esp-idf/components/esp32/cache_err_int.c

101 lines
3.7 KiB
C

// Copyright 2015-2017 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/*
The cache has an interrupt that can be raised as soon as an access to a cached
region (flash, psram) is done without the cache being enabled. We use that here
to panic the CPU, which from a debugging perspective is better than grabbing bad
data from the bus.
*/
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#include "freertos/FreeRTOS.h"
#include "esp_err.h"
#include "esp_intr_alloc.h"
#include "esp_attr.h"
#include "soc/dport_reg.h"
#include "sdkconfig.h"
void esp_cache_err_int_init(void)
{
uint32_t core_id = xPortGetCoreID();
ESP_INTR_DISABLE(ETS_CACHEERR_INUM);
// We do not register a handler for the interrupt because it is interrupt
// level 4 which is not serviceable from C. Instead, xtensa_vectors.S has
// a call to the panic handler for
// this interrupt.
intr_matrix_set(core_id, ETS_CACHE_IA_INTR_SOURCE, ETS_CACHEERR_INUM);
// Enable invalid cache access interrupt when the cache is disabled.
// When the interrupt happens, we can not determine the CPU where the
// invalid cache access has occurred. We enable the interrupt to catch
// invalid access on both CPUs, but the interrupt is connected to the
// CPU which happens to call this function.
// For this reason, panic handler backtrace will not be correct if the
// interrupt is connected to PRO CPU and invalid access happens on the APP
// CPU.
if (core_id == PRO_CPU_NUM) {
DPORT_SET_PERI_REG_MASK(DPORT_CACHE_IA_INT_EN_REG,
DPORT_CACHE_IA_INT_PRO_OPPOSITE |
DPORT_CACHE_IA_INT_PRO_DRAM1 |
DPORT_CACHE_IA_INT_PRO_DROM0 |
DPORT_CACHE_IA_INT_PRO_IROM0 |
DPORT_CACHE_IA_INT_PRO_IRAM0 |
DPORT_CACHE_IA_INT_PRO_IRAM1);
} else {
DPORT_SET_PERI_REG_MASK(DPORT_CACHE_IA_INT_EN_REG,
DPORT_CACHE_IA_INT_APP_OPPOSITE |
DPORT_CACHE_IA_INT_APP_DRAM1 |
DPORT_CACHE_IA_INT_APP_DROM0 |
DPORT_CACHE_IA_INT_APP_IROM0 |
DPORT_CACHE_IA_INT_APP_IRAM0 |
DPORT_CACHE_IA_INT_APP_IRAM1);
}
ESP_INTR_ENABLE(ETS_CACHEERR_INUM);
}
int IRAM_ATTR esp_cache_err_get_cpuid(void)
{
esp_dport_access_int_pause();
const uint32_t pro_mask =
DPORT_PRO_CPU_DISABLED_CACHE_IA_DRAM1 |
DPORT_PRO_CPU_DISABLED_CACHE_IA_DROM0 |
DPORT_PRO_CPU_DISABLED_CACHE_IA_IROM0 |
DPORT_PRO_CPU_DISABLED_CACHE_IA_IRAM0 |
DPORT_PRO_CPU_DISABLED_CACHE_IA_IRAM1 |
DPORT_APP_CPU_DISABLED_CACHE_IA_OPPOSITE;
if (DPORT_GET_PERI_REG_MASK(DPORT_PRO_DCACHE_DBUG3_REG, pro_mask)) {
return PRO_CPU_NUM;
}
const uint32_t app_mask =
DPORT_APP_CPU_DISABLED_CACHE_IA_DRAM1 |
DPORT_APP_CPU_DISABLED_CACHE_IA_DROM0 |
DPORT_APP_CPU_DISABLED_CACHE_IA_IROM0 |
DPORT_APP_CPU_DISABLED_CACHE_IA_IRAM0 |
DPORT_APP_CPU_DISABLED_CACHE_IA_IRAM1 |
DPORT_PRO_CPU_DISABLED_CACHE_IA_OPPOSITE;
if (DPORT_GET_PERI_REG_MASK(DPORT_APP_DCACHE_DBUG3_REG, app_mask)) {
return APP_CPU_NUM;
}
return -1;
}