997 lines
38 KiB
C

// Copyright 2015-2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdlib.h>
#include <string.h>
#include <sys/lock.h>
#include "esp_intr_alloc.h"
#include "esp_log.h"
#include "driver/gpio.h"
#include "driver/periph_ctrl.h"
#include "driver/rmt.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/semphr.h"
#include "freertos/ringbuf.h"
#include "soc/soc_memory_layout.h"
#include "hal/rmt_hal.h"
#include "hal/rmt_ll.h"
#define RMT_SOUCCE_CLK_APB (APB_CLK_FREQ) /*!< RMT source clock is APB_CLK */
#define RMT_SOURCE_CLK_REF (1 * 1000000) /*!< not used yet */
#define RMT_SOURCE_CLK(select) ((select == RMT_BASECLK_REF) ? (RMT_SOURCE_CLK_REF) : (RMT_SOUCCE_CLK_APB))
#define RMT_CHANNEL_ERROR_STR "RMT CHANNEL ERR"
#define RMT_ADDR_ERROR_STR "RMT ADDRESS ERR"
#define RMT_MEM_CNT_ERROR_STR "RMT MEM BLOCK NUM ERR"
#define RMT_CARRIER_ERROR_STR "RMT CARRIER LEVEL ERR"
#define RMT_MEM_OWNER_ERROR_STR "RMT MEM OWNER_ERR"
#define RMT_BASECLK_ERROR_STR "RMT BASECLK ERR"
#define RMT_WR_MEM_OVF_ERROR_STR "RMT WR MEM OVERFLOW"
#define RMT_GPIO_ERROR_STR "RMT GPIO ERROR"
#define RMT_MODE_ERROR_STR "RMT MODE ERROR"
#define RMT_CLK_DIV_ERROR_STR "RMT CLK DIV ERR"
#define RMT_DRIVER_ERROR_STR "RMT DRIVER ERR"
#define RMT_DRIVER_LENGTH_ERROR_STR "RMT PARAM LEN ERROR"
#define RMT_PSRAM_BUFFER_WARN_STR "Using buffer allocated from psram"
#define RMT_TRANSLATOR_NULL_STR "RMT translator is null"
#define RMT_TRANSLATOR_UNINIT_STR "RMT translator not init"
#define RMT_PARAM_ERR_STR "RMT param error"
static const char *RMT_TAG = "rmt";
#define RMT_CHECK(a, str, ret_val) \
if (!(a)) \
{ \
ESP_LOGE(RMT_TAG, "%s(%d): %s", __FUNCTION__, __LINE__, str); \
return (ret_val); \
}
static uint8_t s_rmt_driver_channels; // Bitmask of installed drivers' channels
// Spinlock for protecting concurrent register-level access only
static portMUX_TYPE rmt_spinlock = portMUX_INITIALIZER_UNLOCKED;
#define RMT_ENTER_CRITICAL() portENTER_CRITICAL_SAFE(&rmt_spinlock)
#define RMT_EXIT_CRITICAL() portEXIT_CRITICAL_SAFE(&rmt_spinlock)
// Mutex lock for protecting concurrent register/unregister of RMT channels' ISR
static _lock_t rmt_driver_isr_lock;
static rmt_isr_handle_t s_rmt_driver_intr_handle;
typedef struct {
rmt_hal_context_t hal;
size_t tx_offset;
size_t tx_len_rem;
size_t tx_sub_len;
bool translator;
bool wait_done; //Mark whether wait tx done.
rmt_channel_t channel;
const rmt_item32_t *tx_data;
xSemaphoreHandle tx_sem;
#if CONFIG_SPIRAM_USE_MALLOC
int intr_alloc_flags;
StaticSemaphore_t tx_sem_buffer;
#endif
rmt_item32_t *tx_buf;
RingbufHandle_t rx_buf;
sample_to_rmt_t sample_to_rmt;
size_t sample_size_remain;
const uint8_t *sample_cur;
} rmt_obj_t;
rmt_obj_t *p_rmt_obj[RMT_CHANNEL_MAX] = {0};
// Event called when transmission is ended
static rmt_tx_end_callback_t rmt_tx_end_callback;
esp_err_t rmt_set_clk_div(rmt_channel_t channel, uint8_t div_cnt)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT_ENTER_CRITICAL();
rmt_ll_set_counter_clock_div(p_rmt_obj[channel]->hal.regs, channel, div_cnt);
RMT_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t rmt_get_clk_div(rmt_channel_t channel, uint8_t *div_cnt)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT_CHECK(div_cnt != NULL, RMT_ADDR_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT_ENTER_CRITICAL();
*div_cnt = (uint8_t)rmt_ll_get_counter_clock_div(p_rmt_obj[channel]->hal.regs, channel);
RMT_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t rmt_set_rx_idle_thresh(rmt_channel_t channel, uint16_t thresh)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT_ENTER_CRITICAL();
rmt_ll_set_rx_idle_thres(p_rmt_obj[channel]->hal.regs, channel, thresh);
RMT_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t rmt_get_rx_idle_thresh(rmt_channel_t channel, uint16_t *thresh)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT_CHECK(thresh != NULL, RMT_ADDR_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT_ENTER_CRITICAL();
*thresh = (uint16_t)rmt_ll_get_rx_idle_thres(p_rmt_obj[channel]->hal.regs, channel);
RMT_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t rmt_set_mem_block_num(rmt_channel_t channel, uint8_t rmt_mem_num)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT_CHECK(rmt_mem_num <= RMT_CHANNEL_MAX - channel, RMT_MEM_CNT_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT_ENTER_CRITICAL();
rmt_ll_set_mem_blocks(p_rmt_obj[channel]->hal.regs, channel, rmt_mem_num);
RMT_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t rmt_get_mem_block_num(rmt_channel_t channel, uint8_t *rmt_mem_num)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT_CHECK(rmt_mem_num != NULL, RMT_ADDR_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT_ENTER_CRITICAL();
*rmt_mem_num = (uint8_t)rmt_ll_get_mem_blocks(p_rmt_obj[channel]->hal.regs, channel);
RMT_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t rmt_set_tx_carrier(rmt_channel_t channel, bool carrier_en, uint16_t high_level, uint16_t low_level,
rmt_carrier_level_t carrier_level)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT_CHECK(carrier_level < RMT_CARRIER_LEVEL_MAX, RMT_CARRIER_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT_ENTER_CRITICAL();
rmt_ll_set_carrier_high_low_ticks(p_rmt_obj[channel]->hal.regs, channel, high_level, low_level);
rmt_ll_set_carrier_to_level(p_rmt_obj[channel]->hal.regs, channel, carrier_level);
rmt_ll_enable_tx_carrier(p_rmt_obj[channel]->hal.regs, channel, carrier_en);
RMT_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t rmt_set_mem_pd(rmt_channel_t channel, bool pd_en)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT_ENTER_CRITICAL();
rmt_ll_power_down_mem(p_rmt_obj[channel]->hal.regs, channel, pd_en);
RMT_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t rmt_get_mem_pd(rmt_channel_t channel, bool *pd_en)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT_ENTER_CRITICAL();
*pd_en = rmt_ll_is_mem_power_down(p_rmt_obj[channel]->hal.regs, channel);
RMT_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t rmt_tx_start(rmt_channel_t channel, bool tx_idx_rst)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT_ENTER_CRITICAL();
if (tx_idx_rst) {
rmt_ll_reset_tx_pointer(p_rmt_obj[channel]->hal.regs, channel);
}
rmt_ll_clear_tx_end_interrupt(p_rmt_obj[channel]->hal.regs, channel);
rmt_ll_enable_tx_end_interrupt(p_rmt_obj[channel]->hal.regs, channel, true);
rmt_ll_start_tx(p_rmt_obj[channel]->hal.regs, channel);
RMT_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t rmt_tx_stop(rmt_channel_t channel)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT_ENTER_CRITICAL();
rmt_ll_stop_tx(p_rmt_obj[channel]->hal.regs, channel);
rmt_ll_reset_tx_pointer(p_rmt_obj[channel]->hal.regs, channel);
RMT_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t rmt_rx_start(rmt_channel_t channel, bool rx_idx_rst)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT_ENTER_CRITICAL();
rmt_ll_enable_rx(p_rmt_obj[channel]->hal.regs, channel, false);
if (rx_idx_rst) {
rmt_ll_reset_rx_pointer(p_rmt_obj[channel]->hal.regs, channel);
}
rmt_ll_clear_rx_end_interrupt(p_rmt_obj[channel]->hal.regs, channel);
rmt_ll_enable_rx_end_interrupt(p_rmt_obj[channel]->hal.regs, channel, true);
rmt_ll_enable_rx(p_rmt_obj[channel]->hal.regs, channel, true);
RMT_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t rmt_rx_stop(rmt_channel_t channel)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT_ENTER_CRITICAL();
rmt_ll_enable_rx(p_rmt_obj[channel]->hal.regs, channel, false);
rmt_ll_enable_rx_end_interrupt(p_rmt_obj[channel]->hal.regs, channel, false);
RMT_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t rmt_memory_rw_rst(rmt_channel_t channel)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT_ENTER_CRITICAL();
rmt_ll_reset_tx_pointer(p_rmt_obj[channel]->hal.regs, channel);
rmt_ll_reset_rx_pointer(p_rmt_obj[channel]->hal.regs, channel);
RMT_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t rmt_set_memory_owner(rmt_channel_t channel, rmt_mem_owner_t owner)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT_CHECK(owner < RMT_MEM_OWNER_MAX, RMT_MEM_OWNER_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT_ENTER_CRITICAL();
rmt_ll_set_mem_owner(p_rmt_obj[channel]->hal.regs, channel, owner);
RMT_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t rmt_get_memory_owner(rmt_channel_t channel, rmt_mem_owner_t *owner)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT_CHECK(owner != NULL, RMT_MEM_OWNER_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT_ENTER_CRITICAL();
*owner = (rmt_mem_owner_t)rmt_ll_get_mem_owner(p_rmt_obj[channel]->hal.regs, channel);
RMT_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t rmt_set_tx_loop_mode(rmt_channel_t channel, bool loop_en)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT_ENTER_CRITICAL();
rmt_ll_enable_tx_cyclic(p_rmt_obj[channel]->hal.regs, channel, loop_en);
RMT_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t rmt_get_tx_loop_mode(rmt_channel_t channel, bool *loop_en)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT_ENTER_CRITICAL();
*loop_en = rmt_ll_is_tx_cyclic_enabled(p_rmt_obj[channel]->hal.regs, channel);
RMT_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t rmt_set_rx_filter(rmt_channel_t channel, bool rx_filter_en, uint8_t thresh)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT_ENTER_CRITICAL();
rmt_ll_enable_rx_filter(p_rmt_obj[channel]->hal.regs, channel, rx_filter_en);
rmt_ll_set_rx_filter_thres(p_rmt_obj[channel]->hal.regs, channel, thresh);
RMT_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t rmt_set_source_clk(rmt_channel_t channel, rmt_source_clk_t base_clk)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT_CHECK(base_clk < RMT_BASECLK_MAX, RMT_BASECLK_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT_ENTER_CRITICAL();
rmt_ll_set_counter_clock_src(p_rmt_obj[channel]->hal.regs, channel, base_clk);
RMT_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t rmt_get_source_clk(rmt_channel_t channel, rmt_source_clk_t *src_clk)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT_ENTER_CRITICAL();
*src_clk = (rmt_source_clk_t)rmt_ll_get_counter_clock_src(p_rmt_obj[channel]->hal.regs, channel);
RMT_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t rmt_set_idle_level(rmt_channel_t channel, bool idle_out_en, rmt_idle_level_t level)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT_CHECK(level < RMT_IDLE_LEVEL_MAX, "RMT IDLE LEVEL ERR", ESP_ERR_INVALID_ARG);
RMT_ENTER_CRITICAL();
rmt_ll_enable_tx_idle(p_rmt_obj[channel]->hal.regs, channel, idle_out_en);
rmt_ll_set_tx_idle_level(p_rmt_obj[channel]->hal.regs, channel, level);
RMT_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t rmt_get_idle_level(rmt_channel_t channel, bool *idle_out_en, rmt_idle_level_t *level)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT_ENTER_CRITICAL();
*idle_out_en = rmt_ll_is_tx_idle_enabled(p_rmt_obj[channel]->hal.regs, channel);
*level = rmt_ll_get_tx_idle_level(p_rmt_obj[channel]->hal.regs, channel);
RMT_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t rmt_get_status(rmt_channel_t channel, uint32_t *status)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT_ENTER_CRITICAL();
*status = rmt_ll_get_channel_status(p_rmt_obj[channel]->hal.regs, channel);
RMT_EXIT_CRITICAL();
return ESP_OK;
}
void rmt_set_intr_enable_mask(uint32_t mask)
{
RMT_ENTER_CRITICAL();
rmt_ll_set_intr_enable_mask(mask);
RMT_EXIT_CRITICAL();
}
void rmt_clr_intr_enable_mask(uint32_t mask)
{
RMT_ENTER_CRITICAL();
rmt_ll_clr_intr_enable_mask(mask);
RMT_EXIT_CRITICAL();
}
esp_err_t rmt_set_rx_intr_en(rmt_channel_t channel, bool en)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT_ENTER_CRITICAL();
rmt_ll_enable_rx_end_interrupt(p_rmt_obj[channel]->hal.regs, channel, en);
RMT_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t rmt_set_err_intr_en(rmt_channel_t channel, bool en)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT_ENTER_CRITICAL();
rmt_ll_enable_err_interrupt(p_rmt_obj[channel]->hal.regs, channel, en);
RMT_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t rmt_set_tx_intr_en(rmt_channel_t channel, bool en)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT_ENTER_CRITICAL();
rmt_ll_enable_tx_end_interrupt(p_rmt_obj[channel]->hal.regs, channel, en);
RMT_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t rmt_set_tx_thr_intr_en(rmt_channel_t channel, bool en, uint16_t evt_thresh)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
if (en) {
RMT_CHECK(evt_thresh <= 256, "RMT EVT THRESH ERR", ESP_ERR_INVALID_ARG);
RMT_ENTER_CRITICAL();
rmt_ll_set_tx_limit(p_rmt_obj[channel]->hal.regs, channel, evt_thresh);
rmt_ll_enable_tx_thres_interrupt(p_rmt_obj[channel]->hal.regs, channel, true);
RMT_EXIT_CRITICAL();
} else {
RMT_ENTER_CRITICAL();
rmt_ll_enable_tx_thres_interrupt(p_rmt_obj[channel]->hal.regs, channel, false);
RMT_EXIT_CRITICAL();
}
return ESP_OK;
}
esp_err_t rmt_set_pin(rmt_channel_t channel, rmt_mode_t mode, gpio_num_t gpio_num)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT_CHECK(mode < RMT_MODE_MAX, RMT_MODE_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT_CHECK(((GPIO_IS_VALID_GPIO(gpio_num) && (mode == RMT_MODE_RX)) ||
(GPIO_IS_VALID_OUTPUT_GPIO(gpio_num) && (mode == RMT_MODE_TX))),
RMT_GPIO_ERROR_STR, ESP_ERR_INVALID_ARG);
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[gpio_num], PIN_FUNC_GPIO);
if (mode == RMT_MODE_TX) {
gpio_set_direction(gpio_num, GPIO_MODE_OUTPUT);
gpio_matrix_out(gpio_num, RMT_SIG_OUT0_IDX + channel, 0, 0);
} else {
gpio_set_direction(gpio_num, GPIO_MODE_INPUT);
gpio_matrix_in(gpio_num, RMT_SIG_IN0_IDX + channel, 0);
}
return ESP_OK;
}
static esp_err_t rmt_internal_config(rmt_dev_t *dev, const rmt_config_t *rmt_param)
{
uint8_t mode = rmt_param->rmt_mode;
uint8_t channel = rmt_param->channel;
uint8_t gpio_num = rmt_param->gpio_num;
uint8_t mem_cnt = rmt_param->mem_block_num;
uint8_t clk_div = rmt_param->clk_div;
uint32_t carrier_freq_hz = rmt_param->tx_config.carrier_freq_hz;
bool carrier_en = rmt_param->tx_config.carrier_en;
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT_CHECK((mem_cnt + channel <= 8 && mem_cnt > 0), RMT_MEM_CNT_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT_CHECK((clk_div > 0), RMT_CLK_DIV_ERROR_STR, ESP_ERR_INVALID_ARG);
if (mode == RMT_MODE_TX) {
RMT_CHECK((!carrier_en || carrier_freq_hz > 0), "RMT carrier frequency can't be zero", ESP_ERR_INVALID_ARG);
}
RMT_ENTER_CRITICAL();
rmt_ll_set_counter_clock_div(dev, channel, clk_div);
rmt_ll_enable_mem_access(dev, true);
rmt_ll_reset_tx_pointer(dev, channel);
rmt_ll_reset_rx_pointer(dev, channel);
rmt_ll_set_counter_clock_src(dev, channel, RMT_BASECLK_APB); // only support APB clock for now
rmt_ll_set_mem_blocks(dev, channel, mem_cnt);
rmt_ll_set_mem_owner(dev, channel, RMT_MEM_OWNER_HW);
RMT_EXIT_CRITICAL();
uint32_t rmt_source_clk_hz = RMT_SOURCE_CLK(RMT_BASECLK_APB);
if (mode == RMT_MODE_TX) {
uint16_t carrier_duty_percent = rmt_param->tx_config.carrier_duty_percent;
uint8_t carrier_level = rmt_param->tx_config.carrier_level;
uint8_t idle_level = rmt_param->tx_config.idle_level;
RMT_ENTER_CRITICAL();
rmt_ll_enable_tx_cyclic(dev, channel, rmt_param->tx_config.loop_en);
rmt_ll_enable_tx_pingpong(dev, true);
/*Set idle level */
rmt_ll_enable_tx_idle(dev, channel, rmt_param->tx_config.idle_output_en);
rmt_ll_set_tx_idle_level(dev, channel, idle_level);
/*Set carrier*/
rmt_ll_enable_tx_carrier(dev, channel, carrier_en);
if (carrier_en) {
uint32_t duty_div, duty_h, duty_l;
duty_div = rmt_source_clk_hz / carrier_freq_hz;
duty_h = duty_div * carrier_duty_percent / 100;
duty_l = duty_div - duty_h;
rmt_ll_set_carrier_to_level(dev, channel, carrier_level);
rmt_ll_set_carrier_high_low_ticks(dev, channel, duty_h, duty_l);
} else {
rmt_ll_set_carrier_to_level(dev, channel, 0);
rmt_ll_set_carrier_high_low_ticks(dev, channel, 0, 0);
}
RMT_EXIT_CRITICAL();
ESP_LOGD(RMT_TAG, "Rmt Tx Channel %u|Gpio %u|Sclk_Hz %u|Div %u|Carrier_Hz %u|Duty %u",
channel, gpio_num, rmt_source_clk_hz, clk_div, carrier_freq_hz, carrier_duty_percent);
} else if (RMT_MODE_RX == mode) {
uint8_t filter_cnt = rmt_param->rx_config.filter_ticks_thresh;
uint16_t threshold = rmt_param->rx_config.idle_threshold;
RMT_ENTER_CRITICAL();
/*Set idle threshold*/
rmt_ll_set_rx_idle_thres(dev, channel, threshold);
/* Set RX filter */
rmt_ll_set_rx_filter_thres(dev, channel, filter_cnt);
rmt_ll_enable_rx_filter(dev, channel, rmt_param->rx_config.filter_en);
RMT_EXIT_CRITICAL();
ESP_LOGD(RMT_TAG, "Rmt Rx Channel %u|Gpio %u|Sclk_Hz %u|Div %u|Thresold %u|Filter %u",
channel, gpio_num, rmt_source_clk_hz, clk_div, threshold, filter_cnt);
}
return ESP_OK;
}
esp_err_t rmt_config(const rmt_config_t *rmt_param)
{
// reset the RMT module at the first time initialize RMT driver
static bool rmt_module_enabled = false;
if (rmt_module_enabled == false) {
periph_module_reset(PERIPH_RMT_MODULE);
rmt_module_enabled = true;
}
periph_module_enable(PERIPH_RMT_MODULE);
RMT_CHECK(rmt_set_pin(rmt_param->channel, rmt_param->rmt_mode, rmt_param->gpio_num) == ESP_OK,
"set gpio for RMT driver failed", ESP_ERR_INVALID_ARG);
RMT_CHECK(rmt_internal_config(&RMT, rmt_param) == ESP_OK,
"initialize RMT driver failed", ESP_ERR_INVALID_ARG);
return ESP_OK;
}
static void IRAM_ATTR rmt_fill_memory(rmt_channel_t channel, const rmt_item32_t *item,
uint16_t item_num, uint16_t mem_offset)
{
RMT_ENTER_CRITICAL();
rmt_ll_set_mem_owner(p_rmt_obj[channel]->hal.regs, channel, RMT_MEM_OWNER_SW);
rmt_ll_write_memory(p_rmt_obj[channel]->hal.mem, channel, item, item_num, mem_offset);
rmt_ll_set_mem_owner(p_rmt_obj[channel]->hal.regs, channel, RMT_MEM_OWNER_HW);
RMT_EXIT_CRITICAL();
}
esp_err_t rmt_fill_tx_items(rmt_channel_t channel, const rmt_item32_t *item, uint16_t item_num, uint16_t mem_offset)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, (0));
RMT_CHECK((item != NULL), RMT_ADDR_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT_CHECK((item_num > 0), RMT_DRIVER_LENGTH_ERROR_STR, ESP_ERR_INVALID_ARG);
/*Each block has 64 x 32 bits of data*/
uint8_t mem_cnt = rmt_ll_get_mem_blocks(p_rmt_obj[channel]->hal.regs, channel);
RMT_CHECK((mem_cnt * RMT_MEM_ITEM_NUM >= item_num), RMT_WR_MEM_OVF_ERROR_STR, ESP_ERR_INVALID_ARG);
rmt_fill_memory(channel, item, item_num, mem_offset);
return ESP_OK;
}
esp_err_t rmt_isr_register(void (*fn)(void *), void *arg, int intr_alloc_flags, rmt_isr_handle_t *handle)
{
RMT_CHECK((fn != NULL), RMT_ADDR_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT_CHECK(s_rmt_driver_channels == 0, "RMT driver installed, can not install generic ISR handler", ESP_FAIL);
return esp_intr_alloc(ETS_RMT_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
}
esp_err_t rmt_isr_deregister(rmt_isr_handle_t handle)
{
return esp_intr_free(handle);
}
static int IRAM_ATTR rmt_get_mem_len(rmt_channel_t channel)
{
int block_num = rmt_ll_get_mem_blocks(p_rmt_obj[channel]->hal.regs, channel);
int item_block_len = block_num * RMT_MEM_ITEM_NUM;
volatile rmt_item32_t *data = (rmt_item32_t *)RMTMEM.chan[channel].data32;
int idx;
for (idx = 0; idx < item_block_len; idx++) {
if (data[idx].duration0 == 0) {
return idx;
} else if (data[idx].duration1 == 0) {
return idx + 1;
}
}
return idx;
}
static void IRAM_ATTR rmt_driver_isr_default(void *arg)
{
uint32_t status = 0;
rmt_item32_t volatile *addr = NULL;
uint8_t channel = 0;
rmt_hal_context_t *hal = (rmt_hal_context_t *)arg;
portBASE_TYPE HPTaskAwoken = pdFALSE;
// Tx end interrupt
status = rmt_ll_get_tx_end_interrupt_status(hal->regs);
while (status) {
channel = __builtin_ffs(status) - 1;
status &= ~(1 << channel);
rmt_obj_t *p_rmt = p_rmt_obj[channel];
if (p_rmt) {
xSemaphoreGiveFromISR(p_rmt->tx_sem, &HPTaskAwoken);
rmt_ll_reset_tx_pointer(p_rmt_obj[channel]->hal.regs, channel);
p_rmt->tx_data = NULL;
p_rmt->tx_len_rem = 0;
p_rmt->tx_offset = 0;
p_rmt->tx_sub_len = 0;
p_rmt->sample_cur = NULL;
p_rmt->translator = false;
if (rmt_tx_end_callback.function != NULL) {
rmt_tx_end_callback.function(channel, rmt_tx_end_callback.arg);
}
}
rmt_ll_clear_tx_end_interrupt(hal->regs, channel);
}
// Tx thres interrupt
status = rmt_ll_get_tx_thres_interrupt_status(hal->regs);
while (status) {
channel = __builtin_ffs(status) - 1;
status &= ~(1 << channel);
rmt_obj_t *p_rmt = p_rmt_obj[channel];
if (p_rmt) {
if (p_rmt->translator) {
if (p_rmt->sample_size_remain > 0) {
size_t translated_size = 0;
p_rmt->sample_to_rmt((void *)p_rmt->sample_cur,
p_rmt->tx_buf,
p_rmt->sample_size_remain,
p_rmt->tx_sub_len,
&translated_size,
&p_rmt->tx_len_rem);
p_rmt->sample_size_remain -= translated_size;
p_rmt->sample_cur += translated_size;
p_rmt->tx_data = p_rmt->tx_buf;
} else {
p_rmt->sample_cur = NULL;
p_rmt->translator = false;
}
}
const rmt_item32_t *pdata = p_rmt->tx_data;
int len_rem = p_rmt->tx_len_rem;
if (len_rem >= p_rmt->tx_sub_len) {
rmt_fill_memory(channel, pdata, p_rmt->tx_sub_len, p_rmt->tx_offset);
p_rmt->tx_data += p_rmt->tx_sub_len;
p_rmt->tx_len_rem -= p_rmt->tx_sub_len;
} else if (len_rem == 0) {
rmt_item32_t stop_data = {0};
rmt_ll_write_memory(p_rmt_obj[channel]->hal.mem, channel, &stop_data, 1, p_rmt->tx_offset);
} else {
rmt_fill_memory(channel, pdata, len_rem, p_rmt->tx_offset);
rmt_item32_t stop_data = {0};
rmt_ll_write_memory(p_rmt_obj[channel]->hal.mem, channel, &stop_data, 1, p_rmt->tx_offset + len_rem);
p_rmt->tx_data += len_rem;
p_rmt->tx_len_rem -= len_rem;
}
if (p_rmt->tx_offset == 0) {
p_rmt->tx_offset = p_rmt->tx_sub_len;
} else {
p_rmt->tx_offset = 0;
}
}
rmt_ll_clear_tx_thres_interrupt(hal->regs, channel);
}
// Rx end interrupt
status = rmt_ll_get_rx_end_interrupt_status(hal->regs);
while (status) {
channel = __builtin_ffs(status) - 1;
status &= ~(1 << channel);
rmt_obj_t *p_rmt = p_rmt_obj[channel];
if (p_rmt) {
rmt_ll_enable_rx(p_rmt_obj[channel]->hal.regs, channel, false);
int item_len = rmt_get_mem_len(channel);
rmt_ll_set_mem_owner(p_rmt_obj[channel]->hal.regs, channel, RMT_MEM_OWNER_SW);
if (p_rmt->rx_buf) {
addr = RMTMEM.chan[channel].data32;
BaseType_t res = xRingbufferSendFromISR(p_rmt->rx_buf, (void *)addr, item_len * 4, &HPTaskAwoken);
if (res == pdFALSE) {
ESP_EARLY_LOGE(RMT_TAG, "RMT RX BUFFER FULL");
}
} else {
ESP_EARLY_LOGE(RMT_TAG, "RMT RX BUFFER ERROR");
}
rmt_ll_reset_rx_pointer(p_rmt_obj[channel]->hal.regs, channel);
rmt_ll_set_mem_owner(p_rmt_obj[channel]->hal.regs, channel, RMT_MEM_OWNER_HW);
rmt_ll_enable_rx(p_rmt_obj[channel]->hal.regs, channel, true);
}
rmt_ll_clear_rx_end_interrupt(hal->regs, channel);
}
// Err interrupt
status = rmt_ll_get_err_interrupt_status(hal->regs);
while (status) {
channel = __builtin_ffs(status) - 1;
status &= ~(1 << channel);
rmt_obj_t *p_rmt = p_rmt_obj[channel];
if (p_rmt) {
// Reset the receiver/transmitter's write/read addresses to prevent endless err interrupts.
rmt_ll_reset_tx_pointer(p_rmt_obj[channel]->hal.regs, channel);
rmt_ll_reset_rx_pointer(p_rmt_obj[channel]->hal.regs, channel);
ESP_EARLY_LOGD(RMT_TAG, "RMT[%d] ERR", channel);
ESP_EARLY_LOGD(RMT_TAG, "status: 0x%08x", rmt_ll_get_channel_status(p_rmt_obj[channel]->hal.regs, channel));
}
rmt_ll_clear_err_interrupt(hal->regs, channel);
}
if (HPTaskAwoken == pdTRUE) {
portYIELD_FROM_ISR();
}
}
esp_err_t rmt_driver_uninstall(rmt_channel_t channel)
{
esp_err_t err = ESP_OK;
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT_CHECK((s_rmt_driver_channels & BIT(channel)) != 0, "No RMT driver for this channel", ESP_ERR_INVALID_STATE);
if (p_rmt_obj[channel] == NULL) {
return ESP_OK;
}
//Avoid blocking here(when the interrupt is disabled and do not wait tx done).
if (p_rmt_obj[channel]->wait_done) {
xSemaphoreTake(p_rmt_obj[channel]->tx_sem, portMAX_DELAY);
}
rmt_set_rx_intr_en(channel, 0);
rmt_set_err_intr_en(channel, 0);
rmt_set_tx_intr_en(channel, 0);
rmt_set_tx_thr_intr_en(channel, 0, 0xffff);
_lock_acquire_recursive(&rmt_driver_isr_lock);
s_rmt_driver_channels &= ~BIT(channel);
if (s_rmt_driver_channels == 0) {
// all channels have driver disabled
err = rmt_isr_deregister(s_rmt_driver_intr_handle);
s_rmt_driver_intr_handle = NULL;
}
_lock_release_recursive(&rmt_driver_isr_lock);
if (err != ESP_OK) {
return err;
}
if (p_rmt_obj[channel]->tx_sem) {
vSemaphoreDelete(p_rmt_obj[channel]->tx_sem);
p_rmt_obj[channel]->tx_sem = NULL;
}
if (p_rmt_obj[channel]->rx_buf) {
vRingbufferDelete(p_rmt_obj[channel]->rx_buf);
p_rmt_obj[channel]->rx_buf = NULL;
}
if (p_rmt_obj[channel]->tx_buf) {
free(p_rmt_obj[channel]->tx_buf);
p_rmt_obj[channel]->tx_buf = NULL;
}
if (p_rmt_obj[channel]->sample_to_rmt) {
p_rmt_obj[channel]->sample_to_rmt = NULL;
}
free(p_rmt_obj[channel]);
p_rmt_obj[channel] = NULL;
return ESP_OK;
}
esp_err_t rmt_driver_install(rmt_channel_t channel, size_t rx_buf_size, int intr_alloc_flags)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT_CHECK((s_rmt_driver_channels & BIT(channel)) == 0,
"RMT driver already installed for channel", ESP_ERR_INVALID_STATE);
esp_err_t err = ESP_OK;
if (p_rmt_obj[channel] != NULL) {
ESP_LOGD(RMT_TAG, "RMT driver already installed");
return ESP_ERR_INVALID_STATE;
}
#if !CONFIG_SPIRAM_USE_MALLOC
p_rmt_obj[channel] = (rmt_obj_t *)malloc(sizeof(rmt_obj_t));
#else
if (!(intr_alloc_flags & ESP_INTR_FLAG_IRAM)) {
p_rmt_obj[channel] = (rmt_obj_t *)malloc(sizeof(rmt_obj_t));
} else {
p_rmt_obj[channel] = (rmt_obj_t *)heap_caps_calloc(1, sizeof(rmt_obj_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
}
#endif
if (p_rmt_obj[channel] == NULL) {
ESP_LOGE(RMT_TAG, "RMT driver malloc error");
return ESP_ERR_NO_MEM;
}
memset(p_rmt_obj[channel], 0, sizeof(rmt_obj_t));
rmt_hal_init(&p_rmt_obj[channel]->hal);
rmt_hal_channel_reset(&p_rmt_obj[channel]->hal, channel);
p_rmt_obj[channel]->tx_len_rem = 0;
p_rmt_obj[channel]->tx_data = NULL;
p_rmt_obj[channel]->channel = channel;
p_rmt_obj[channel]->tx_offset = 0;
p_rmt_obj[channel]->tx_sub_len = 0;
p_rmt_obj[channel]->wait_done = false;
p_rmt_obj[channel]->translator = false;
p_rmt_obj[channel]->sample_to_rmt = NULL;
if (p_rmt_obj[channel]->tx_sem == NULL) {
#if !CONFIG_SPIRAM_USE_MALLOC
p_rmt_obj[channel]->tx_sem = xSemaphoreCreateBinary();
#else
p_rmt_obj[channel]->intr_alloc_flags = intr_alloc_flags;
if (!(intr_alloc_flags & ESP_INTR_FLAG_IRAM)) {
p_rmt_obj[channel]->tx_sem = xSemaphoreCreateBinary();
} else {
p_rmt_obj[channel]->tx_sem = xSemaphoreCreateBinaryStatic(&p_rmt_obj[channel]->tx_sem_buffer);
}
#endif
xSemaphoreGive(p_rmt_obj[channel]->tx_sem);
}
if (p_rmt_obj[channel]->rx_buf == NULL && rx_buf_size > 0) {
p_rmt_obj[channel]->rx_buf = xRingbufferCreate(rx_buf_size, RINGBUF_TYPE_NOSPLIT);
}
rmt_set_err_intr_en(channel, 1);
_lock_acquire_recursive(&rmt_driver_isr_lock);
if (s_rmt_driver_channels == 0) {
// first RMT channel using driver
err = rmt_isr_register(rmt_driver_isr_default, &p_rmt_obj[channel]->hal, intr_alloc_flags, &s_rmt_driver_intr_handle);
}
if (err == ESP_OK) {
s_rmt_driver_channels |= BIT(channel);
}
_lock_release_recursive(&rmt_driver_isr_lock);
return err;
}
esp_err_t rmt_write_items(rmt_channel_t channel, const rmt_item32_t *rmt_item, int item_num, bool wait_tx_done)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT_CHECK(p_rmt_obj[channel] != NULL, RMT_DRIVER_ERROR_STR, ESP_FAIL);
RMT_CHECK(rmt_item != NULL, RMT_ADDR_ERROR_STR, ESP_FAIL);
RMT_CHECK(item_num > 0, RMT_DRIVER_LENGTH_ERROR_STR, ESP_ERR_INVALID_ARG);
#if CONFIG_SPIRAM_USE_MALLOC
if (p_rmt_obj[channel]->intr_alloc_flags & ESP_INTR_FLAG_IRAM) {
if (!esp_ptr_internal(rmt_item)) {
ESP_LOGE(RMT_TAG, RMT_PSRAM_BUFFER_WARN_STR);
return ESP_ERR_INVALID_ARG;
}
}
#endif
rmt_obj_t *p_rmt = p_rmt_obj[channel];
int block_num = rmt_ll_get_mem_blocks(p_rmt_obj[channel]->hal.regs, channel);
int item_block_len = block_num * RMT_MEM_ITEM_NUM;
int item_sub_len = block_num * RMT_MEM_ITEM_NUM / 2;
int len_rem = item_num;
xSemaphoreTake(p_rmt->tx_sem, portMAX_DELAY);
// fill the memory block first
if (item_num >= item_block_len) {
rmt_fill_memory(channel, rmt_item, item_block_len, 0);
len_rem -= item_block_len;
rmt_set_tx_loop_mode(channel, false);
rmt_set_tx_thr_intr_en(channel, 1, item_sub_len);
p_rmt->tx_data = rmt_item + item_block_len;
p_rmt->tx_len_rem = len_rem;
p_rmt->tx_offset = 0;
p_rmt->tx_sub_len = item_sub_len;
} else {
rmt_fill_memory(channel, rmt_item, len_rem, 0);
rmt_item32_t stop_data = {0};
rmt_ll_write_memory(p_rmt_obj[channel]->hal.mem, channel, &stop_data, 1, len_rem);
p_rmt->tx_len_rem = 0;
}
rmt_tx_start(channel, true);
p_rmt->wait_done = wait_tx_done;
if (wait_tx_done) {
xSemaphoreTake(p_rmt->tx_sem, portMAX_DELAY);
xSemaphoreGive(p_rmt->tx_sem);
}
return ESP_OK;
}
esp_err_t rmt_wait_tx_done(rmt_channel_t channel, TickType_t wait_time)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT_CHECK(p_rmt_obj[channel] != NULL, RMT_DRIVER_ERROR_STR, ESP_FAIL);
if (xSemaphoreTake(p_rmt_obj[channel]->tx_sem, wait_time) == pdTRUE) {
p_rmt_obj[channel]->wait_done = false;
xSemaphoreGive(p_rmt_obj[channel]->tx_sem);
return ESP_OK;
} else {
if (wait_time != 0) {
// Don't emit error message if just polling.
ESP_LOGE(RMT_TAG, "Timeout on wait_tx_done");
}
return ESP_ERR_TIMEOUT;
}
}
esp_err_t rmt_get_ringbuf_handle(rmt_channel_t channel, RingbufHandle_t *buf_handle)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT_CHECK(p_rmt_obj[channel] != NULL, RMT_DRIVER_ERROR_STR, ESP_FAIL);
RMT_CHECK(buf_handle != NULL, RMT_ADDR_ERROR_STR, ESP_ERR_INVALID_ARG);
*buf_handle = p_rmt_obj[channel]->rx_buf;
return ESP_OK;
}
rmt_tx_end_callback_t rmt_register_tx_end_callback(rmt_tx_end_fn_t function, void *arg)
{
rmt_tx_end_callback_t previous = rmt_tx_end_callback;
rmt_tx_end_callback.function = function;
rmt_tx_end_callback.arg = arg;
return previous;
}
esp_err_t rmt_translator_init(rmt_channel_t channel, sample_to_rmt_t fn)
{
RMT_CHECK(fn != NULL, RMT_TRANSLATOR_NULL_STR, ESP_ERR_INVALID_ARG);
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT_CHECK(p_rmt_obj[channel] != NULL, RMT_DRIVER_ERROR_STR, ESP_FAIL);
const uint32_t block_size = rmt_ll_get_mem_blocks(p_rmt_obj[channel]->hal.regs, channel) *
RMT_MEM_ITEM_NUM * sizeof(rmt_item32_t);
if (p_rmt_obj[channel]->tx_buf == NULL) {
#if !CONFIG_SPIRAM_USE_MALLOC
p_rmt_obj[channel]->tx_buf = (rmt_item32_t *)malloc(block_size);
#else
if (p_rmt_obj[channel]->intr_alloc_flags & ESP_INTR_FLAG_IRAM) {
p_rmt_obj[channel]->tx_buf = (rmt_item32_t *)malloc(block_size);
} else {
p_rmt_obj[channel]->tx_buf = (rmt_item32_t *)heap_caps_calloc(1, block_size, MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
}
#endif
if (p_rmt_obj[channel]->tx_buf == NULL) {
ESP_LOGE(RMT_TAG, "RMT translator buffer create fail");
return ESP_FAIL;
}
}
p_rmt_obj[channel]->sample_to_rmt = fn;
p_rmt_obj[channel]->sample_size_remain = 0;
p_rmt_obj[channel]->sample_cur = NULL;
ESP_LOGD(RMT_TAG, "RMT translator init done");
return ESP_OK;
}
esp_err_t rmt_write_sample(rmt_channel_t channel, const uint8_t *src, size_t src_size, bool wait_tx_done)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT_CHECK(p_rmt_obj[channel] != NULL, RMT_DRIVER_ERROR_STR, ESP_FAIL);
RMT_CHECK(p_rmt_obj[channel]->sample_to_rmt != NULL, RMT_TRANSLATOR_UNINIT_STR, ESP_FAIL);
#if CONFIG_SPIRAM_USE_MALLOC
if (p_rmt_obj[channel]->intr_alloc_flags & ESP_INTR_FLAG_IRAM) {
if (!esp_ptr_internal(src)) {
ESP_LOGE(RMT_TAG, RMT_PSRAM_BUFFER_WARN_STR);
return ESP_ERR_INVALID_ARG;
}
}
#endif
size_t item_num = 0;
size_t translated_size = 0;
rmt_obj_t *p_rmt = p_rmt_obj[channel];
const uint32_t item_block_len = rmt_ll_get_mem_blocks(p_rmt_obj[channel]->hal.regs, channel) * RMT_MEM_ITEM_NUM;
const uint32_t item_sub_len = item_block_len / 2;
xSemaphoreTake(p_rmt->tx_sem, portMAX_DELAY);
p_rmt->sample_to_rmt((void *)src, p_rmt->tx_buf, src_size, item_block_len, &translated_size, &item_num);
p_rmt->sample_size_remain = src_size - translated_size;
p_rmt->sample_cur = src + translated_size;
rmt_fill_memory(channel, p_rmt->tx_buf, item_num, 0);
if (item_num == item_block_len) {
rmt_set_tx_thr_intr_en(channel, 1, item_sub_len);
p_rmt->tx_data = p_rmt->tx_buf;
p_rmt->tx_offset = 0;
p_rmt->tx_sub_len = item_sub_len;
p_rmt->translator = true;
} else {
rmt_item32_t stop_data = {0};
rmt_ll_write_memory(p_rmt_obj[channel]->hal.mem, channel, &stop_data, 1, item_num);
p_rmt->tx_len_rem = 0;
p_rmt->sample_cur = NULL;
p_rmt->translator = false;
}
rmt_tx_start(channel, true);
p_rmt->wait_done = wait_tx_done;
if (wait_tx_done) {
xSemaphoreTake(p_rmt->tx_sem, portMAX_DELAY);
xSemaphoreGive(p_rmt->tx_sem);
}
return ESP_OK;
}
esp_err_t rmt_get_channel_status(rmt_channel_status_result_t *channel_status)
{
RMT_CHECK(channel_status != NULL, RMT_PARAM_ERR_STR, ESP_ERR_INVALID_ARG);
for (int i = 0; i < RMT_CHANNEL_MAX; i++) {
channel_status->status[i] = RMT_CHANNEL_UNINIT;
if (p_rmt_obj[i] != NULL) {
if (p_rmt_obj[i]->tx_sem != NULL) {
if (xSemaphoreTake(p_rmt_obj[i]->tx_sem, (TickType_t)0) == pdTRUE) {
channel_status->status[i] = RMT_CHANNEL_IDLE;
xSemaphoreGive(p_rmt_obj[i]->tx_sem);
} else {
channel_status->status[i] = RMT_CHANNEL_BUSY;
}
}
}
}
return ESP_OK;
}
esp_err_t rmt_get_counter_clock(rmt_channel_t channel, uint32_t *clock_hz)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT_CHECK(clock_hz, "parameter clock_hz can't be null", ESP_ERR_INVALID_ARG);
RMT_ENTER_CRITICAL();
*clock_hz = rmt_hal_get_counter_clock(&p_rmt_obj[channel]->hal, channel, RMT_SOURCE_CLK(RMT_BASECLK_APB));
RMT_EXIT_CRITICAL();
return ESP_OK;
}