mirror of
https://github.com/espressif/esp-idf.git
synced 2024-10-05 20:47:46 -04:00
6f11d0f297
- update the target and host tests to consider the new TLSF api and the metadata size only when the target is not using the rom implementation of the TLSF
618 lines
22 KiB
C++
618 lines
22 KiB
C++
#include "catch.hpp"
|
|
#include "multi_heap.h"
|
|
|
|
#include "../multi_heap_config.h"
|
|
#include "../tlsf/tlsf.h"
|
|
#include "../tlsf/tlsf_common.h"
|
|
#include "../tlsf/tlsf_block_functions.h"
|
|
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
|
|
/* The functions __malloc__ and __free__ are used to call the libc
|
|
* malloc and free and allocate memory from the host heap. Since the test
|
|
* `TEST_CASE("multi_heap many random allocations", "[multi_heap]")`
|
|
* calls multi_heap_allocation_impl() with sizes that can go up to 8MB,
|
|
* an allocatation on the heap will be prefered rather than the stack which
|
|
* might not have the necessary memory.
|
|
*/
|
|
static void *__malloc__(size_t bytes)
|
|
{
|
|
return malloc(bytes);
|
|
}
|
|
|
|
static void __free__(void *ptr)
|
|
{
|
|
free(ptr);
|
|
}
|
|
|
|
/* Insurance against accidentally using libc heap functions in tests */
|
|
#undef free
|
|
#define free #error
|
|
#undef malloc
|
|
#define malloc #error
|
|
#undef calloc
|
|
#define calloc #error
|
|
#undef realloc
|
|
#define realloc #error
|
|
|
|
TEST_CASE("multi_heap simple allocations", "[multi_heap]")
|
|
{
|
|
uint8_t small_heap[4 * 1024];
|
|
|
|
multi_heap_handle_t heap = multi_heap_register(small_heap, sizeof(small_heap));
|
|
|
|
size_t test_alloc_size = (multi_heap_free_size(heap) + 4) / 2;
|
|
|
|
printf("New heap:\n");
|
|
multi_heap_dump(heap);
|
|
printf("*********************\n");
|
|
|
|
uint8_t *buf = (uint8_t *)multi_heap_malloc(heap, test_alloc_size);
|
|
|
|
printf("small_heap %p buf %p\n", small_heap, buf);
|
|
REQUIRE( buf != NULL );
|
|
REQUIRE((intptr_t)buf >= (intptr_t)small_heap);
|
|
REQUIRE( (intptr_t)buf < (intptr_t)(small_heap + sizeof(small_heap)));
|
|
|
|
REQUIRE( multi_heap_get_allocated_size(heap, buf) >= test_alloc_size );
|
|
REQUIRE( multi_heap_get_allocated_size(heap, buf) < test_alloc_size + 16);
|
|
|
|
memset(buf, 0xEE, test_alloc_size);
|
|
|
|
REQUIRE( multi_heap_malloc(heap, test_alloc_size) == NULL );
|
|
|
|
multi_heap_free(heap, buf);
|
|
|
|
printf("Empty?\n");
|
|
multi_heap_dump(heap);
|
|
printf("*********************\n");
|
|
|
|
/* Now there should be space for another allocation */
|
|
buf = (uint8_t *)multi_heap_malloc(heap, test_alloc_size);
|
|
REQUIRE( buf != NULL );
|
|
multi_heap_free(heap, buf);
|
|
|
|
REQUIRE( multi_heap_free_size(heap) > multi_heap_minimum_free_size(heap) );
|
|
}
|
|
|
|
|
|
TEST_CASE("multi_heap fragmentation", "[multi_heap]")
|
|
{
|
|
const size_t HEAP_SIZE = 4 * 1024;
|
|
uint8_t small_heap[HEAP_SIZE];
|
|
multi_heap_handle_t heap = multi_heap_register(small_heap, sizeof(small_heap));
|
|
|
|
const size_t alloc_size = 500;
|
|
|
|
void *p[4];
|
|
for (int i = 0; i < 4; i++) {
|
|
multi_heap_dump(heap);
|
|
REQUIRE( multi_heap_check(heap, true) );
|
|
p[i] = multi_heap_malloc(heap, alloc_size);
|
|
printf("%d = %p ****->\n", i, p[i]);
|
|
multi_heap_dump(heap);
|
|
REQUIRE( p[i] != NULL );
|
|
}
|
|
|
|
printf("allocated %p %p %p %p\n", p[0], p[1], p[2], p[3]);
|
|
|
|
REQUIRE( multi_heap_malloc(heap, alloc_size * 5) == NULL ); /* no room to allocate 5*alloc_size now */
|
|
|
|
printf("4 allocations:\n");
|
|
multi_heap_dump(heap);
|
|
printf("****************\n");
|
|
|
|
multi_heap_free(heap, p[0]);
|
|
multi_heap_free(heap, p[1]);
|
|
multi_heap_free(heap, p[3]);
|
|
|
|
printf("1 allocations:\n");
|
|
multi_heap_dump(heap);
|
|
printf("****************\n");
|
|
|
|
void *big = multi_heap_malloc(heap, alloc_size * 3);
|
|
//Blocks in TLSF are organized in different form, so this makes no sense
|
|
multi_heap_free(heap, big);
|
|
|
|
multi_heap_free(heap, p[2]);
|
|
|
|
printf("0 allocations:\n");
|
|
multi_heap_dump(heap);
|
|
printf("****************\n");
|
|
|
|
big = multi_heap_malloc(heap, alloc_size * 2);
|
|
//Blocks in TLSF are organized in different form, so this makes no sense
|
|
multi_heap_free(heap, big);
|
|
}
|
|
|
|
/* Test that malloc/free does not leave free space fragmented */
|
|
TEST_CASE("multi_heap defrag", "[multi_heap]")
|
|
{
|
|
void *p[4];
|
|
uint8_t small_heap[4 * 1024];
|
|
multi_heap_info_t info, info2;
|
|
multi_heap_handle_t heap = multi_heap_register(small_heap, sizeof(small_heap));
|
|
|
|
printf("0 ---\n");
|
|
multi_heap_dump(heap);
|
|
REQUIRE( multi_heap_check(heap, true) );
|
|
multi_heap_get_info(heap, &info);
|
|
REQUIRE( 0 == info.allocated_blocks );
|
|
REQUIRE( 1 == info.free_blocks );
|
|
|
|
printf("1 ---\n");
|
|
p[0] = multi_heap_malloc(heap, 128);
|
|
p[1] = multi_heap_malloc(heap, 32);
|
|
multi_heap_dump(heap);
|
|
REQUIRE( multi_heap_check(heap, true) );
|
|
|
|
printf("2 ---\n");
|
|
multi_heap_free(heap, p[0]);
|
|
p[2] = multi_heap_malloc(heap, 64);
|
|
multi_heap_dump(heap);
|
|
REQUIRE( p[2] == p[0] );
|
|
REQUIRE( multi_heap_check(heap, true) );
|
|
|
|
printf("3 ---\n");
|
|
multi_heap_free(heap, p[2]);
|
|
p[3] = multi_heap_malloc(heap, 32);
|
|
multi_heap_dump(heap);
|
|
REQUIRE( p[3] == p[0] );
|
|
REQUIRE( multi_heap_check(heap, true) );
|
|
|
|
multi_heap_get_info(heap, &info2);
|
|
REQUIRE( 2 == info2.allocated_blocks );
|
|
REQUIRE( 2 == info2.free_blocks );
|
|
|
|
multi_heap_free(heap, p[0]);
|
|
multi_heap_free(heap, p[1]);
|
|
multi_heap_get_info(heap, &info2);
|
|
REQUIRE( 0 == info2.allocated_blocks );
|
|
REQUIRE( 1 == info2.free_blocks );
|
|
REQUIRE( info.total_free_bytes == info2.total_free_bytes );
|
|
}
|
|
|
|
/* Test that malloc/free does not leave free space fragmented
|
|
Note: With fancy poisoning, realloc is implemented as malloc-copy-free and this test does not apply.
|
|
*/
|
|
#ifndef MULTI_HEAP_POISONING_SLOW
|
|
TEST_CASE("multi_heap defrag realloc", "[multi_heap]")
|
|
{
|
|
void *p[4];
|
|
uint8_t small_heap[4 * 1024];
|
|
multi_heap_info_t info, info2;
|
|
multi_heap_handle_t heap = multi_heap_register(small_heap, sizeof(small_heap));
|
|
|
|
printf("0 ---\n");
|
|
multi_heap_dump(heap);
|
|
REQUIRE( multi_heap_check(heap, true) );
|
|
multi_heap_get_info(heap, &info);
|
|
REQUIRE( 0 == info.allocated_blocks );
|
|
REQUIRE( 1 == info.free_blocks );
|
|
|
|
printf("1 ---\n");
|
|
p[0] = multi_heap_malloc(heap, 128);
|
|
p[1] = multi_heap_malloc(heap, 32);
|
|
multi_heap_dump(heap);
|
|
REQUIRE( multi_heap_check(heap, true) );
|
|
|
|
printf("2 ---\n");
|
|
p[2] = multi_heap_realloc(heap, p[0], 64);
|
|
multi_heap_dump(heap);
|
|
REQUIRE( p[2] == p[0] );
|
|
REQUIRE( multi_heap_check(heap, true) );
|
|
|
|
printf("3 ---\n");
|
|
p[3] = multi_heap_realloc(heap, p[2], 32);
|
|
multi_heap_dump(heap);
|
|
REQUIRE( p[3] == p[0] );
|
|
REQUIRE( multi_heap_check(heap, true) );
|
|
|
|
multi_heap_get_info(heap, &info2);
|
|
REQUIRE( 2 == info2.allocated_blocks );
|
|
REQUIRE( 2 == info2.free_blocks );
|
|
|
|
multi_heap_free(heap, p[0]);
|
|
multi_heap_free(heap, p[1]);
|
|
multi_heap_get_info(heap, &info2);
|
|
REQUIRE( 0 == info2.allocated_blocks );
|
|
REQUIRE( 1 == info2.free_blocks );
|
|
REQUIRE( info.total_free_bytes == info2.total_free_bytes );
|
|
}
|
|
#endif
|
|
|
|
|
|
void multi_heap_allocation_impl(int heap_size)
|
|
{
|
|
uint8_t *big_heap = (uint8_t *) __malloc__(heap_size);
|
|
const int NUM_POINTERS = 64;
|
|
|
|
printf("Running multi-allocation test with heap_size %d...\n", heap_size);
|
|
|
|
REQUIRE( big_heap );
|
|
multi_heap_handle_t heap = multi_heap_register(big_heap, heap_size);
|
|
|
|
void *p[NUM_POINTERS] = { 0 };
|
|
size_t s[NUM_POINTERS] = { 0 };
|
|
|
|
const size_t initial_free = multi_heap_free_size(heap);
|
|
|
|
const int ITERATIONS = 5000;
|
|
|
|
for (int i = 0; i < ITERATIONS; i++) {
|
|
/* check all pointers allocated so far are valid inside big_heap */
|
|
for (int j = 0; j < NUM_POINTERS; j++) {
|
|
if (p[j] != NULL) {
|
|
}
|
|
}
|
|
|
|
uint8_t n = rand() % NUM_POINTERS;
|
|
|
|
if (i % 4 == 0) {
|
|
/* 1 in 4 iterations, try to realloc the buffer instead
|
|
of using malloc/free
|
|
*/
|
|
size_t new_size = (rand() % 1023) + 1;
|
|
void *new_p = multi_heap_realloc(heap, p[n], new_size);
|
|
printf("realloc %p -> %p (%zu -> %zu)\n", p[n], new_p, s[n], new_size);
|
|
multi_heap_check(heap, true);
|
|
if (new_size == 0 || new_p != NULL) {
|
|
p[n] = new_p;
|
|
s[n] = new_size;
|
|
if (new_size > 0) {
|
|
REQUIRE( p[n] >= big_heap );
|
|
REQUIRE( p[n] < big_heap + heap_size );
|
|
memset(p[n], n, new_size);
|
|
}
|
|
}
|
|
continue;
|
|
}
|
|
if (p[n] != NULL) {
|
|
if (s[n] > 0) {
|
|
/* Verify pre-existing contents of p[n] */
|
|
uint8_t compare[s[n]];
|
|
memset(compare, n, s[n]);
|
|
/*REQUIRE*/assert( memcmp(compare, p[n], s[n]) == 0 );
|
|
}
|
|
REQUIRE( multi_heap_check(heap, true) );
|
|
multi_heap_free(heap, p[n]);
|
|
printf("freed %p (%zu)\n", p[n], s[n]);
|
|
if (!multi_heap_check(heap, true)) {
|
|
printf("FAILED iteration %d after freeing %p\n", i, p[n]);
|
|
multi_heap_dump(heap);
|
|
REQUIRE(0);
|
|
}
|
|
}
|
|
|
|
s[n] = rand() % 1024;
|
|
REQUIRE( multi_heap_check(heap, true) );
|
|
p[n] = multi_heap_malloc(heap, s[n]);
|
|
printf("malloc %p (%zu)\n", p[n], s[n]);
|
|
if (p[n] != NULL) {
|
|
REQUIRE( p[n] >= big_heap );
|
|
REQUIRE( p[n] < big_heap + heap_size );
|
|
}
|
|
if (!multi_heap_check(heap, true)) {
|
|
printf("FAILED iteration %d after mallocing %p (%zu bytes)\n", i, p[n], s[n]);
|
|
multi_heap_dump(heap);
|
|
REQUIRE(0);
|
|
}
|
|
if (p[n] != NULL) {
|
|
memset(p[n], n, s[n]);
|
|
}
|
|
}
|
|
|
|
for (int i = 0; i < NUM_POINTERS; i++) {
|
|
multi_heap_free(heap, p[i]);
|
|
if (!multi_heap_check(heap, true)) {
|
|
printf("FAILED during cleanup after freeing %p\n", p[i]);
|
|
multi_heap_dump(heap);
|
|
REQUIRE(0);
|
|
}
|
|
}
|
|
|
|
REQUIRE( initial_free == multi_heap_free_size(heap) );
|
|
__free__(big_heap);
|
|
}
|
|
|
|
TEST_CASE("multi_heap many random allocations", "[multi_heap]")
|
|
{
|
|
size_t poolsize[] = { 15, 255, 4095, 8191 };
|
|
for (size_t i = 0; i < sizeof(poolsize)/sizeof(size_t); i++) {
|
|
multi_heap_allocation_impl(poolsize[i] * 1024);
|
|
}
|
|
}
|
|
|
|
TEST_CASE("multi_heap_get_info() function", "[multi_heap]")
|
|
{
|
|
uint8_t heapdata[4 * 1024];
|
|
multi_heap_handle_t heap = multi_heap_register(heapdata, sizeof(heapdata));
|
|
multi_heap_info_t before, after, freed;
|
|
|
|
multi_heap_get_info(heap, &before);
|
|
printf("before: total_free_bytes %zu\ntotal_allocated_bytes %zu\nlargest_free_block %zu\nminimum_free_bytes %zu\nallocated_blocks %zu\nfree_blocks %zu\ntotal_blocks %zu\n",
|
|
before.total_free_bytes,
|
|
before.total_allocated_bytes,
|
|
before.largest_free_block,
|
|
before.minimum_free_bytes,
|
|
before.allocated_blocks,
|
|
before.free_blocks,
|
|
before.total_blocks);
|
|
|
|
REQUIRE( 0 == before.allocated_blocks );
|
|
REQUIRE( 0 == before.total_allocated_bytes );
|
|
REQUIRE( before.total_free_bytes == before.minimum_free_bytes );
|
|
|
|
void *x = multi_heap_malloc(heap, 32);
|
|
multi_heap_get_info(heap, &after);
|
|
printf("after: total_free_bytes %zu\ntotal_allocated_bytes %zu\nlargest_free_block %zu\nminimum_free_bytes %zu\nallocated_blocks %zu\nfree_blocks %zu\ntotal_blocks %zu\n",
|
|
after.total_free_bytes,
|
|
after.total_allocated_bytes,
|
|
after.largest_free_block,
|
|
after.minimum_free_bytes,
|
|
after.allocated_blocks,
|
|
after.free_blocks,
|
|
after.total_blocks);
|
|
|
|
REQUIRE( 1 == after.allocated_blocks );
|
|
REQUIRE( 32 == after.total_allocated_bytes );
|
|
REQUIRE( after.minimum_free_bytes < before.minimum_free_bytes);
|
|
REQUIRE( after.minimum_free_bytes > 0 );
|
|
|
|
multi_heap_free(heap, x);
|
|
multi_heap_get_info(heap, &freed);
|
|
printf("freed: total_free_bytes %zu\ntotal_allocated_bytes %zu\nlargest_free_block %zu\nminimum_free_bytes %zu\nallocated_blocks %zu\nfree_blocks %zu\ntotal_blocks %zu\n",
|
|
freed.total_free_bytes,
|
|
freed.total_allocated_bytes,
|
|
freed.largest_free_block,
|
|
freed.minimum_free_bytes,
|
|
freed.allocated_blocks,
|
|
freed.free_blocks,
|
|
freed.total_blocks);
|
|
|
|
REQUIRE( 0 == freed.allocated_blocks );
|
|
REQUIRE( 0 == freed.total_allocated_bytes );
|
|
REQUIRE( before.total_free_bytes == freed.total_free_bytes );
|
|
REQUIRE( after.minimum_free_bytes == freed.minimum_free_bytes );
|
|
}
|
|
|
|
TEST_CASE("multi_heap minimum-size allocations", "[multi_heap]")
|
|
{
|
|
uint8_t heapdata[4096];
|
|
void *p[sizeof(heapdata) / sizeof(void *)] = {NULL};
|
|
const size_t NUM_P = sizeof(p) / sizeof(void *);
|
|
size_t allocated_size = 0;
|
|
multi_heap_handle_t heap = multi_heap_register(heapdata, sizeof(heapdata));
|
|
size_t before_free = multi_heap_free_size(heap);
|
|
|
|
size_t i;
|
|
for (i = 0; i < NUM_P; i++) {
|
|
//TLSF minimum block size is 4 bytes
|
|
p[i] = multi_heap_malloc(heap, 1);
|
|
if (p[i] == NULL) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
REQUIRE( i < NUM_P); // Should have run out of heap before we ran out of pointers
|
|
printf("Allocated %zu minimum size chunks\n", i);
|
|
|
|
REQUIRE(multi_heap_free_size(heap) < before_free);
|
|
multi_heap_check(heap, true);
|
|
|
|
/* Free in random order */
|
|
bool has_allocations = true;
|
|
while (has_allocations) {
|
|
i = rand() % NUM_P;
|
|
multi_heap_free(heap, p[i]);
|
|
p[i] = NULL;
|
|
multi_heap_check(heap, true);
|
|
|
|
has_allocations = false;
|
|
for (i = 0; i < NUM_P && !has_allocations; i++) {
|
|
has_allocations = (p[i] != NULL);
|
|
}
|
|
}
|
|
|
|
/* all freed! */
|
|
REQUIRE( before_free == multi_heap_free_size(heap) );
|
|
}
|
|
|
|
TEST_CASE("multi_heap_realloc()", "[multi_heap]")
|
|
{
|
|
const size_t HEAP_SIZE = 4 * 1024;
|
|
const uint32_t PATTERN = 0xABABDADA;
|
|
uint8_t small_heap[HEAP_SIZE];
|
|
multi_heap_handle_t heap = multi_heap_register(small_heap, sizeof(small_heap));
|
|
|
|
uint32_t *a = (uint32_t *)multi_heap_malloc(heap, 64);
|
|
uint32_t *b = (uint32_t *)multi_heap_malloc(heap, 32);
|
|
REQUIRE( a != NULL );
|
|
REQUIRE( b != NULL );
|
|
REQUIRE( b > a); /* 'b' takes the block after 'a' */
|
|
|
|
*a = PATTERN;
|
|
uint32_t *c = (uint32_t *)multi_heap_realloc(heap, a, 72);
|
|
REQUIRE( multi_heap_check(heap, true));
|
|
REQUIRE( c != NULL );
|
|
REQUIRE( c > b ); /* 'a' moves, 'c' takes the block after 'b' */
|
|
REQUIRE( *c == PATTERN );
|
|
|
|
#ifndef MULTI_HEAP_POISONING_SLOW
|
|
// "Slow" poisoning implementation doesn't reallocate in place, so these
|
|
// test will fail...
|
|
uint32_t *d = (uint32_t *)multi_heap_realloc(heap, c, 36);
|
|
REQUIRE( multi_heap_check(heap, true) );
|
|
REQUIRE( c == d ); /* 'c' block should be shrunk in-place */
|
|
REQUIRE( *d == PATTERN);
|
|
// biggest allocation possible to completely fill the block left free after it was reallocated
|
|
uint32_t *e = (uint32_t *)multi_heap_malloc(heap, 60);
|
|
REQUIRE( multi_heap_check(heap, true));
|
|
REQUIRE( a == e ); /* 'e' takes the block formerly occupied by 'a' */
|
|
|
|
multi_heap_free(heap, d);
|
|
uint32_t *f = (uint32_t *)multi_heap_realloc(heap, b, 64);
|
|
REQUIRE( multi_heap_check(heap, true) );
|
|
REQUIRE( f == b ); /* 'b' should be extended in-place, over space formerly occupied by 'd' */
|
|
|
|
#define TOO_MUCH HEAP_SIZE + 1
|
|
/* not enough contiguous space left in the heap */
|
|
uint32_t *g = (uint32_t *)multi_heap_realloc(heap, e, TOO_MUCH);
|
|
REQUIRE( g == NULL );
|
|
|
|
multi_heap_free(heap, f);
|
|
/* try again */
|
|
g = (uint32_t *)multi_heap_realloc(heap, e, 128);
|
|
REQUIRE( multi_heap_check(heap, true) );
|
|
REQUIRE( e == g ); /* 'g' extends 'e' in place, into the space formerly held by 'f' */
|
|
|
|
#endif // MULTI_HEAP_POISONING_SLOW
|
|
}
|
|
|
|
// TLSF only accepts heaps aligned to 4-byte boundary so
|
|
// only aligned allocation tests make sense.
|
|
TEST_CASE("multi_heap aligned allocations", "[multi_heap]")
|
|
{
|
|
uint8_t test_heap[4 * 1024];
|
|
multi_heap_handle_t heap = multi_heap_register(test_heap, sizeof(test_heap));
|
|
uint32_t aligments = 0; // starts from alignment by 4-byte boundary
|
|
size_t old_size = multi_heap_free_size(heap);
|
|
size_t leakage = 1024;
|
|
printf("[ALIGNED_ALLOC] heap_size before: %d \n", old_size);
|
|
|
|
printf("New heap:\n");
|
|
multi_heap_dump(heap);
|
|
printf("*********************\n");
|
|
|
|
for(;aligments <= 256; aligments++) {
|
|
|
|
//Use some stupid size value to test correct alignment even in strange
|
|
//memory layout objects:
|
|
uint8_t *buf = (uint8_t *)multi_heap_aligned_alloc(heap, (aligments + 137), aligments );
|
|
if(((aligments & (aligments - 1)) != 0) || (!aligments)) {
|
|
REQUIRE( buf == NULL );
|
|
} else {
|
|
REQUIRE( buf != NULL );
|
|
REQUIRE((intptr_t)buf >= (intptr_t)test_heap);
|
|
REQUIRE((intptr_t)buf < (intptr_t)(test_heap + sizeof(test_heap)));
|
|
|
|
printf("[ALIGNED_ALLOC] alignment required: %u \n", aligments);
|
|
printf("[ALIGNED_ALLOC] address of allocated memory: %p \n\n", (void *)buf);
|
|
//Address of obtained block must be aligned with selected value
|
|
REQUIRE(((intptr_t)buf & (aligments - 1)) == 0);
|
|
|
|
//Write some data, if it corrupts memory probably the heap
|
|
//canary verification will fail:
|
|
memset(buf, 0xA5, (aligments + 137));
|
|
|
|
multi_heap_free(heap, buf);
|
|
}
|
|
}
|
|
|
|
/* Check that TLSF doesn't allocate a memory space smaller than required.
|
|
* In any case, TLSF will write data in the previous block than the one
|
|
* allocated. Thus, we should try to get/allocate this previous block. If
|
|
* the poisoned filled pattern has beeen overwritten by TLSF, then this
|
|
* previous block will trigger an exception.
|
|
* More info on this bug in !16296. */
|
|
const size_t size = 50; /* TLSF will round the size up */
|
|
uint8_t *buf1 = (uint8_t *)multi_heap_aligned_alloc(heap, size, 4);
|
|
uint8_t *buf2 = (uint8_t *)multi_heap_aligned_alloc(heap, size, 4);
|
|
multi_heap_free(heap, buf1);
|
|
/* By specifying a size equal of the gap between buf1 and buf2. We are
|
|
* trying to force TLSF to allocate two consecutive blocks. */
|
|
buf1 = (uint8_t *)multi_heap_aligned_alloc(heap, buf2 - buf1, 4);
|
|
multi_heap_free(heap, buf2);
|
|
|
|
|
|
printf("[ALIGNED_ALLOC] heap_size after: %d \n", multi_heap_free_size(heap));
|
|
REQUIRE((old_size - multi_heap_free_size(heap)) <= leakage);
|
|
}
|
|
|
|
// TLSF has some overhead when allocating blocks, check that overhead
|
|
TEST_CASE("multi_heap allocation overhead", "[multi_heap]")
|
|
{
|
|
uint8_t heapdata[4 * 1024];
|
|
size_t alloc_size = 256;
|
|
multi_heap_handle_t heap = multi_heap_register(heapdata, sizeof(heapdata));
|
|
size_t free_bytes_1 = multi_heap_free_size(heap);
|
|
|
|
/* Allocate any amount of data, in any case there will be an overhead */
|
|
void *x = multi_heap_malloc(heap, alloc_size);
|
|
|
|
/* free_bytes_2 should be free_bytes_1 - alloc_size - overhead.
|
|
* We don't know the value of overhead, let's check that it is non-zero */
|
|
size_t free_bytes_2 = multi_heap_free_size(heap);
|
|
REQUIRE( free_bytes_1 > free_bytes_2 );
|
|
REQUIRE( free_bytes_1 - free_bytes_2 > alloc_size );
|
|
|
|
multi_heap_free(heap, x);
|
|
}
|
|
|
|
/* This test will corrupt the memory of a free block in the heap and check
|
|
* that in the case of comprehensive poisoning the heap corruption is detected
|
|
* by multi_heap_check(). For light poisoning and no poisoning, the test will
|
|
* check that multi_heap_check() does not report the corruption.
|
|
*/
|
|
TEST_CASE("multi_heap poisoning detection", "[multi_heap]")
|
|
{
|
|
const size_t HEAP_SIZE = 4 * 1024;
|
|
|
|
/* define heap related data */
|
|
uint8_t heap_mem[HEAP_SIZE];
|
|
memset(heap_mem, 0x00, HEAP_SIZE);
|
|
|
|
/* register the heap memory. One free block only will be available */
|
|
multi_heap_handle_t heap = multi_heap_register(heap_mem, HEAP_SIZE);
|
|
|
|
control_t *tlsf_ptr = (control_t*)(heap_mem + 20);
|
|
const size_t control_t_size = tlsf_ptr->size;
|
|
const size_t heap_t_size = 20;
|
|
|
|
/* offset in memory at which to find the first free memory byte */
|
|
const size_t free_memory_offset = heap_t_size + control_t_size + sizeof(block_header_t) - block_header_overhead;
|
|
|
|
/* block header of the free block under test in the heap () */
|
|
const block_header_t* block = (block_header_t*)(heap_mem + free_memory_offset - sizeof(block_header_t));
|
|
|
|
/* actual number of bytes potentially filled with the free pattern in the free block under test */
|
|
const size_t effective_free_size = block_size(block) - block_header_overhead - offsetof(block_header_t, next_free);
|
|
|
|
/* variable used in the test */
|
|
size_t affected_byte = 0x00;
|
|
uint8_t original_value = 0x00;
|
|
uint8_t corrupted_value = 0x00;
|
|
|
|
/* repeat the corruption a few times to cover more of the free memory */
|
|
for (size_t i = 0; i < effective_free_size; i++)
|
|
{
|
|
/* corrupt random bytes in the heap (it needs to be bytes from free memory in
|
|
* order to check that the comprehensive poisoning is doing its job) */
|
|
affected_byte = free_memory_offset + i;
|
|
corrupted_value = (rand() % UINT8_MAX) | 1;
|
|
|
|
/* keep the good value in store in order to check that when we set the byte back
|
|
* to its original value, multi_heap_check() no longer returns the heap corruption. */
|
|
original_value = heap_mem[affected_byte];
|
|
|
|
/* make sure we are not replacing the original value with the same value */
|
|
heap_mem[affected_byte] ^= corrupted_value;
|
|
|
|
bool is_heap_ok = multi_heap_check(heap, true);
|
|
#ifdef CONFIG_HEAP_POISONING_COMPREHENSIVE
|
|
/* check that multi_heap_check() detects the corruption */
|
|
REQUIRE(is_heap_ok == false);
|
|
#else
|
|
/* the comprehensive corruption is not checked in the multi_heap_check() */
|
|
REQUIRE(is_heap_ok == true);
|
|
#endif
|
|
/* fix the corruption */
|
|
heap_mem[affected_byte] = original_value;
|
|
|
|
/* check that multi_heap_check() stops reporting the corruption */
|
|
is_heap_ok = multi_heap_check(heap, true);
|
|
REQUIRE(is_heap_ok == true);
|
|
}
|
|
}
|