS_REQUEST_PENDING_FLAG_HUB) {
ESP_ERROR_CHECK(hub_process());
}
ret = ESP_OK;
// Set timeout_ticks to 0 so that we can check for events again without blocking
timeout_ticks = 0;
}
HOST_ENTER_CRITICAL();
p_host_lib_obj->dynamic.flags.handling_events = 0;
// Read and clear any event flags
event_flags = p_host_lib_obj->dynamic.lib_event_flags;
p_host_lib_obj->dynamic.lib_event_flags = 0;
HOST_EXIT_CRITICAL();
if (event_flags_ret != NULL) {
*event_flags_ret = event_flags;
}
return ret;
}
esp_err_t usb_host_lib_unblock(void)
{
// All devices must have been freed at this point
HOST_ENTER_CRITICAL();
HOST_CHECK_FROM_CRIT(p_host_lib_obj != NULL, ESP_ERR_INVALID_STATE);
_unblock_lib(false);
HOST_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t usb_host_lib_info(usb_host_lib_info_t *info_ret)
{
HOST_CHECK(info_ret != NULL, ESP_ERR_INVALID_ARG);
int num_devs_temp;
int num_clients_temp;
HOST_ENTER_CRITICAL();
HOST_CHECK_FROM_CRIT(p_host_lib_obj != NULL, ESP_ERR_INVALID_STATE);
num_clients_temp = p_host_lib_obj->dynamic.flags.num_clients;
HOST_EXIT_CRITICAL();
usbh_num_devs(&num_devs_temp);
// Write back return values
info_ret->num_devices = num_devs_temp;
info_ret->num_clients = num_clients_temp;
return ESP_OK;
}
// ------------------------------------------------ Client Functions ---------------------------------------------------
// ----------------------- Private -------------------------
static void _handle_pending_ep(client_t *client_obj)
{
// Handle each EP on the pending list
while (!TAILQ_EMPTY(&client_obj->dynamic.pending_ep_tailq)) {
// Get the next pending EP.
ep_wrapper_t *ep_wrap = TAILQ_FIRST(&client_obj->dynamic.pending_ep_tailq);
TAILQ_REMOVE(&client_obj->dynamic.pending_ep_tailq, ep_wrap, dynamic.tailq_entry);
TAILQ_INSERT_TAIL(&client_obj->dynamic.idle_ep_tailq, ep_wrap, dynamic.tailq_entry);
ep_wrap->dynamic.flags.pending = 0;
usbh_ep_event_t last_event = ep_wrap->dynamic.last_event;
uint32_t num_urb_dequeued = 0;
HOST_EXIT_CRITICAL();
// Handle pipe event
switch (last_event) {
case USBH_EP_EVENT_ERROR_XFER:
case USBH_EP_EVENT_ERROR_URB_NOT_AVAIL:
case USBH_EP_EVENT_ERROR_OVERFLOW:
case USBH_EP_EVENT_ERROR_STALL:
// The endpoint is now stalled. Flush all pending URBs
ESP_ERROR_CHECK(usbh_ep_command(ep_wrap->constant.ep_hdl, USBH_EP_CMD_FLUSH));
// All URBs in this pipe are now retired waiting to be dequeued. Fall through to dequeue them
__attribute__((fallthrough));
case USBH_EP_EVENT_URB_DONE: {
// Dequeue all URBs and run their transfer callback
urb_t *urb;
usbh_ep_dequeue_urb(ep_wrap->constant.ep_hdl, &urb);
while (urb != NULL) {
// Clear the transfer's in-flight flag to indicate the transfer is no longer in-flight
urb->usb_host_inflight = false;
urb->transfer.callback(&urb->transfer);
num_urb_dequeued++;
usbh_ep_dequeue_urb(ep_wrap->constant.ep_hdl, &urb);
}
break;
}
default:
abort(); // Should never occur
break;
}
HOST_ENTER_CRITICAL();
// Update the endpoint's number of URB's in-flight
assert(num_urb_dequeued <= ep_wrap->dynamic.num_urb_inflight);
ep_wrap->dynamic.num_urb_inflight -= num_urb_dequeued;
}
}
// ----------------------- Public --------------------------
esp_err_t usb_host_client_register(const usb_host_client_config_t *client_config, usb_host_client_handle_t *client_hdl_ret)
{
HOST_CHECK(p_host_lib_obj, ESP_ERR_INVALID_STATE);
HOST_CHECK(client_config != NULL && client_hdl_ret != NULL, ESP_ERR_INVALID_ARG);
HOST_CHECK(client_config->max_num_event_msg > 0, ESP_ERR_INVALID_ARG);
if (!client_config->is_synchronous) {
// Asynchronous clients must provide a
HOST_CHECK(client_config->async.client_event_callback != NULL, ESP_ERR_INVALID_ARG);
}
esp_err_t ret;
// Create client object
client_t *client_obj = heap_caps_calloc(1, sizeof(client_t), MALLOC_CAP_DEFAULT);
SemaphoreHandle_t event_sem = xSemaphoreCreateBinary();
QueueHandle_t event_msg_queue = xQueueCreate(client_config->max_num_event_msg, sizeof(usb_host_client_event_msg_t));
if (client_obj == NULL || event_sem == NULL || event_msg_queue == NULL) {
ret = ESP_ERR_NO_MEM;
goto alloc_err;
}
// Initialize client object
TAILQ_INIT(&client_obj->dynamic.pending_ep_tailq);
TAILQ_INIT(&client_obj->dynamic.idle_ep_tailq);
TAILQ_INIT(&client_obj->mux_protected.interface_tailq);
TAILQ_INIT(&client_obj->dynamic.done_ctrl_xfer_tailq);
client_obj->constant.event_sem = event_sem;
client_obj->constant.event_callback = client_config->async.client_event_callback;
client_obj->constant.callback_arg = client_config->async.callback_arg;
client_obj->constant.event_msg_queue = event_msg_queue;
// Add client to the host library's list of clients
xSemaphoreTake(p_host_lib_obj->constant.mux_lock, portMAX_DELAY);
HOST_ENTER_CRITICAL();
p_host_lib_obj->dynamic.flags.num_clients++;
HOST_EXIT_CRITICAL();
TAILQ_INSERT_TAIL(&p_host_lib_obj->mux_protected.client_tailq, client_obj, dynamic.tailq_entry);
xSemaphoreGive(p_host_lib_obj->constant.mux_lock);
// Write back client handle
*client_hdl_ret = (usb_host_client_handle_t)client_obj;
ret = ESP_OK;
return ret;
alloc_err:
if (event_msg_queue) {
vQueueDelete(event_msg_queue);
}
if (event_sem) {
vSemaphoreDelete(event_sem);
}
heap_caps_free(client_obj);
return ESP_OK;
}
esp_err_t usb_host_client_deregister(usb_host_client_handle_t client_hdl)
{
HOST_CHECK(client_hdl != NULL, ESP_ERR_INVALID_ARG);
client_t *client_obj = (client_t *)client_hdl;
esp_err_t ret;
// We take the mux_lock because we need to access the host library's client_tailq
xSemaphoreTake(p_host_lib_obj->constant.mux_lock, portMAX_DELAY);
HOST_ENTER_CRITICAL();
// Check that client can currently deregistered
bool can_deregister;
if (!TAILQ_EMPTY(&client_obj->dynamic.pending_ep_tailq) ||
!TAILQ_EMPTY(&client_obj->dynamic.idle_ep_tailq) ||
!TAILQ_EMPTY(&client_obj->dynamic.done_ctrl_xfer_tailq) ||
client_obj->dynamic.flags.handling_events ||
client_obj->dynamic.flags.taking_mux ||
client_obj->dynamic.flags.num_intf_claimed != 0 ||
client_obj->dynamic.num_done_ctrl_xfer != 0 ||
client_obj->dynamic.opened_dev_addr_map != 0) {
can_deregister = false;
} else {
can_deregister = true;
}
HOST_EXIT_CRITICAL();
if (!can_deregister) {
ret = ESP_ERR_INVALID_STATE;
goto exit;
}
// Remove client object from the library's list of clients
TAILQ_REMOVE(&p_host_lib_obj->mux_protected.client_tailq, client_obj, dynamic.tailq_entry);
HOST_ENTER_CRITICAL();
p_host_lib_obj->dynamic.flags.num_clients--;
if (p_host_lib_obj->dynamic.flags.num_clients == 0) {
// This is the last client being deregistered. Notify the lib handler
p_host_lib_obj->dynamic.lib_event_flags |= USB_HOST_LIB_EVENT_FLAGS_NO_CLIENTS;
_unblock_lib(false);
}
HOST_EXIT_CRITICAL();
// Free client object
vQueueDelete(client_obj->constant.event_msg_queue);
vSemaphoreDelete(client_obj->constant.event_sem);
heap_caps_free(client_obj);
ret = ESP_OK;
exit:
xSemaphoreGive(p_host_lib_obj->constant.mux_lock);
return ret;
}
esp_err_t usb_host_client_handle_events(usb_host_client_handle_t client_hdl, TickType_t timeout_ticks)
{
// Check arguments and state
HOST_CHECK(client_hdl != NULL, ESP_ERR_INVALID_ARG);
HOST_CHECK(p_host_lib_obj != NULL, ESP_ERR_INVALID_STATE);
esp_err_t ret = (timeout_ticks == 0) ? ESP_OK : ESP_ERR_TIMEOUT; // We don't want to return ESP_ERR_TIMEOUT if we aren't blocking
client_t *client_obj = (client_t *)client_hdl;
HOST_ENTER_CRITICAL();
// Set handling_events flag. This prevents the client from being deregistered
client_obj->dynamic.flags.handling_events = 1;
HOST_EXIT_CRITICAL();
while (1) {
// Loop until there are no more events
if (xSemaphoreTake(client_obj->constant.event_sem, timeout_ticks) == pdFALSE) {
// Timed out waiting for semaphore or currently no events
break;
}
HOST_ENTER_CRITICAL();
// Handle pending endpoints
if (!TAILQ_EMPTY(&client_obj->dynamic.pending_ep_tailq)) {
_handle_pending_ep(client_obj);
}
// Handle any done control transfers
while (client_obj->dynamic.num_done_ctrl_xfer > 0) {
urb_t *urb = TAILQ_FIRST(&client_obj->dynamic.done_ctrl_xfer_tailq);
TAILQ_REMOVE(&client_obj->dynamic.done_ctrl_xfer_tailq, urb, tailq_entry);
client_obj->dynamic.num_done_ctrl_xfer--;
HOST_EXIT_CRITICAL();
// Clear the transfer's in-flight flag to indicate the transfer is no longer in-flight
urb->usb_host_inflight = false;
// Call the transfer's callback
urb->transfer.callback(&urb->transfer);
HOST_ENTER_CRITICAL();
}
HOST_EXIT_CRITICAL();
// Handle event messages
while (uxQueueMessagesWaiting(client_obj->constant.event_msg_queue) > 0) {
// Dequeue the event message and call the client event callback
usb_host_client_event_msg_t event_msg;
BaseType_t queue_ret = xQueueReceive(client_obj->constant.event_msg_queue, &event_msg, 0);
assert(queue_ret == pdTRUE);
client_obj->constant.event_callback(&event_msg, client_obj->constant.callback_arg);
}
ret = ESP_OK;
// Set timeout_ticks to 0 so that we can check for events again without blocking
timeout_ticks = 0;
}
HOST_ENTER_CRITICAL();
client_obj->dynamic.flags.handling_events = 0;
HOST_EXIT_CRITICAL();
return ret;
}
esp_err_t usb_host_client_unblock(usb_host_client_handle_t client_hdl)
{
HOST_CHECK(client_hdl != NULL, ESP_ERR_INVALID_ARG);
client_t *client_obj = (client_t *)client_hdl;
HOST_ENTER_CRITICAL();
_unblock_client(client_obj, false);
HOST_EXIT_CRITICAL();
return ESP_OK;
}
// ------------------------------------------------- Device Handling ---------------------------------------------------
esp_err_t usb_host_device_open(usb_host_client_handle_t client_hdl, uint8_t dev_addr, usb_device_handle_t *dev_hdl_ret)
{
HOST_CHECK(dev_addr > 0 && client_hdl != NULL && dev_hdl_ret != NULL, ESP_ERR_INVALID_ARG);
client_t *client_obj = (client_t *)client_hdl;
esp_err_t ret;
usb_device_handle_t dev_hdl;
ret = usbh_dev_open(dev_addr, &dev_hdl);
if (ret != ESP_OK) {
goto exit;
}
HOST_ENTER_CRITICAL();
if (_check_client_opened_device(client_obj, dev_addr)) {
// Client has already opened the device. Close it and return an error
ret = ESP_ERR_INVALID_STATE;
HOST_EXIT_CRITICAL();
goto already_opened;
}
// Record in client object that we have opened the device of this address
_record_client_opened_device(client_obj, dev_addr);
HOST_EXIT_CRITICAL();
*dev_hdl_ret = dev_hdl;
ret = ESP_OK;
return ret;
already_opened:
ESP_ERROR_CHECK(usbh_dev_close(dev_hdl));
exit:
return ret;
}
esp_err_t usb_host_device_close(usb_host_client_handle_t client_hdl, usb_device_handle_t dev_hdl)
{
HOST_CHECK(dev_hdl != NULL && client_hdl != NULL, ESP_ERR_INVALID_ARG);
client_t *client_obj = (client_t *)client_hdl;
// We take the lock because we need to walk the interface list
xSemaphoreTake(p_host_lib_obj->constant.mux_lock, portMAX_DELAY);
esp_err_t ret;
// Check that all interfaces claimed by this client do not belong to this device
bool all_released = true;
interface_t *intf_obj;
TAILQ_FOREACH(intf_obj, &client_obj->mux_protected.interface_tailq, mux_protected.tailq_entry) {
if (intf_obj->constant.dev_hdl == dev_hdl) {
all_released = false;
break;
}
}
if (!all_released) {
ret = ESP_ERR_INVALID_STATE;
goto exit;
}
// Check that client actually opened the device in the first place
HOST_ENTER_CRITICAL();
uint8_t dev_addr;
ESP_ERROR_CHECK(usbh_dev_get_addr(dev_hdl, &dev_addr));
HOST_CHECK_FROM_CRIT(_check_client_opened_device(client_obj, dev_addr), ESP_ERR_NOT_FOUND);
if (!_check_client_opened_device(client_obj, dev_addr)) {
// Client never opened this device
ret = ESP_ERR_INVALID_STATE;
HOST_EXIT_CRITICAL();
goto exit;
}
// Proceed to clear the record of the device form the client
_clear_client_opened_device(client_obj, dev_addr);
HOST_EXIT_CRITICAL();
ESP_ERROR_CHECK(usbh_dev_close(dev_hdl));
ret = ESP_OK;
exit:
xSemaphoreGive(p_host_lib_obj->constant.mux_lock);
return ret;
}
esp_err_t usb_host_device_free_all(void)
{
HOST_ENTER_CRITICAL();
HOST_CHECK_FROM_CRIT(p_host_lib_obj->dynamic.flags.num_clients == 0, ESP_ERR_INVALID_STATE); // All clients must have been deregistered
HOST_EXIT_CRITICAL();
esp_err_t ret;
ret = usbh_dev_mark_all_free();
// If ESP_ERR_NOT_FINISHED is returned, caller must wait for USB_HOST_LIB_EVENT_FLAGS_ALL_FREE to confirm all devices are free
return ret;
}
esp_err_t usb_host_device_addr_list_fill(int list_len, uint8_t *dev_addr_list, int *num_dev_ret)
{
HOST_CHECK(dev_addr_list != NULL && num_dev_ret != NULL, ESP_ERR_INVALID_ARG);
return usbh_dev_addr_list_fill(list_len, dev_addr_list, num_dev_ret);
}
// ------------------------------------------------- Device Requests ---------------------------------------------------
// ------------------- Cached Requests ---------------------
esp_err_t usb_host_device_info(usb_device_handle_t dev_hdl, usb_device_info_t *dev_info)
{
HOST_CHECK(dev_hdl != NULL && dev_info != NULL, ESP_ERR_INVALID_ARG);
return usbh_dev_get_info(dev_hdl, dev_info);
}
// ----------------------------------------------- Descriptor Requests -------------------------------------------------
// ----------------- Cached Descriptors --------------------
esp_err_t usb_host_get_device_descriptor(usb_device_handle_t dev_hdl, const usb_device_desc_t **device_desc)
{
HOST_CHECK(dev_hdl != NULL && device_desc != NULL, ESP_ERR_INVALID_ARG);
return usbh_dev_get_desc(dev_hdl, device_desc);
}
esp_err_t usb_host_get_active_config_descriptor(usb_device_handle_t dev_hdl, const usb_config_desc_t **config_desc)
{
HOST_CHECK(dev_hdl != NULL && config_desc != NULL, ESP_ERR_INVALID_ARG);
return usbh_dev_get_config_desc(dev_hdl, config_desc);
}
// ----------------------------------------------- Interface Functions -------------------------------------------------
// ----------------------- Private -------------------------
static esp_err_t ep_wrapper_alloc(usb_device_handle_t dev_hdl, const usb_ep_desc_t *ep_desc, interface_t *intf_obj, ep_wrapper_t **ep_wrap_ret)
{
ep_wrapper_t *ep_wrap = heap_caps_calloc(1, sizeof(ep_wrapper_t), MALLOC_CAP_DEFAULT);
if (ep_wrap == NULL) {
return ESP_ERR_NO_MEM;
}
esp_err_t ret;
usbh_ep_handle_t ep_hdl;
usbh_ep_config_t ep_config = {
.bInterfaceNumber = intf_obj->constant.intf_desc->bInterfaceNumber,
.bAlternateSetting = intf_obj->constant.intf_desc->bAlternateSetting,
.bEndpointAddress = ep_desc->bEndpointAddress,
.ep_cb = endpoint_callback,
.ep_cb_arg = (void *)ep_wrap,
.context = (void *)ep_wrap,
};
ret = usbh_ep_alloc(dev_hdl, &ep_config, &ep_hdl);
if (ret != ESP_OK) {
goto alloc_err;
}
// Initialize endpoint wrapper item
ep_wrap->constant.ep_hdl = ep_hdl;
ep_wrap->constant.intf_obj = intf_obj;
// Write back result
*ep_wrap_ret = ep_wrap;
ret = ESP_OK;
return ret;
alloc_err:
heap_caps_free(ep_wrap);
return ret;
}
static void ep_wrapper_free(usb_device_handle_t dev_hdl, ep_wrapper_t *ep_wrap)
{
if (ep_wrap == NULL) {
return;
}
// Free the underlying endpoint
ESP_ERROR_CHECK(usbh_ep_free(ep_wrap->constant.ep_hdl));
// Free the endpoint wrapper item
heap_caps_free(ep_wrap);
}
static interface_t *interface_alloc(client_t *client_obj, usb_device_handle_t dev_hdl, const usb_intf_desc_t *intf_desc)
{
interface_t *intf_obj = heap_caps_calloc(1, sizeof(interface_t) + (sizeof(ep_wrapper_t *) * intf_desc->bNumEndpoints), MALLOC_CAP_DEFAULT);
if (intf_obj == NULL) {
return NULL;
}
intf_obj->constant.intf_desc = intf_desc;
intf_obj->constant.client_obj = client_obj;
intf_obj->constant.dev_hdl = dev_hdl;
return intf_obj;
}
static void interface_free(interface_t *intf_obj)
{
if (intf_obj == NULL) {
return;
}
for (int i = 0; i < intf_obj->constant.intf_desc->bNumEndpoints; i++) {
assert(intf_obj->constant.endpoints[i] == NULL);
}
heap_caps_free(intf_obj);
}
static esp_err_t interface_claim(client_t *client_obj, usb_device_handle_t dev_hdl, const usb_config_desc_t *config_desc, uint8_t bInterfaceNumber, uint8_t bAlternateSetting, interface_t **intf_obj_ret)
{
esp_err_t ret;
// We need to walk to configuration descriptor to find the correct interface descriptor, and each of its constituent endpoint descriptors
// Find the interface descriptor and allocate the interface object
int offset_intf;
const usb_intf_desc_t *intf_desc = usb_parse_interface_descriptor(config_desc, bInterfaceNumber, bAlternateSetting, &offset_intf);
if (intf_desc == NULL) {
ret = ESP_ERR_NOT_FOUND;
goto exit;
}
// Allocate interface object
interface_t *intf_obj = interface_alloc(client_obj, dev_hdl, intf_desc);
if (intf_obj == NULL) {
ret = ESP_ERR_NO_MEM;
goto exit;
}
// Find each endpoint descriptor in the interface by index, and allocate those endpoints
for (int i = 0; i < intf_desc->bNumEndpoints; i++) {
int offset_ep = offset_intf;
const usb_ep_desc_t *ep_desc = usb_parse_endpoint_descriptor_by_index(intf_desc, i, config_desc->wTotalLength, &offset_ep);
if (ep_desc == NULL) {
ret = ESP_ERR_NOT_FOUND;
goto ep_alloc_err;
}
// Allocate the endpoint wrapper item
ep_wrapper_t *ep_wrap;
ret = ep_wrapper_alloc(dev_hdl, ep_desc, intf_obj, &ep_wrap);
if (ret != ESP_OK) {
goto ep_alloc_err;
}
// Fill the interface object with the allocated endpoints
intf_obj->constant.endpoints[i] = ep_wrap;
}
// Add interface object to client (safe because we have already taken the mutex)
TAILQ_INSERT_TAIL(&client_obj->mux_protected.interface_tailq, intf_obj, mux_protected.tailq_entry);
// Add each endpoint wrapper item to the client's endpoint list
HOST_ENTER_CRITICAL();
for (int i = 0; i < intf_desc->bNumEndpoints; i++) {
TAILQ_INSERT_TAIL(&client_obj->dynamic.idle_ep_tailq, intf_obj->constant.endpoints[i], dynamic.tailq_entry);
}
HOST_EXIT_CRITICAL();
// Write back result
*intf_obj_ret = intf_obj;
ret = ESP_OK;
return ret;
ep_alloc_err:
for (int i = 0; i < intf_desc->bNumEndpoints; i++) {
ep_wrapper_free(dev_hdl, intf_obj->constant.endpoints[i]);
intf_obj->constant.endpoints[i] = NULL;
}
interface_free(intf_obj);
exit:
return ret;
}
static esp_err_t interface_release(client_t *client_obj, usb_device_handle_t dev_hdl, uint8_t bInterfaceNumber)
{
esp_err_t ret;
// Find the interface object
interface_t *intf_obj_iter;
interface_t *intf_obj = NULL;
TAILQ_FOREACH(intf_obj_iter, &client_obj->mux_protected.interface_tailq, mux_protected.tailq_entry) {
if (intf_obj_iter->constant.dev_hdl == dev_hdl && intf_obj_iter->constant.intf_desc->bInterfaceNumber == bInterfaceNumber) {
intf_obj = intf_obj_iter;
break;
}
}
if (intf_obj == NULL) {
ret = ESP_ERR_NOT_FOUND;
goto exit;
}
// Check that all endpoints in the interface are in a state to be freed
// Todo: Check that each EP is halted before allowing them to be freed (IDF-7273)
HOST_ENTER_CRITICAL();
bool can_free = true;
for (int i = 0; i < intf_obj->constant.intf_desc->bNumEndpoints; i++) {
ep_wrapper_t *ep_wrap = intf_obj->constant.endpoints[i];
// Endpoint must not be on the pending list and must not have in-flight URBs
if (ep_wrap->dynamic.num_urb_inflight != 0 || ep_wrap->dynamic.flags.pending) {
can_free = false;
break;
}
}
if (!can_free) {
HOST_EXIT_CRITICAL();
ret = ESP_ERR_INVALID_STATE;
goto exit;
}
// Proceed to remove all endpoint wrapper items from the list
for (int i = 0; i < intf_obj->constant.intf_desc->bNumEndpoints; i++) {
TAILQ_REMOVE(&client_obj->dynamic.idle_ep_tailq, intf_obj->constant.endpoints[i], dynamic.tailq_entry);
}
HOST_EXIT_CRITICAL();
// Remove the interface object from the list (safe because we have already taken the mutex)
TAILQ_REMOVE(&client_obj->mux_protected.interface_tailq, intf_obj, mux_protected.tailq_entry);
// Free each endpoint in the interface
for (int i = 0; i < intf_obj->constant.intf_desc->bNumEndpoints; i++) {
ep_wrapper_free(dev_hdl, intf_obj->constant.endpoints[i]);
intf_obj->constant.endpoints[i] = NULL;
}
// Free the interface object itself
interface_free(intf_obj);
ret = ESP_OK;
exit:
return ret;
}
// ----------------------- Public --------------------------
esp_err_t usb_host_interface_claim(usb_host_client_handle_t client_hdl, usb_device_handle_t dev_hdl, uint8_t bInterfaceNumber, uint8_t bAlternateSetting)
{
HOST_CHECK(client_hdl != NULL && dev_hdl != NULL, ESP_ERR_INVALID_ARG);
client_t *client_obj = (client_t *)client_hdl;
HOST_ENTER_CRITICAL();
uint8_t dev_addr;
ESP_ERROR_CHECK(usbh_dev_get_addr(dev_hdl, &dev_addr));
// Check if client actually opened device
HOST_CHECK_FROM_CRIT(_check_client_opened_device(client_obj, dev_addr), ESP_ERR_INVALID_STATE);
client_obj->dynamic.flags.taking_mux = 1;
HOST_EXIT_CRITICAL();
// Take mux lock. This protects the client being released or other clients from claiming interfaces
xSemaphoreTake(p_host_lib_obj->constant.mux_lock, portMAX_DELAY);
esp_err_t ret;
const usb_config_desc_t *config_desc;
ESP_ERROR_CHECK(usbh_dev_get_config_desc(dev_hdl, &config_desc));
interface_t *intf_obj;
// Claim interface
ret = interface_claim(client_obj, dev_hdl, config_desc, bInterfaceNumber, bAlternateSetting, &intf_obj);
if (ret != ESP_OK) {
goto exit;
}
ret = ESP_OK;
exit:
xSemaphoreGive(p_host_lib_obj->constant.mux_lock);
HOST_ENTER_CRITICAL();
if (ret == ESP_OK) {
client_obj->dynamic.flags.num_intf_claimed++;
}
client_obj->dynamic.flags.taking_mux = 0;
HOST_EXIT_CRITICAL();
return ret;
}
esp_err_t usb_host_interface_release(usb_host_client_handle_t client_hdl, usb_device_handle_t dev_hdl, uint8_t bInterfaceNumber)
{
HOST_CHECK(client_hdl != NULL && dev_hdl != NULL, ESP_ERR_INVALID_ARG);
client_t *client_obj = (client_t *)client_hdl;
HOST_ENTER_CRITICAL();
uint8_t dev_addr;
ESP_ERROR_CHECK(usbh_dev_get_addr(dev_hdl, &dev_addr));
// Check if client actually opened device
HOST_CHECK_FROM_CRIT(_check_client_opened_device(client_obj, dev_addr), ESP_ERR_INVALID_STATE);
client_obj->dynamic.flags.taking_mux = 1;
HOST_EXIT_CRITICAL();
// Take mux lock. This protects the client being released or other clients from claiming interfaces
xSemaphoreTake(p_host_lib_obj->constant.mux_lock, portMAX_DELAY);
esp_err_t ret = interface_release(client_obj, dev_hdl, bInterfaceNumber);
xSemaphoreGive(p_host_lib_obj->constant.mux_lock);
HOST_ENTER_CRITICAL();
if (ret == ESP_OK) {
client_obj->dynamic.flags.num_intf_claimed--;
}
client_obj->dynamic.flags.taking_mux = 0;
HOST_EXIT_CRITICAL();
return ret;
}
esp_err_t usb_host_endpoint_halt(usb_device_handle_t dev_hdl, uint8_t bEndpointAddress)
{
esp_err_t ret;
usbh_ep_handle_t ep_hdl;
ret = usbh_ep_get_handle(dev_hdl, bEndpointAddress, &ep_hdl);
if (ret != ESP_OK) {
goto exit;
}
ret = usbh_ep_command(ep_hdl, USBH_EP_CMD_HALT);
exit:
return ret;
}
esp_err_t usb_host_endpoint_flush(usb_device_handle_t dev_hdl, uint8_t bEndpointAddress)
{
esp_err_t ret;
usbh_ep_handle_t ep_hdl;
ret = usbh_ep_get_handle(dev_hdl, bEndpointAddress, &ep_hdl);
if (ret != ESP_OK) {
goto exit;
}
ret = usbh_ep_command(ep_hdl, USBH_EP_CMD_FLUSH);
exit:
return ret;
}
esp_err_t usb_host_endpoint_clear(usb_device_handle_t dev_hdl, uint8_t bEndpointAddress)
{
esp_err_t ret;
usbh_ep_handle_t ep_hdl;
ret = usbh_ep_get_handle(dev_hdl, bEndpointAddress, &ep_hdl);
if (ret != ESP_OK) {
goto exit;
}
ret = usbh_ep_command(ep_hdl, USBH_EP_CMD_CLEAR);
exit:
return ret;
}
// ------------------------------------------------ Asynchronous I/O ---------------------------------------------------
// ----------------------- Public --------------------------
esp_err_t usb_host_transfer_alloc(size_t data_buffer_size, int num_isoc_packets, usb_transfer_t **transfer)
{
urb_t *urb = urb_alloc(data_buffer_size, num_isoc_packets);
if (urb == NULL) {
return ESP_ERR_NO_MEM;
}
*transfer = &urb->transfer;
return ESP_OK;
}
esp_err_t usb_host_transfer_free(usb_transfer_t *transfer)
{
if (transfer == NULL) {
return ESP_OK;
}
urb_t *urb = __containerof(transfer, urb_t, transfer);
urb_free(urb);
return ESP_OK;
}
esp_err_t usb_host_transfer_submit(usb_transfer_t *transfer)
{
HOST_CHECK(transfer != NULL, ESP_ERR_INVALID_ARG);
// Check that transfer and target endpoint are valid
HOST_CHECK(transfer->device_handle != NULL, ESP_ERR_INVALID_ARG); // Target device must be set
HOST_CHECK((transfer->bEndpointAddress & USB_B_ENDPOINT_ADDRESS_EP_NUM_MASK) != 0, ESP_ERR_INVALID_ARG);
usbh_ep_handle_t ep_hdl;
ep_wrapper_t *ep_wrap = NULL;
urb_t *urb_obj = __containerof(transfer, urb_t, transfer);
esp_err_t ret;
ret = usbh_ep_get_handle(transfer->device_handle, transfer->bEndpointAddress, &ep_hdl);
if (ret != ESP_OK) {
goto err;
}
ep_wrap = usbh_ep_get_context(ep_hdl);
assert(ep_wrap != NULL);
// Check that we are not submitting a transfer already in-flight
HOST_CHECK(!urb_obj->usb_host_inflight, ESP_ERR_NOT_FINISHED);
urb_obj->usb_host_inflight = true;
HOST_ENTER_CRITICAL();
ep_wrap->dynamic.num_urb_inflight++;
HOST_EXIT_CRITICAL();
ret = usbh_ep_enqueue_urb(ep_hdl, urb_obj);
if (ret != ESP_OK) {
goto submit_err;
}
return ret;
submit_err:
HOST_ENTER_CRITICAL();
ep_wrap->dynamic.num_urb_inflight--;
HOST_EXIT_CRITICAL();
urb_obj->usb_host_inflight = false;
err:
return ret;
}
esp_err_t usb_host_transfer_submit_control(usb_host_client_handle_t client_hdl, usb_transfer_t *transfer)
{
HOST_CHECK(client_hdl != NULL && transfer != NULL, ESP_ERR_INVALID_ARG);
// Check that control transfer is valid
HOST_CHECK(transfer->device_handle != NULL, ESP_ERR_INVALID_ARG); // Target device must be set
// Control transfers must be targeted at EP 0
HOST_CHECK((transfer->bEndpointAddress & USB_B_ENDPOINT_ADDRESS_EP_NUM_MASK) == 0, ESP_ERR_INVALID_ARG);
usb_device_handle_t dev_hdl = transfer->device_handle;
urb_t *urb_obj = __containerof(transfer, urb_t, transfer);
// Check that we are not submitting a transfer already in-flight
HOST_CHECK(!urb_obj->usb_host_inflight, ESP_ERR_NOT_FINISHED);
urb_obj->usb_host_inflight = true;
// Save client handle into URB
urb_obj->usb_host_client = (void *)client_hdl;
esp_err_t ret;
ret = usbh_dev_submit_ctrl_urb(dev_hdl, urb_obj);
if (ret != ESP_OK) {
urb_obj->usb_host_inflight = false;
}
return ret;
}