esp-idf/components/spi_flash/esp_flash_api.c
2020-10-29 18:20:11 +08:00

812 lines
26 KiB
C

// Copyright 2015-2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdlib.h>
#include <stdio.h>
#include <sys/param.h>
#include <string.h>
#include "spi_flash_chip_driver.h"
#include "memspi_host_driver.h"
#include "esp_log.h"
#include "sdkconfig.h"
#include "esp_flash_internal.h"
#include "esp_private/system_internal.h"
static const char TAG[] = "spi_flash";
#ifdef CONFIG_SPI_FLASH_WRITE_CHUNK_SIZE
#define MAX_WRITE_CHUNK CONFIG_SPI_FLASH_WRITE_CHUNK_SIZE /* write in chunks */
#else
#define MAX_WRITE_CHUNK 8192 /* write in chunks */
#endif // CONFIG_SPI_FLASH_WRITE_CHUNK_SIZE
#define MAX_READ_CHUNK 16384
#ifdef CONFIG_SPI_FLASH_DANGEROUS_WRITE_ABORTS
#define UNSAFE_WRITE_ADDRESS abort()
#else
#define UNSAFE_WRITE_ADDRESS return ESP_ERR_INVALID_ARG
#endif
/* CHECK_WRITE_ADDRESS macro to fail writes which land in the
bootloader, partition table, or running application region.
*/
#if CONFIG_SPI_FLASH_DANGEROUS_WRITE_ALLOWED
#define CHECK_WRITE_ADDRESS(CHIP, ADDR, SIZE)
#else /* FAILS or ABORTS */
#define CHECK_WRITE_ADDRESS(CHIP, ADDR, SIZE) do { \
if (CHIP && CHIP->os_func->region_protected && CHIP->os_func->region_protected(CHIP->os_func_data, ADDR, SIZE)) { \
UNSAFE_WRITE_ADDRESS; \
} \
} while(0)
#endif // CONFIG_SPI_FLASH_DANGEROUS_WRITE_ALLOWED
#define IO_STR_LEN 7
static const char io_mode_str[][IO_STR_LEN] = {
"slowrd",
"fastrd",
"dout",
"dio",
"qout",
"qio",
};
_Static_assert(sizeof(io_mode_str)/IO_STR_LEN == SPI_FLASH_READ_MODE_MAX, "the io_mode_str should be consistent with the esp_flash_io_mode_t defined in spi_flash_ll.h");
esp_err_t esp_flash_read_chip_id(esp_flash_t* chip, uint32_t* flash_id);
static esp_err_t spiflash_start_default(esp_flash_t *chip);
static esp_err_t spiflash_end_default(esp_flash_t *chip, esp_err_t err);
static esp_err_t check_chip_pointer_default(esp_flash_t **inout_chip);
typedef struct {
esp_err_t (*start)(esp_flash_t *chip);
esp_err_t (*end)(esp_flash_t *chip, esp_err_t err);
esp_err_t (*chip_check)(esp_flash_t **inout_chip);
} rom_spiflash_api_func_t;
// These functions can be placed in the ROM. For now we use the code in IDF.
DRAM_ATTR static rom_spiflash_api_func_t default_spiflash_rom_api = {
.start = spiflash_start_default,
.end = spiflash_end_default,
.chip_check = check_chip_pointer_default,
};
DRAM_ATTR rom_spiflash_api_func_t *rom_spiflash_api_funcs = &default_spiflash_rom_api;
/* Static function to notify OS of a new SPI flash operation.
If returns an error result, caller must abort. If returns ESP_OK, caller must
call rom_spiflash_api_funcs->end() before returning.
*/
static esp_err_t IRAM_ATTR spiflash_start_default(esp_flash_t *chip)
{
if (chip->os_func != NULL && chip->os_func->start != NULL) {
esp_err_t err = chip->os_func->start(chip->os_func_data);
if (err != ESP_OK) {
return err;
}
}
chip->host->driver->dev_config(chip->host);
return ESP_OK;
}
/* Static function to notify OS that SPI flash operation is complete.
*/
static esp_err_t IRAM_ATTR spiflash_end_default(esp_flash_t *chip, esp_err_t err)
{
if (chip->os_func != NULL
&& chip->os_func->end != NULL) {
esp_err_t end_err = chip->os_func->end(chip->os_func_data);
if (err == ESP_OK) {
err = end_err; // Only return the 'end' error if we haven't already failed
}
}
return err;
}
// check that the 'chip' parameter is properly initialised
static esp_err_t check_chip_pointer_default(esp_flash_t **inout_chip)
{
esp_flash_t *chip = *inout_chip;
if (chip == NULL) {
chip = esp_flash_default_chip;
}
*inout_chip = chip;
if (chip == NULL || !esp_flash_chip_driver_initialized(chip)) {
return ESP_ERR_FLASH_NOT_INITIALISED;
}
return ESP_OK;
}
/* Return true if regions 'a' and 'b' overlap at all, based on their start offsets and lengths. */
inline static bool regions_overlap(uint32_t a_start, uint32_t a_len,uint32_t b_start, uint32_t b_len);
/* Top-level API functions, calling into chip_drv functions via chip->drv */
static esp_err_t detect_spi_flash_chip(esp_flash_t *chip);
bool esp_flash_chip_driver_initialized(const esp_flash_t *chip)
{
if (!chip->chip_drv) return false;
return true;
}
esp_err_t IRAM_ATTR esp_flash_init(esp_flash_t *chip)
{
// Chip init flow
// 1. Read chip id
// 2. (optional) Detect chip vendor
// 3. Get basic parameters of the chip (size, dummy count, etc.)
// 4. Init chip into desired mode (without breaking the cache!)
esp_err_t err = ESP_OK;
if (chip == NULL || chip->host == NULL || chip->host->driver == NULL ||
((memspi_host_inst_t*)chip->host)->spi == NULL) {
return ESP_ERR_INVALID_ARG;
}
//read chip id
uint32_t flash_id;
int retries = 10;
do {
err = esp_flash_read_chip_id(chip, &flash_id);
} while (err == ESP_ERR_FLASH_NOT_INITIALISED && retries-- > 0);
if (err != ESP_OK) {
return err;
}
chip->chip_id = flash_id;
if (!esp_flash_chip_driver_initialized(chip)) {
// Detect chip_drv
err = detect_spi_flash_chip(chip);
if (err != ESP_OK) {
return err;
}
}
// Detect flash size
uint32_t size;
err = esp_flash_get_size(chip, &size);
if (err != ESP_OK) {
ESP_LOGE(TAG, "failed to get chip size");
return err;
}
ESP_LOGI(TAG, "flash io: %s", io_mode_str[chip->read_mode]);
err = rom_spiflash_api_funcs->start(chip);
if (err != ESP_OK) {
return err;
}
if (err == ESP_OK) {
// Try to set the flash mode to whatever default mode was chosen
err = chip->chip_drv->set_io_mode(chip);
if (err == ESP_ERR_FLASH_NO_RESPONSE && !esp_flash_is_quad_mode(chip)) {
//some chips (e.g. Winbond) don't support to clear QE, treat as success
err = ESP_OK;
}
}
// Done: all fields on 'chip' are initialised
return rom_spiflash_api_funcs->end(chip, err);
}
static esp_err_t IRAM_ATTR read_id_core(esp_flash_t* chip, uint32_t* out_id, bool sanity_check)
{
bool installed = esp_flash_chip_driver_initialized(chip);
esp_err_t err = rom_spiflash_api_funcs->start(chip);
if (err != ESP_OK) {
return err;
}
esp_err_t (*read_id_func)(void*, uint32_t*);
void* read_id_arg;
if (installed && chip->chip_drv->read_id) {
read_id_func = (void*)chip->chip_drv->read_id;
read_id_arg = (void*)chip;
} else {
//default option if the chip is not detected/chosen yet.
read_id_func = (void*)chip->host->driver->read_id;
read_id_arg = (void*)chip->host;
}
// Inner function fails if it sees all-ones or all-zeroes.
err = read_id_func(read_id_arg, out_id);
if (sanity_check && err == ESP_OK) {
// Send RDID command twice, check for a matching result and retry in case we just powered on
uint32_t new_id;
err = read_id_func(read_id_arg, &new_id);
if (err == ESP_OK && (new_id != *out_id)) {
err = ESP_ERR_FLASH_NOT_INITIALISED;
}
}
return rom_spiflash_api_funcs->end(chip, err);
}
// Faster version with sanity check.
// Called in esp_flash_init and unit test (though not public)
esp_err_t esp_flash_read_chip_id(esp_flash_t* chip, uint32_t* out_id)
{
return read_id_core(chip, out_id, true);
}
esp_err_t esp_flash_read_id(esp_flash_t* chip, uint32_t* out_id)
{
esp_err_t err = rom_spiflash_api_funcs->chip_check(&chip);
//Accept uninitialized chip when reading chip id
if (err != ESP_OK && !(err == ESP_ERR_FLASH_NOT_INITIALISED && chip != NULL)) return err;
if (out_id == NULL) return ESP_ERR_INVALID_ARG;
return read_id_core(chip, out_id, false);
}
static esp_err_t IRAM_ATTR detect_spi_flash_chip(esp_flash_t *chip)
{
esp_err_t err;
uint32_t flash_id = chip->chip_id;
// Detect the chip and set the chip_drv structure for it
const spi_flash_chip_t **drivers = esp_flash_registered_chips;
while (*drivers != NULL && !esp_flash_chip_driver_initialized(chip)) {
chip->chip_drv = *drivers;
// start/end SPI operation each time, for multitasking
// and also so esp_flash_registered_flash_drivers can live in flash
ESP_LOGD(TAG, "trying chip: %s", chip->chip_drv->name);
err = rom_spiflash_api_funcs->start(chip);
if (err != ESP_OK) {
return err;
}
if (chip->chip_drv->probe(chip, flash_id) != ESP_OK) {
chip->chip_drv = NULL;
}
// if probe succeeded, chip->drv stays set
drivers++;
err = rom_spiflash_api_funcs->end(chip, err);
if (err != ESP_OK) {
return err;
}
}
if (!esp_flash_chip_driver_initialized(chip)) {
return ESP_ERR_NOT_FOUND;
}
ESP_LOGI(TAG, "detected chip: %s", chip->chip_drv->name);
return ESP_OK;
}
/* Convenience macro for beginning of all API functions.
* Check the return value of `rom_spiflash_api_funcs->chip_check` is correct,
* and the chip supports the operation in question.
*/
#define VERIFY_CHIP_OP(OP) do { \
if (err != ESP_OK) return err; \
if (chip->chip_drv->OP == NULL) { \
return ESP_ERR_FLASH_UNSUPPORTED_CHIP; \
} \
} while (0)
esp_err_t IRAM_ATTR esp_flash_get_size(esp_flash_t *chip, uint32_t *out_size)
{
esp_err_t err = rom_spiflash_api_funcs->chip_check(&chip);
VERIFY_CHIP_OP(detect_size);
if (out_size == NULL) {
return ESP_ERR_INVALID_ARG;
}
if (chip->size != 0) {
*out_size = chip->size;
return ESP_OK;
}
err = rom_spiflash_api_funcs->start(chip);
if (err != ESP_OK) {
return err;
}
uint32_t detect_size;
err = chip->chip_drv->detect_size(chip, &detect_size);
if (err == ESP_OK) {
chip->size = detect_size;
}
return rom_spiflash_api_funcs->end(chip, err);
}
esp_err_t IRAM_ATTR esp_flash_erase_chip(esp_flash_t *chip)
{
esp_err_t err = rom_spiflash_api_funcs->chip_check(&chip);
VERIFY_CHIP_OP(erase_chip);
CHECK_WRITE_ADDRESS(chip, 0, chip->size);
err = rom_spiflash_api_funcs->start(chip);
if (err != ESP_OK) {
return err;
}
err = chip->chip_drv->erase_chip(chip);
return rom_spiflash_api_funcs->end(chip, err);
}
esp_err_t IRAM_ATTR esp_flash_erase_region(esp_flash_t *chip, uint32_t start, uint32_t len)
{
esp_err_t err = rom_spiflash_api_funcs->chip_check(&chip);
VERIFY_CHIP_OP(erase_sector);
VERIFY_CHIP_OP(erase_block);
CHECK_WRITE_ADDRESS(chip, start, len);
uint32_t block_erase_size = chip->chip_drv->erase_block == NULL ? 0 : chip->chip_drv->block_erase_size;
uint32_t sector_size = chip->chip_drv->sector_size;
if (sector_size == 0 || (block_erase_size % sector_size) != 0) {
return ESP_ERR_FLASH_NOT_INITIALISED;
}
if (start > chip->size || start + len > chip->size) {
return ESP_ERR_INVALID_ARG;
}
if ((start % chip->chip_drv->sector_size) != 0 || (len % chip->chip_drv->sector_size) != 0) {
// Can only erase multiples of the sector size, starting at sector boundary
return ESP_ERR_INVALID_ARG;
}
err = ESP_OK;
// Check for write protected regions overlapping the erase region
if (chip->chip_drv->get_protected_regions != NULL &&
chip->chip_drv->num_protectable_regions > 0) {
err = rom_spiflash_api_funcs->start(chip);
if (err != ESP_OK) {
return err;
}
uint64_t protected = 0;
err = chip->chip_drv->get_protected_regions(chip, &protected);
if (err == ESP_OK && protected != 0) {
for (int i = 0; i < chip->chip_drv->num_protectable_regions && err == ESP_OK; i++) {
const esp_flash_region_t *region = &chip->chip_drv->protectable_regions[i];
if ((protected & BIT64(i))
&& regions_overlap(start, len, region->offset, region->size)) {
err = ESP_ERR_FLASH_PROTECTED;
}
}
}
// Don't lock the SPI flash for the entire erase, as this may be very long
err = rom_spiflash_api_funcs->end(chip, err);
}
#ifdef CONFIG_SPI_FLASH_YIELD_DURING_ERASE
int64_t no_yield_time_us = 0;
#endif
while (err == ESP_OK && len >= sector_size) {
#ifdef CONFIG_SPI_FLASH_YIELD_DURING_ERASE
int64_t start_time_us = esp_system_get_time();
#endif
err = rom_spiflash_api_funcs->start(chip);
if (err != ESP_OK) {
return err;
}
#ifndef CONFIG_SPI_FLASH_BYPASS_BLOCK_ERASE
// If possible erase an entire multi-sector block
if (block_erase_size > 0 && len >= block_erase_size && (start % block_erase_size) == 0) {
err = chip->chip_drv->erase_block(chip, start);
start += block_erase_size;
len -= block_erase_size;
} else
#endif
{
// Otherwise erase individual sector only
err = chip->chip_drv->erase_sector(chip, start);
start += sector_size;
len -= sector_size;
}
err = rom_spiflash_api_funcs->end(chip, err);
#ifdef CONFIG_SPI_FLASH_YIELD_DURING_ERASE
no_yield_time_us += (esp_system_get_time() - start_time_us);
if (no_yield_time_us / 1000 >= CONFIG_SPI_FLASH_ERASE_YIELD_DURATION_MS) {
no_yield_time_us = 0;
if (chip->os_func->yield) {
chip->os_func->yield(chip->os_func_data);
}
}
#endif
}
return err;
}
esp_err_t IRAM_ATTR esp_flash_get_chip_write_protect(esp_flash_t *chip, bool *out_write_protected)
{
esp_err_t err = rom_spiflash_api_funcs->chip_check(&chip);
VERIFY_CHIP_OP(get_chip_write_protect);
if (out_write_protected == NULL) {
return ESP_ERR_INVALID_ARG;
}
err = rom_spiflash_api_funcs->start(chip);
if (err != ESP_OK) {
return err;
}
err = chip->chip_drv->get_chip_write_protect(chip, out_write_protected);
return rom_spiflash_api_funcs->end(chip, err);
}
esp_err_t IRAM_ATTR esp_flash_set_chip_write_protect(esp_flash_t *chip, bool write_protect)
{
esp_err_t err = rom_spiflash_api_funcs->chip_check(&chip);
VERIFY_CHIP_OP(set_chip_write_protect);
//TODO: skip writing if already locked or unlocked
err = rom_spiflash_api_funcs->start(chip);
if (err != ESP_OK) {
return err;
}
err = chip->chip_drv->set_chip_write_protect(chip, write_protect);
return rom_spiflash_api_funcs->end(chip, err);
}
esp_err_t esp_flash_get_protectable_regions(const esp_flash_t *chip, const esp_flash_region_t **out_regions, uint32_t *out_num_regions)
{
if(out_num_regions != NULL) {
*out_num_regions = 0; // In case caller doesn't check result
}
esp_err_t err = rom_spiflash_api_funcs->chip_check((esp_flash_t **)&chip);
VERIFY_CHIP_OP(get_protected_regions);
if(out_regions == NULL || out_num_regions == NULL) {
return ESP_ERR_INVALID_ARG;
}
*out_num_regions = chip->chip_drv->num_protectable_regions;
*out_regions = chip->chip_drv->protectable_regions;
return ESP_OK;
}
static esp_err_t find_region(const esp_flash_t *chip, const esp_flash_region_t *region, uint8_t *index)
{
if (region == NULL) {
return ESP_ERR_INVALID_ARG;
}
for(*index = 0; *index < chip->chip_drv->num_protectable_regions; (*index)++) {
if (memcmp(&chip->chip_drv->protectable_regions[*index],
region, sizeof(esp_flash_region_t)) == 0) {
return ESP_OK;
}
}
return ESP_ERR_NOT_FOUND;
}
esp_err_t IRAM_ATTR esp_flash_get_protected_region(esp_flash_t *chip, const esp_flash_region_t *region, bool *out_protected)
{
esp_err_t err = rom_spiflash_api_funcs->chip_check(&chip);
VERIFY_CHIP_OP(get_protected_regions);
if (out_protected == NULL) {
return ESP_ERR_INVALID_ARG;
}
uint8_t index;
err = find_region(chip, region, &index);
if (err != ESP_OK) {
return err;
}
uint64_t protection_mask = 0;
err = rom_spiflash_api_funcs->start(chip);
if (err != ESP_OK) {
return err;
}
err = chip->chip_drv->get_protected_regions(chip, &protection_mask);
if (err == ESP_OK) {
*out_protected = protection_mask & (1LL << index);
}
return rom_spiflash_api_funcs->end(chip, err);
}
esp_err_t IRAM_ATTR esp_flash_set_protected_region(esp_flash_t *chip, const esp_flash_region_t *region, bool protect)
{
esp_err_t err = rom_spiflash_api_funcs->chip_check(&chip);
VERIFY_CHIP_OP(set_protected_regions);
uint8_t index;
err = find_region(chip, region, &index);
if (err != ESP_OK) {
return err;
}
uint64_t protection_mask = 0;
err = rom_spiflash_api_funcs->start(chip);
if (err != ESP_OK) {
return err;
}
err = chip->chip_drv->get_protected_regions(chip, &protection_mask);
if (err == ESP_OK) {
if (protect) {
protection_mask |= (1LL << index);
} else {
protection_mask &= ~(1LL << index);
}
err = chip->chip_drv->set_protected_regions(chip, protection_mask);
}
return rom_spiflash_api_funcs->end(chip, err);
}
esp_err_t IRAM_ATTR esp_flash_read(esp_flash_t *chip, void *buffer, uint32_t address, uint32_t length)
{
if (length == 0) {
return ESP_OK;
}
esp_err_t err = rom_spiflash_api_funcs->chip_check(&chip);
VERIFY_CHIP_OP(read);
if (buffer == NULL || address > chip->size || address+length > chip->size) {
return ESP_ERR_INVALID_ARG;
}
//when the cache is disabled, only the DRAM can be read, check whether we need to receive in another buffer in DRAM.
bool direct_read = chip->host->driver->supports_direct_read(chip->host, buffer);
uint8_t* temp_buffer = NULL;
//each time, we at most read this length
//after that, we release the lock to allow some other operations
size_t read_chunk_size = MIN(MAX_READ_CHUNK, length);
if (!direct_read) {
size_t actual_len = 0;
if (chip->os_func->get_temp_buffer != NULL) {
temp_buffer = chip->os_func->get_temp_buffer(chip->os_func_data, read_chunk_size, &actual_len);
read_chunk_size = actual_len;
}
if (temp_buffer == NULL) {
return ESP_ERR_NO_MEM;
}
}
err = ESP_OK;
do {
err = rom_spiflash_api_funcs->start(chip);
if (err != ESP_OK) {
break;
}
//if required (dma buffer allocated), read to the buffer instead of the original buffer
uint8_t* buffer_to_read = (temp_buffer)? temp_buffer : buffer;
// Length we will read this iteration is either the chunk size or the remaining length, whichever is smaller
size_t length_to_read = MIN(read_chunk_size, length);
if (err == ESP_OK) {
err = chip->chip_drv->read(chip, buffer_to_read, address, length_to_read);
}
if (err != ESP_OK) {
rom_spiflash_api_funcs->end(chip, err);
break;
}
//even if this is failed, the data is still valid, copy before quit
err = rom_spiflash_api_funcs->end(chip, err);
//copy back to the original buffer
if (temp_buffer) {
memcpy(buffer, temp_buffer, length_to_read);
}
address += length_to_read;
length -= length_to_read;
buffer = (void*)((intptr_t)buffer + length_to_read);
} while (err == ESP_OK && length > 0);
if (chip->os_func->release_temp_buffer != NULL) {
chip->os_func->release_temp_buffer(chip->os_func_data, temp_buffer);
}
return err;
}
esp_err_t IRAM_ATTR esp_flash_write(esp_flash_t *chip, const void *buffer, uint32_t address, uint32_t length)
{
if (length == 0) {
return ESP_OK;
}
esp_err_t err = rom_spiflash_api_funcs->chip_check(&chip);
VERIFY_CHIP_OP(write);
CHECK_WRITE_ADDRESS(chip, address, length);
if (buffer == NULL || address > chip->size || address+length > chip->size) {
return ESP_ERR_INVALID_ARG;
}
//when the cache is disabled, only the DRAM can be read, check whether we need to copy the data first
bool direct_write = chip->host->driver->supports_direct_write(chip->host, buffer);
err = ESP_OK;
/* Write output in chunks, either by buffering on stack or
by artificially cutting into MAX_WRITE_CHUNK parts (in an OS
environment, this prevents writing from causing interrupt or higher priority task
starvation.) */
do {
uint32_t write_len;
const void *write_buf;
uint32_t temp_buf[8];
if (direct_write) {
write_len = MIN(length, MAX_WRITE_CHUNK);
write_buf = buffer;
} else {
write_len = MIN(length, sizeof(temp_buf));
memcpy(temp_buf, buffer, write_len);
write_buf = temp_buf;
}
err = rom_spiflash_api_funcs->start(chip);
if (err != ESP_OK) {
return err;
}
err = chip->chip_drv->write(chip, write_buf, address, write_len);
address += write_len;
buffer = (void *)((intptr_t)buffer + write_len);
length -= write_len;
err = rom_spiflash_api_funcs->end(chip, err);
} while (err == ESP_OK && length > 0);
return err;
}
//currently the legacy implementation is used, from flash_ops.c
esp_err_t spi_flash_write_encrypted(size_t dest_addr, const void *src, size_t size);
esp_err_t IRAM_ATTR esp_flash_write_encrypted(esp_flash_t *chip, uint32_t address, const void *buffer, uint32_t length)
{
/*
* Since currently this feature is supported only by the hardware, there
* is no way to support non-standard chips. We use the legacy
* implementation and skip the chip and driver layers.
*/
esp_err_t err = rom_spiflash_api_funcs->chip_check(&chip);
if (err != ESP_OK) return err;
if (buffer == NULL || address > chip->size || address+length > chip->size) {
return ESP_ERR_INVALID_ARG;
}
return spi_flash_write_encrypted(address, buffer, length);
}
inline static IRAM_ATTR bool regions_overlap(uint32_t a_start, uint32_t a_len,uint32_t b_start, uint32_t b_len)
{
uint32_t a_end = a_start + a_len;
uint32_t b_end = b_start + b_len;
return (a_end > b_start && b_end > a_start);
}
//currently the legacy implementation is used, from flash_ops.c
esp_err_t spi_flash_read_encrypted(size_t src, void *dstv, size_t size);
esp_err_t IRAM_ATTR esp_flash_read_encrypted(esp_flash_t *chip, uint32_t address, void *out_buffer, uint32_t length)
{
/*
* Since currently this feature is supported only by the hardware, there
* is no way to support non-standard chips. We use the legacy
* implementation and skip the chip and driver layers.
*/
esp_err_t err = rom_spiflash_api_funcs->chip_check(&chip);
if (err != ESP_OK) return err;
return spi_flash_read_encrypted(address, out_buffer, length);
}
// test only, non-public
IRAM_ATTR esp_err_t esp_flash_get_io_mode(esp_flash_t* chip, bool* qe)
{
esp_err_t err = rom_spiflash_api_funcs->chip_check(&chip);
VERIFY_CHIP_OP(get_io_mode);
esp_flash_io_mode_t io_mode;
err = rom_spiflash_api_funcs->start(chip);
if (err != ESP_OK) {
return err;
}
err = chip->chip_drv->get_io_mode(chip, &io_mode);
err = rom_spiflash_api_funcs->end(chip, err);
if (err == ESP_OK) {
*qe = (io_mode == SPI_FLASH_QOUT);
}
return err;
}
IRAM_ATTR esp_err_t esp_flash_set_io_mode(esp_flash_t* chip, bool qe)
{
esp_err_t err = rom_spiflash_api_funcs->chip_check(&chip);
VERIFY_CHIP_OP(set_io_mode);
chip->read_mode = (qe? SPI_FLASH_QOUT: SPI_FLASH_SLOWRD);
err = rom_spiflash_api_funcs->start(chip);
if (err != ESP_OK) {
return err;
}
err = chip->chip_drv->set_io_mode(chip);
return rom_spiflash_api_funcs->end(chip, err);
}
#ifndef CONFIG_SPI_FLASH_USE_LEGACY_IMPL
esp_err_t esp_flash_app_disable_protect(bool disable)
{
if (disable) {
return esp_flash_app_disable_os_functions(esp_flash_default_chip);
} else {
return esp_flash_app_enable_os_functions(esp_flash_default_chip);
}
}
#endif
/*------------------------------------------------------------------------------
Adapter layer to original api before IDF v4.0
------------------------------------------------------------------------------*/
#ifndef CONFIG_SPI_FLASH_USE_LEGACY_IMPL
/* Translate any ESP_ERR_FLASH_xxx error code (new API) to a generic ESP_ERR_xyz error code
*/
static IRAM_ATTR esp_err_t spi_flash_translate_rc(esp_err_t err)
{
switch (err) {
case ESP_OK:
case ESP_ERR_INVALID_ARG:
case ESP_ERR_NO_MEM:
return err;
case ESP_ERR_FLASH_NOT_INITIALISED:
case ESP_ERR_FLASH_PROTECTED:
return ESP_ERR_INVALID_STATE;
case ESP_ERR_NOT_FOUND:
case ESP_ERR_FLASH_UNSUPPORTED_HOST:
case ESP_ERR_FLASH_UNSUPPORTED_CHIP:
return ESP_ERR_NOT_SUPPORTED;
case ESP_ERR_FLASH_NO_RESPONSE:
return ESP_ERR_INVALID_RESPONSE;
default:
ESP_EARLY_LOGE(TAG, "unexpected spi flash error code: 0x%x", err);
abort();
}
}
esp_err_t IRAM_ATTR spi_flash_erase_range(uint32_t start_addr, uint32_t size)
{
esp_err_t err = esp_flash_erase_region(NULL, start_addr, size);
return spi_flash_translate_rc(err);
}
esp_err_t IRAM_ATTR spi_flash_write(size_t dst, const void *srcv, size_t size)
{
esp_err_t err = esp_flash_write(NULL, srcv, dst, size);
return spi_flash_translate_rc(err);
}
esp_err_t IRAM_ATTR spi_flash_read(size_t src, void *dstv, size_t size)
{
esp_err_t err = esp_flash_read(NULL, dstv, src, size);
return spi_flash_translate_rc(err);
}
#endif // CONFIG_SPI_FLASH_USE_LEGACY_IMPL