esp-idf/components/driver/adc.c
2023-04-20 10:42:12 +08:00

965 lines
34 KiB
C

/*
* SPDX-FileCopyrightText: 2016-2021 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <esp_types.h>
#include <stdlib.h>
#include <ctype.h>
#include <string.h>
#include "sdkconfig.h"
#include "esp_intr_alloc.h"
#include "esp_log.h"
#include "esp_pm.h"
#include "esp_check.h"
#include "sys/lock.h"
#include "freertos/FreeRTOS.h"
#include "freertos/semphr.h"
#include "freertos/timers.h"
#include "freertos/ringbuf.h"
#include "driver/periph_ctrl.h"
#include "driver/gpio.h"
#include "driver/adc.h"
#include "hal/adc_types.h"
#include "hal/adc_hal.h"
#include "hal/dma_types.h"
//For calibration
#if CONFIG_IDF_TARGET_ESP32S2
#include "esp_efuse_rtc_table.h"
#elif SOC_ADC_CALIBRATION_V1_SUPPORTED
#include "esp_efuse_rtc_calib.h"
#endif
//For DMA
#if SOC_GDMA_SUPPORTED
#include "esp_private/gdma.h"
#elif CONFIG_IDF_TARGET_ESP32S2
#include "hal/spi_types.h"
#include "driver/spi_common_internal.h"
#elif CONFIG_IDF_TARGET_ESP32
#include "driver/i2s.h"
#include "hal/i2s_types.h"
#include "soc/i2s_periph.h"
#include "esp_private/i2s_platform.h"
#endif
#include "esp_private/sar_periph_ctrl.h"
static const char *ADC_TAG = "ADC";
#define ADC_GET_IO_NUM(periph, channel) (adc_channel_io_map[periph][channel])
extern portMUX_TYPE rtc_spinlock; //TODO: Will be placed in the appropriate position after the rtc module is finished.
#define ADC_ENTER_CRITICAL() portENTER_CRITICAL(&rtc_spinlock)
#define ADC_EXIT_CRITICAL() portEXIT_CRITICAL(&rtc_spinlock)
/**
* 1. sar_adc1_lock: this mutex lock is to protect the SARADC1 module.
* 2. sar_adc2_lock: this mutex lock is to protect the SARADC2 module.
* 3. adc_reg_lock: this spin lock is to protect the shared registers used by ADC1 / ADC2 single read mode.
*/
static _lock_t sar_adc1_lock;
#define SAR_ADC1_LOCK_ACQUIRE() _lock_acquire(&sar_adc1_lock)
#define SAR_ADC1_LOCK_RELEASE() _lock_release(&sar_adc1_lock)
static _lock_t sar_adc2_lock;
#define SAR_ADC2_LOCK_ACQUIRE() _lock_acquire(&sar_adc2_lock)
#define SAR_ADC2_LOCK_RELEASE() _lock_release(&sar_adc2_lock)
portMUX_TYPE adc_reg_lock = portMUX_INITIALIZER_UNLOCKED;
#define ADC_REG_LOCK_ENTER() portENTER_CRITICAL(&adc_reg_lock)
#define ADC_REG_LOCK_EXIT() portEXIT_CRITICAL(&adc_reg_lock)
#define INTERNAL_BUF_NUM 5
/*---------------------------------------------------------------
Digital Controller Context
---------------------------------------------------------------*/
typedef struct adc_digi_context_t {
uint8_t *rx_dma_buf; //dma buffer
adc_hal_context_t hal; //hal context
#if SOC_GDMA_SUPPORTED
gdma_channel_handle_t rx_dma_channel; //dma rx channel handle
#elif CONFIG_IDF_TARGET_ESP32S2
spi_host_device_t spi_host; //ADC uses this SPI DMA
intr_handle_t intr_hdl; //Interrupt handler
#elif CONFIG_IDF_TARGET_ESP32
i2s_port_t i2s_host; //ADC uses this I2S DMA
intr_handle_t intr_hdl; //Interrupt handler
#endif
RingbufHandle_t ringbuf_hdl; //RX ringbuffer handler
intptr_t rx_eof_desc_addr; //eof descriptor address of RX channel
bool ringbuf_overflow_flag; //1: ringbuffer overflow
bool driver_start_flag; //1: driver is started; 0: driver is stoped
bool use_adc1; //1: ADC unit1 will be used; 0: ADC unit1 won't be used.
bool use_adc2; //1: ADC unit2 will be used; 0: ADC unit2 won't be used. This determines whether to acquire sar_adc2_mutex lock or not.
adc_atten_t adc1_atten; //Attenuation for ADC1. On this chip each ADC can only support one attenuation.
adc_atten_t adc2_atten; //Attenuation for ADC2. On this chip each ADC can only support one attenuation.
adc_hal_digi_ctrlr_cfg_t hal_digi_ctrlr_cfg; //Hal digital controller configuration
esp_pm_lock_handle_t pm_lock; //For power management
} adc_digi_context_t;
static adc_digi_context_t *s_adc_digi_ctx = NULL;
#ifdef CONFIG_PM_ENABLE
//Only for deprecated API
extern esp_pm_lock_handle_t adc_digi_arbiter_lock;
#endif //CONFIG_PM_ENABLE
#if SOC_ADC_CALIBRATION_V1_SUPPORTED
uint32_t adc_get_calibration_offset(adc_ll_num_t adc_n, adc_channel_t chan, adc_atten_t atten);
#endif
/*---------------------------------------------------------------
ADC Continuous Read Mode (via DMA)
---------------------------------------------------------------*/
//Function to address transaction
static IRAM_ATTR bool s_adc_dma_intr(adc_digi_context_t *adc_digi_ctx);
#if SOC_GDMA_SUPPORTED
static IRAM_ATTR bool adc_dma_in_suc_eof_callback(gdma_channel_handle_t dma_chan, gdma_event_data_t *event_data, void *user_data);
#else
static IRAM_ATTR void adc_dma_intr_handler(void *arg);
#endif
static int8_t adc_digi_get_io_num(uint8_t adc_unit, uint8_t adc_channel)
{
return adc_channel_io_map[adc_unit][adc_channel];
}
static esp_err_t adc_digi_gpio_init(adc_unit_t adc_unit, uint16_t channel_mask)
{
esp_err_t ret = ESP_OK;
uint64_t gpio_mask = 0;
uint32_t n = 0;
int8_t io = 0;
while (channel_mask) {
if (channel_mask & 0x1) {
io = adc_digi_get_io_num(adc_unit, n);
if (io < 0) {
return ESP_ERR_INVALID_ARG;
}
gpio_mask |= BIT64(io);
}
channel_mask = channel_mask >> 1;
n++;
}
gpio_config_t cfg = {
.pin_bit_mask = gpio_mask,
.mode = GPIO_MODE_DISABLE,
};
ret = gpio_config(&cfg);
return ret;
}
esp_err_t adc_digi_initialize(const adc_digi_init_config_t *init_config)
{
esp_err_t ret = ESP_OK;
s_adc_digi_ctx = calloc(1, sizeof(adc_digi_context_t));
if (s_adc_digi_ctx == NULL) {
ret = ESP_ERR_NO_MEM;
goto cleanup;
}
//ringbuffer
s_adc_digi_ctx->ringbuf_hdl = xRingbufferCreate(init_config->max_store_buf_size, RINGBUF_TYPE_BYTEBUF);
if (!s_adc_digi_ctx->ringbuf_hdl) {
ret = ESP_ERR_NO_MEM;
goto cleanup;
}
//malloc internal buffer used by DMA
s_adc_digi_ctx->rx_dma_buf = heap_caps_calloc(1, init_config->conv_num_each_intr * INTERNAL_BUF_NUM, MALLOC_CAP_INTERNAL | MALLOC_CAP_DMA);
if (!s_adc_digi_ctx->rx_dma_buf) {
ret = ESP_ERR_NO_MEM;
goto cleanup;
}
//malloc dma descriptor
s_adc_digi_ctx->hal.rx_desc = heap_caps_calloc(1, (sizeof(dma_descriptor_t)) * INTERNAL_BUF_NUM, MALLOC_CAP_DMA);
if (!s_adc_digi_ctx->hal.rx_desc) {
ret = ESP_ERR_NO_MEM;
goto cleanup;
}
//malloc pattern table
s_adc_digi_ctx->hal_digi_ctrlr_cfg.adc_pattern = calloc(1, SOC_ADC_PATT_LEN_MAX * sizeof(adc_digi_pattern_config_t));
if (!s_adc_digi_ctx->hal_digi_ctrlr_cfg.adc_pattern) {
ret = ESP_ERR_NO_MEM;
goto cleanup;
}
#if CONFIG_PM_ENABLE
ret = esp_pm_lock_create(ESP_PM_APB_FREQ_MAX, 0, "adc_dma", &s_adc_digi_ctx->pm_lock);
if (ret != ESP_OK) {
goto cleanup;
}
#endif //CONFIG_PM_ENABLE
//init gpio pins
if (init_config->adc1_chan_mask) {
ret = adc_digi_gpio_init(ADC_NUM_1, init_config->adc1_chan_mask);
if (ret != ESP_OK) {
goto cleanup;
}
}
if (init_config->adc2_chan_mask) {
ret = adc_digi_gpio_init(ADC_NUM_2, init_config->adc2_chan_mask);
if (ret != ESP_OK) {
goto cleanup;
}
}
#if SOC_GDMA_SUPPORTED
//alloc rx gdma channel
gdma_channel_alloc_config_t rx_alloc_config = {
.direction = GDMA_CHANNEL_DIRECTION_RX,
};
ret = gdma_new_channel(&rx_alloc_config, &s_adc_digi_ctx->rx_dma_channel);
if (ret != ESP_OK) {
goto cleanup;
}
gdma_connect(s_adc_digi_ctx->rx_dma_channel, GDMA_MAKE_TRIGGER(GDMA_TRIG_PERIPH_ADC, 0));
gdma_strategy_config_t strategy_config = {
.auto_update_desc = true,
.owner_check = true
};
gdma_apply_strategy(s_adc_digi_ctx->rx_dma_channel, &strategy_config);
gdma_rx_event_callbacks_t cbs = {
.on_recv_eof = adc_dma_in_suc_eof_callback
};
gdma_register_rx_event_callbacks(s_adc_digi_ctx->rx_dma_channel, &cbs, s_adc_digi_ctx);
int dma_chan;
gdma_get_channel_id(s_adc_digi_ctx->rx_dma_channel, &dma_chan);
#elif CONFIG_IDF_TARGET_ESP32S2
//ADC utilises SPI3 DMA on ESP32S2
bool spi_success = false;
uint32_t dma_chan = 0;
spi_success = spicommon_periph_claim(SPI3_HOST, "adc");
ret = spicommon_dma_chan_alloc(SPI3_HOST, SPI_DMA_CH_AUTO, &dma_chan, &dma_chan);
if (ret == ESP_OK) {
s_adc_digi_ctx->spi_host = SPI3_HOST;
}
if (!spi_success || (s_adc_digi_ctx->spi_host != SPI3_HOST)) {
goto cleanup;
}
ret = esp_intr_alloc(spicommon_irqdma_source_for_host(s_adc_digi_ctx->spi_host), 0, adc_dma_intr_handler,
(void *)s_adc_digi_ctx, &s_adc_digi_ctx->intr_hdl);
if (ret != ESP_OK) {
goto cleanup;
}
#elif CONFIG_IDF_TARGET_ESP32
//ADC utilises I2S0 DMA on ESP32
uint32_t dma_chan = 0;
ret = i2s_priv_register_object(&s_adc_digi_ctx, I2S_NUM_0);
if (ret != ESP_OK) {
goto cleanup;
}
s_adc_digi_ctx->i2s_host = I2S_NUM_0;
ret = esp_intr_alloc(i2s_periph_signal[s_adc_digi_ctx->i2s_host].irq, 0, adc_dma_intr_handler,
(void *)s_adc_digi_ctx, &s_adc_digi_ctx->intr_hdl);
if (ret != ESP_OK) {
goto cleanup;
}
#endif
adc_hal_config_t config = {
#if SOC_GDMA_SUPPORTED
.dev = (void *)GDMA_LL_GET_HW(0),
#elif CONFIG_IDF_TARGET_ESP32S2
.dev = (void *)SPI_LL_GET_HW(s_adc_digi_ctx->spi_host),
#elif CONFIG_IDF_TARGET_ESP32
.dev = (void *)I2S_LL_GET_HW(s_adc_digi_ctx->i2s_host),
#endif
.desc_max_num = INTERNAL_BUF_NUM,
.dma_chan = dma_chan,
.eof_num = init_config->conv_num_each_intr / SOC_ADC_DIGI_DATA_BYTES_PER_CONV
};
adc_hal_context_config(&s_adc_digi_ctx->hal, &config);
//enable ADC digital part
periph_module_enable(PERIPH_SARADC_MODULE);
//reset ADC digital part
periph_module_reset(PERIPH_SARADC_MODULE);
#if SOC_ADC_CALIBRATION_V1_SUPPORTED
adc_hal_calibration_init(ADC_NUM_1);
adc_hal_calibration_init(ADC_NUM_2);
#endif //#if SOC_ADC_CALIBRATION_V1_SUPPORTED
return ret;
cleanup:
adc_digi_deinitialize();
return ret;
}
#if SOC_GDMA_SUPPORTED
static IRAM_ATTR bool adc_dma_in_suc_eof_callback(gdma_channel_handle_t dma_chan, gdma_event_data_t *event_data, void *user_data)
{
assert(event_data);
s_adc_digi_ctx->rx_eof_desc_addr = event_data->rx_eof_desc_addr;
return s_adc_dma_intr(user_data);
}
#else
static IRAM_ATTR void adc_dma_intr_handler(void *arg)
{
adc_digi_context_t *ctx = (adc_digi_context_t *)arg;
bool need_yield = false;
bool conversion_finish = adc_hal_check_event(&ctx->hal, ADC_HAL_DMA_INTR_MASK);
if (conversion_finish) {
adc_hal_digi_clr_intr(&s_adc_digi_ctx->hal, ADC_HAL_DMA_INTR_MASK);
intptr_t desc_addr = adc_hal_get_desc_addr(&ctx->hal);
ctx->rx_eof_desc_addr = desc_addr;
need_yield = s_adc_dma_intr(ctx);
}
if (need_yield) {
portYIELD_FROM_ISR();
}
}
#endif
static IRAM_ATTR bool s_adc_dma_intr(adc_digi_context_t *adc_digi_ctx)
{
portBASE_TYPE taskAwoken = 0;
BaseType_t ret;
adc_hal_dma_desc_status_t status = false;
dma_descriptor_t *current_desc = NULL;
while (1) {
status = adc_hal_get_reading_result(&adc_digi_ctx->hal, adc_digi_ctx->rx_eof_desc_addr, &current_desc);
if (status != ADC_HAL_DMA_DESC_VALID) {
break;
}
ret = xRingbufferSendFromISR(adc_digi_ctx->ringbuf_hdl, current_desc->buffer, current_desc->dw0.length, &taskAwoken);
if (ret == pdFALSE) {
//ringbuffer overflow
adc_digi_ctx->ringbuf_overflow_flag = 1;
}
}
if (status == ADC_HAL_DMA_DESC_NULL) {
//start next turns of dma operation
adc_hal_digi_start(&adc_digi_ctx->hal, adc_digi_ctx->rx_dma_buf);
}
return (taskAwoken == pdTRUE);
}
esp_err_t adc_digi_start(void)
{
if (s_adc_digi_ctx) {
if (s_adc_digi_ctx->driver_start_flag != 0) {
ESP_LOGE(ADC_TAG, "The driver is already started");
return ESP_ERR_INVALID_STATE;
}
sar_periph_ctrl_adc_continuous_power_acquire();
//reset flags
s_adc_digi_ctx->ringbuf_overflow_flag = 0;
s_adc_digi_ctx->driver_start_flag = 1;
if (s_adc_digi_ctx->use_adc1) {
SAR_ADC1_LOCK_ACQUIRE();
}
if (s_adc_digi_ctx->use_adc2) {
SAR_ADC2_LOCK_ACQUIRE();
}
#if CONFIG_PM_ENABLE
// Lock APB frequency while ADC driver is in use
esp_pm_lock_acquire(s_adc_digi_ctx->pm_lock);
#endif
#if SOC_ADC_CALIBRATION_V1_SUPPORTED
if (s_adc_digi_ctx->use_adc1) {
uint32_t cal_val = adc_get_calibration_offset(ADC_NUM_1, ADC_CHANNEL_MAX, s_adc_digi_ctx->adc1_atten);
adc_hal_set_calibration_param(ADC_NUM_1, cal_val);
}
if (s_adc_digi_ctx->use_adc2) {
uint32_t cal_val = adc_get_calibration_offset(ADC_NUM_2, ADC_CHANNEL_MAX, s_adc_digi_ctx->adc2_atten);
adc_hal_set_calibration_param(ADC_NUM_2, cal_val);
}
#endif //#if SOC_ADC_CALIBRATION_V1_SUPPORTED
adc_hal_init();
#if SOC_ADC_ARBITER_SUPPORTED
adc_arbiter_t config = ADC_ARBITER_CONFIG_DEFAULT();
adc_hal_arbiter_config(&config);
#endif //#if SOC_ADC_ARBITER_SUPPORTED
adc_hal_set_controller(ADC_NUM_1, ADC_HAL_CONTINUOUS_READ_MODE);
adc_hal_set_controller(ADC_NUM_2, ADC_HAL_CONTINUOUS_READ_MODE);
adc_hal_digi_init(&s_adc_digi_ctx->hal);
adc_hal_digi_controller_config(&s_adc_digi_ctx->hal, &s_adc_digi_ctx->hal_digi_ctrlr_cfg);
//start conversion
adc_hal_digi_start(&s_adc_digi_ctx->hal, s_adc_digi_ctx->rx_dma_buf);
}
#if CONFIG_IDF_TARGET_ESP32S2
//For being compatible with the deprecated behaviour
else {
ESP_LOGE(ADC_TAG, "API used without driver initialization before. The following behaviour is deprecated!!");
#ifdef CONFIG_PM_ENABLE
ESP_RETURN_ON_FALSE((adc_digi_arbiter_lock), ESP_FAIL, ADC_TAG, "Should start after call `adc_digi_controller_config`");
esp_pm_lock_acquire(adc_digi_arbiter_lock);
#endif
ADC_ENTER_CRITICAL();
adc_ll_digi_dma_enable();
adc_ll_digi_trigger_enable();
ADC_EXIT_CRITICAL();
}
#endif //#if CONFIG_IDF_TARGET_ESP32S2
return ESP_OK;
}
esp_err_t adc_digi_stop(void)
{
if (s_adc_digi_ctx) {
if (s_adc_digi_ctx->driver_start_flag != 1) {
ESP_LOGE(ADC_TAG, "The driver is already stopped");
return ESP_ERR_INVALID_STATE;
}
s_adc_digi_ctx->driver_start_flag = 0;
//disable the in suc eof intrrupt
adc_hal_digi_dis_intr(&s_adc_digi_ctx->hal, ADC_HAL_DMA_INTR_MASK);
//clear the in suc eof interrupt
adc_hal_digi_clr_intr(&s_adc_digi_ctx->hal, ADC_HAL_DMA_INTR_MASK);
//stop ADC
adc_hal_digi_stop(&s_adc_digi_ctx->hal);
adc_hal_digi_deinit(&s_adc_digi_ctx->hal);
#if CONFIG_PM_ENABLE
if (s_adc_digi_ctx->pm_lock) {
esp_pm_lock_release(s_adc_digi_ctx->pm_lock);
}
#endif //CONFIG_PM_ENABLE
if (s_adc_digi_ctx->use_adc1) {
SAR_ADC1_LOCK_RELEASE();
}
if (s_adc_digi_ctx->use_adc2) {
SAR_ADC2_LOCK_RELEASE();
}
sar_periph_ctrl_adc_continuous_power_release();
}
#if CONFIG_IDF_TARGET_ESP32S2
else {
//For being compatible with the deprecated behaviour
ESP_LOGE(ADC_TAG, "API used without driver initialization before. The following behaviour is deprecated!!");
#ifdef CONFIG_PM_ENABLE
if (adc_digi_arbiter_lock) {
esp_pm_lock_release(adc_digi_arbiter_lock);
}
#endif
ADC_ENTER_CRITICAL();
adc_ll_digi_trigger_disable();
adc_ll_digi_dma_disable();
ADC_EXIT_CRITICAL();
}
#endif //#if CONFIG_IDF_TARGET_ESP32S2
return ESP_OK;
}
esp_err_t adc_digi_read_bytes(uint8_t *buf, uint32_t length_max, uint32_t *out_length, uint32_t timeout_ms)
{
TickType_t ticks_to_wait;
esp_err_t ret = ESP_OK;
uint8_t *data = NULL;
size_t size = 0;
ticks_to_wait = timeout_ms / portTICK_RATE_MS;
if (timeout_ms == ADC_MAX_DELAY) {
ticks_to_wait = portMAX_DELAY;
}
data = xRingbufferReceiveUpTo(s_adc_digi_ctx->ringbuf_hdl, &size, ticks_to_wait, length_max);
if (!data) {
ESP_LOGV(ADC_TAG, "No data, increase timeout or reduce conv_num_each_intr");
ret = ESP_ERR_TIMEOUT;
*out_length = 0;
return ret;
}
memcpy(buf, data, size);
vRingbufferReturnItem(s_adc_digi_ctx->ringbuf_hdl, data);
assert((size % 4) == 0);
*out_length = size;
if (s_adc_digi_ctx->ringbuf_overflow_flag) {
ret = ESP_ERR_INVALID_STATE;
}
return ret;
}
esp_err_t adc_digi_deinitialize(void)
{
if (!s_adc_digi_ctx) {
return ESP_ERR_INVALID_STATE;
}
if (s_adc_digi_ctx->driver_start_flag != 0) {
ESP_LOGE(ADC_TAG, "The driver is not stopped");
return ESP_ERR_INVALID_STATE;
}
if (s_adc_digi_ctx->ringbuf_hdl) {
vRingbufferDelete(s_adc_digi_ctx->ringbuf_hdl);
s_adc_digi_ctx->ringbuf_hdl = NULL;
}
#if CONFIG_PM_ENABLE
if (s_adc_digi_ctx->pm_lock) {
esp_pm_lock_delete(s_adc_digi_ctx->pm_lock);
}
#endif //CONFIG_PM_ENABLE
free(s_adc_digi_ctx->rx_dma_buf);
free(s_adc_digi_ctx->hal.rx_desc);
free(s_adc_digi_ctx->hal_digi_ctrlr_cfg.adc_pattern);
#if SOC_GDMA_SUPPORTED
gdma_disconnect(s_adc_digi_ctx->rx_dma_channel);
gdma_del_channel(s_adc_digi_ctx->rx_dma_channel);
#elif CONFIG_IDF_TARGET_ESP32S2
esp_intr_free(s_adc_digi_ctx->intr_hdl);
spicommon_dma_chan_free(s_adc_digi_ctx->spi_host);
spicommon_periph_free(s_adc_digi_ctx->spi_host);
#elif CONFIG_IDF_TARGET_ESP32
esp_intr_free(s_adc_digi_ctx->intr_hdl);
i2s_priv_deregister_object(s_adc_digi_ctx->i2s_host);
#endif
free(s_adc_digi_ctx);
s_adc_digi_ctx = NULL;
periph_module_disable(PERIPH_SARADC_MODULE);
return ESP_OK;
}
/*---------------------------------------------------------------
Digital controller setting
---------------------------------------------------------------*/
esp_err_t adc_digi_controller_configure(const adc_digi_configuration_t *config)
{
if (!s_adc_digi_ctx) {
return ESP_ERR_INVALID_STATE;
}
//Pattern related check
ESP_RETURN_ON_FALSE(config->pattern_num <= SOC_ADC_PATT_LEN_MAX, ESP_ERR_INVALID_ARG, ADC_TAG, "Max pattern num is %d", SOC_ADC_PATT_LEN_MAX);
#if CONFIG_IDF_TARGET_ESP32
for (int i = 0; i < config->pattern_num; i++) {
ESP_RETURN_ON_FALSE((config->adc_pattern[i].bit_width >= SOC_ADC_DIGI_MIN_BITWIDTH && config->adc_pattern->bit_width <= SOC_ADC_DIGI_MAX_BITWIDTH), ESP_ERR_INVALID_ARG, ADC_TAG, "ADC bitwidth not supported");
ESP_RETURN_ON_FALSE(config->adc_pattern[i].unit == 0, ESP_ERR_INVALID_ARG, ADC_TAG, "Only support using ADC1 DMA mode");
}
#else
for (int i = 0; i < config->pattern_num; i++) {
ESP_RETURN_ON_FALSE((config->adc_pattern[i].bit_width == SOC_ADC_DIGI_MAX_BITWIDTH), ESP_ERR_INVALID_ARG, ADC_TAG, "ADC bitwidth not supported");
#if CONFIG_IDF_TARGET_ESP32C3 || CONFIG_IDF_TARGET_ESP32S3
//we add this error log to hint users what happened
if (SOC_ADC_DIG_SUPPORTED_UNIT(config->adc_pattern[i].unit) == 0) {
ESP_LOGE(ADC_TAG, "ADC2 continuous mode is no longer supported, please use ADC1. Search for errata on espressif website for more details. You can enable CONFIG_ADC_CONTINUOUS_FORCE_USE_ADC2_ON_C3_S3 to force use ADC2");
}
#endif //CONFIG_IDF_TARGET_ESP32C3 || CONFIG_IDF_TARGET_ESP32S3
#if !CONFIG_ADC_CONTINUOUS_FORCE_USE_ADC2_ON_C3_S3
/**
* On all continuous mode supported chips, we will always check the unit to see if it's a continuous mode supported unit.
* However, on ESP32C3 and ESP32S3, we will jump this check, if `CONFIG_ADC_CONTINUOUS_FORCE_USE_ADC2_ON_C3_S3` is enabled.
*/
ESP_RETURN_ON_FALSE(SOC_ADC_DIG_SUPPORTED_UNIT(config->adc_pattern[i].unit), ESP_ERR_INVALID_ARG, ADC_TAG, "Only support using ADC1 DMA mode");
#endif //#if !CONFIG_ADC_CONTINUOUS_FORCE_USE_ADC2_ON_C3_S3
}
#endif //#if CONFIG_IDF_TARGET_ESP32
ESP_RETURN_ON_FALSE(config->sample_freq_hz <= SOC_ADC_SAMPLE_FREQ_THRES_HIGH && config->sample_freq_hz >= SOC_ADC_SAMPLE_FREQ_THRES_LOW, ESP_ERR_INVALID_ARG, ADC_TAG, "ADC sampling frequency out of range");
#if CONFIG_IDF_TARGET_ESP32
ESP_RETURN_ON_FALSE(config->conv_limit_en == 1, ESP_ERR_INVALID_ARG, ADC_TAG, "`conv_limit_en` should be set to 1");
#endif
#if CONFIG_IDF_TARGET_ESP32
ESP_RETURN_ON_FALSE(config->format == ADC_DIGI_OUTPUT_FORMAT_TYPE1, ESP_ERR_INVALID_ARG, ADC_TAG, "Please use type1");
#elif CONFIG_IDF_TARGET_ESP32S2
if (config->conv_mode == ADC_CONV_BOTH_UNIT || config->conv_mode == ADC_CONV_ALTER_UNIT) {
ESP_RETURN_ON_FALSE(config->format == ADC_DIGI_OUTPUT_FORMAT_TYPE2, ESP_ERR_INVALID_ARG, ADC_TAG, "Please use type2");
} else if (config->conv_mode == ADC_CONV_SINGLE_UNIT_1 || config->conv_mode == ADC_CONV_SINGLE_UNIT_2) {
ESP_RETURN_ON_FALSE(config->format == ADC_DIGI_OUTPUT_FORMAT_TYPE1, ESP_ERR_INVALID_ARG, ADC_TAG, "Please use type1");
}
#else
ESP_RETURN_ON_FALSE(config->format == ADC_DIGI_OUTPUT_FORMAT_TYPE2, ESP_ERR_INVALID_ARG, ADC_TAG, "Please use type2");
#endif
s_adc_digi_ctx->hal_digi_ctrlr_cfg.conv_limit_en = config->conv_limit_en;
s_adc_digi_ctx->hal_digi_ctrlr_cfg.conv_limit_num = config->conv_limit_num;
s_adc_digi_ctx->hal_digi_ctrlr_cfg.adc_pattern_len = config->pattern_num;
s_adc_digi_ctx->hal_digi_ctrlr_cfg.sample_freq_hz = config->sample_freq_hz;
s_adc_digi_ctx->hal_digi_ctrlr_cfg.conv_mode = config->conv_mode;
memcpy(s_adc_digi_ctx->hal_digi_ctrlr_cfg.adc_pattern, config->adc_pattern, config->pattern_num * sizeof(adc_digi_pattern_config_t));
const int atten_uninitialized = 999;
s_adc_digi_ctx->adc1_atten = atten_uninitialized;
s_adc_digi_ctx->adc2_atten = atten_uninitialized;
s_adc_digi_ctx->use_adc1 = 0;
s_adc_digi_ctx->use_adc2 = 0;
for (int i = 0; i < config->pattern_num; i++) {
const adc_digi_pattern_config_t *pat = &config->adc_pattern[i];
if (pat->unit == ADC_NUM_1) {
s_adc_digi_ctx->use_adc1 = 1;
if (s_adc_digi_ctx->adc1_atten == atten_uninitialized) {
s_adc_digi_ctx->adc1_atten = pat->atten;
} else if (s_adc_digi_ctx->adc1_atten != pat->atten) {
return ESP_ERR_INVALID_ARG;
}
} else if (pat->unit == ADC_NUM_2) {
//See whether ADC2 will be used or not. If yes, the ``sar_adc2_mutex`` should be acquired in the continuous read driver
s_adc_digi_ctx->use_adc2 = 1;
if (s_adc_digi_ctx->adc2_atten == atten_uninitialized) {
s_adc_digi_ctx->adc2_atten = pat->atten;
} else if (s_adc_digi_ctx->adc2_atten != pat->atten) {
return ESP_ERR_INVALID_ARG;
}
}
}
return ESP_OK;
}
#if CONFIG_IDF_TARGET_ESP32C3
/*---------------------------------------------------------------
ADC Single Read Mode
---------------------------------------------------------------*/
static adc_atten_t s_atten1_single[ADC1_CHANNEL_MAX]; //Array saving attenuate of each channel of ADC1, used by single read API
static adc_atten_t s_atten2_single[ADC2_CHANNEL_MAX]; //Array saving attenuate of each channel of ADC2, used by single read API
esp_err_t adc_vref_to_gpio(adc_unit_t adc_unit, gpio_num_t gpio)
{
esp_err_t ret;
uint32_t channel = ADC2_CHANNEL_MAX;
if (adc_unit == ADC_UNIT_2) {
for (int i = 0; i < ADC2_CHANNEL_MAX; i++) {
if (gpio == ADC_GET_IO_NUM(ADC_NUM_2, i)) {
channel = i;
break;
}
}
if (channel == ADC2_CHANNEL_MAX) {
return ESP_ERR_INVALID_ARG;
}
}
sar_periph_ctrl_adc_oneshot_power_acquire();
if (adc_unit & ADC_UNIT_1) {
ADC_ENTER_CRITICAL();
adc_hal_vref_output(ADC_NUM_1, channel, true);
ADC_EXIT_CRITICAL();
} else if (adc_unit & ADC_UNIT_2) {
ADC_ENTER_CRITICAL();
adc_hal_vref_output(ADC_NUM_2, channel, true);
ADC_EXIT_CRITICAL();
}
ret = adc_digi_gpio_init(ADC_NUM_2, BIT(channel));
return ret;
}
esp_err_t adc1_config_width(adc_bits_width_t width_bit)
{
//On ESP32C3, the data width is always 12-bits.
if (width_bit != ADC_WIDTH_BIT_12) {
return ESP_ERR_INVALID_ARG;
}
return ESP_OK;
}
esp_err_t adc1_config_channel_atten(adc1_channel_t channel, adc_atten_t atten)
{
ESP_RETURN_ON_FALSE(channel < SOC_ADC_CHANNEL_NUM(ADC_NUM_1), ESP_ERR_INVALID_ARG, ADC_TAG, "ADC1 channel error");
ESP_RETURN_ON_FALSE((atten < ADC_ATTEN_MAX), ESP_ERR_INVALID_ARG, ADC_TAG, "ADC Atten Err");
esp_err_t ret = ESP_OK;
s_atten1_single[channel] = atten;
ret = adc_digi_gpio_init(ADC_NUM_1, BIT(channel));
adc_hal_calibration_init(ADC_NUM_1);
return ret;
}
int adc1_get_raw(adc1_channel_t channel)
{
int raw_out = 0;
periph_module_enable(PERIPH_SARADC_MODULE);
sar_periph_ctrl_adc_oneshot_power_acquire();
SAR_ADC1_LOCK_ACQUIRE();
adc_ll_digi_clk_sel(0);
adc_atten_t atten = s_atten1_single[channel];
uint32_t cal_val = adc_get_calibration_offset(ADC_NUM_1, channel, atten);
adc_hal_set_calibration_param(ADC_NUM_1, cal_val);
ADC_REG_LOCK_ENTER();
adc_hal_set_atten(ADC_NUM_2, channel, atten);
adc_hal_convert(ADC_NUM_1, channel, &raw_out);
ADC_REG_LOCK_EXIT();
SAR_ADC1_LOCK_RELEASE();
sar_periph_ctrl_adc_oneshot_power_release();
periph_module_disable(PERIPH_SARADC_MODULE);
return raw_out;
}
esp_err_t adc2_config_channel_atten(adc2_channel_t channel, adc_atten_t atten)
{
ESP_RETURN_ON_FALSE(channel < SOC_ADC_CHANNEL_NUM(ADC_NUM_2), ESP_ERR_INVALID_ARG, ADC_TAG, "ADC2 channel error");
ESP_RETURN_ON_FALSE((atten <= ADC_ATTEN_11db), ESP_ERR_INVALID_ARG, ADC_TAG, "ADC2 Atten Err");
esp_err_t ret = ESP_OK;
s_atten2_single[channel] = atten;
ret = adc_digi_gpio_init(ADC_NUM_2, BIT(channel));
adc_hal_calibration_init(ADC_NUM_2);
return ret;
}
esp_err_t adc2_get_raw(adc2_channel_t channel, adc_bits_width_t width_bit, int *raw_out)
{
#if !CONFIG_ADC_ONESHOT_FORCE_USE_ADC2_ON_C3
ESP_LOGE(ADC_TAG, "ADC2 is no longer supported, please use ADC1. Search for errata on espressif website for more details. You can enable ADC_ONESHOT_FORCE_USE_ADC2_ON_C3 to force use ADC2");
ESP_RETURN_ON_FALSE(SOC_ADC_DIG_SUPPORTED_UNIT(ADC_UNIT_2), ESP_ERR_INVALID_ARG, ADC_TAG, "adc unit not supported");
#endif
//On ESP32C3, the data width is always 12-bits.
if (width_bit != ADC_WIDTH_BIT_12) {
return ESP_ERR_INVALID_ARG;
}
esp_err_t ret = ESP_OK;
periph_module_enable(PERIPH_SARADC_MODULE);
sar_periph_ctrl_adc_oneshot_power_acquire();
SAR_ADC2_LOCK_ACQUIRE();
adc_ll_digi_clk_sel(0);
adc_arbiter_t config = ADC_ARBITER_CONFIG_DEFAULT();
adc_hal_arbiter_config(&config);
adc_atten_t atten = s_atten2_single[channel];
uint32_t cal_val = adc_get_calibration_offset(ADC_NUM_2, channel, atten);
adc_hal_set_calibration_param(ADC_NUM_2, cal_val);
ADC_REG_LOCK_ENTER();
adc_hal_set_atten(ADC_NUM_2, channel, atten);
ret = adc_hal_convert(ADC_NUM_2, channel, raw_out);
ADC_REG_LOCK_EXIT();
SAR_ADC2_LOCK_RELEASE();
sar_periph_ctrl_adc_oneshot_power_release();
periph_module_disable(PERIPH_SARADC_MODULE);
return ret;
}
/*************************************/
/* Digital controller filter setting */
/*************************************/
esp_err_t adc_digi_filter_reset(adc_digi_filter_idx_t idx)
{
ADC_ENTER_CRITICAL();
adc_hal_digi_filter_reset(idx);
ADC_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t adc_digi_filter_set_config(adc_digi_filter_idx_t idx, adc_digi_filter_t *config)
{
ADC_ENTER_CRITICAL();
adc_hal_digi_filter_set_factor(idx, config);
ADC_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t adc_digi_filter_get_config(adc_digi_filter_idx_t idx, adc_digi_filter_t *config)
{
ADC_ENTER_CRITICAL();
adc_hal_digi_filter_get_factor(idx, config);
ADC_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t adc_digi_filter_enable(adc_digi_filter_idx_t idx, bool enable)
{
ADC_ENTER_CRITICAL();
adc_hal_digi_filter_enable(idx, enable);
ADC_EXIT_CRITICAL();
return ESP_OK;
}
/**************************************/
/* Digital controller monitor setting */
/**************************************/
esp_err_t adc_digi_monitor_set_config(adc_digi_monitor_idx_t idx, adc_digi_monitor_t *config)
{
ADC_ENTER_CRITICAL();
adc_hal_digi_monitor_config(idx, config);
ADC_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t adc_digi_monitor_enable(adc_digi_monitor_idx_t idx, bool enable)
{
ADC_ENTER_CRITICAL();
adc_hal_digi_monitor_enable(idx, enable);
ADC_EXIT_CRITICAL();
return ESP_OK;
}
#endif //#if CONFIG_IDF_TARGET_ESP32C3
#if SOC_ADC_CALIBRATION_V1_SUPPORTED
/*---------------------------------------------------------------
Hardware Calibration Setting
---------------------------------------------------------------*/
#if CONFIG_IDF_TARGET_ESP32S2
#define esp_efuse_rtc_calib_get_ver() esp_efuse_rtc_table_read_calib_version()
static inline uint32_t esp_efuse_rtc_calib_get_init_code(int version, uint32_t adc_unit, int atten)
{
int tag = esp_efuse_rtc_table_get_tag(version, adc_unit + 1, atten, RTCCALIB_V2_PARAM_VINIT);
return esp_efuse_rtc_table_get_parsed_efuse_value(tag, false);
}
#endif
static uint16_t s_adc_cali_param[SOC_ADC_PERIPH_NUM][ADC_ATTEN_MAX] = {};
//NOTE: according to calibration version, different types of lock may be taken during the process:
// 1. Semaphore when reading efuse
// 2. Lock (Spinlock, or Mutex) if we actually do ADC calibration in the future
//This function shoudn't be called inside critical section or ISR
uint32_t adc_get_calibration_offset(adc_ll_num_t adc_n, adc_channel_t channel, adc_atten_t atten)
{
if (s_adc_cali_param[adc_n][atten]) {
ESP_LOGV(ADC_TAG, "Use calibrated val ADC%d atten=%d: %04X", adc_n, atten, s_adc_cali_param[adc_n][atten]);
return (uint32_t)s_adc_cali_param[adc_n][atten];
}
// check if we can fetch the values from eFuse.
int version = esp_efuse_rtc_calib_get_ver();
uint32_t init_code = 0;
if (version == ESP_EFUSE_ADC_CALIB_VER) {
init_code = esp_efuse_rtc_calib_get_init_code(version, adc_n, atten);
} else {
ESP_LOGD(ADC_TAG, "Calibration eFuse is not configured, use self-calibration for ICode");
sar_periph_ctrl_adc_oneshot_power_acquire();
ADC_ENTER_CRITICAL();
const bool internal_gnd = true;
init_code = adc_hal_self_calibration(adc_n, channel, atten, internal_gnd);
ADC_EXIT_CRITICAL();
sar_periph_ctrl_adc_oneshot_power_release();
}
s_adc_cali_param[adc_n][atten] = init_code;
ESP_LOGV(ADC_TAG, "Calib(V%d) ADC%d atten=%d: %04X", version, adc_n, atten, init_code);
return init_code;
}
// Internal function to calibrate PWDET for WiFi
esp_err_t adc_cal_offset(adc_ll_num_t adc_n, adc_channel_t channel, adc_atten_t atten)
{
adc_hal_calibration_init(adc_n);
uint32_t cal_val = adc_get_calibration_offset(adc_n, channel, atten);
ADC_ENTER_CRITICAL();
adc_hal_set_calibration_param(adc_n, cal_val);
ADC_EXIT_CRITICAL();
return ESP_OK;
}
#endif //#if SOC_ADC_CALIBRATION_V1_SUPPORTED
/*---------------------------------------------------------------
Deprecated API
---------------------------------------------------------------*/
#if CONFIG_IDF_TARGET_ESP32C3
#pragma GCC diagnostic ignored "-Wdeprecated-declarations"
#include "driver/adc_deprecated.h"
#include "driver/adc_types_deprecated.h"
esp_err_t adc_digi_controller_config(const adc_digi_config_t *config)
{
if (!s_adc_digi_ctx) {
return ESP_ERR_INVALID_STATE;
}
ESP_RETURN_ON_FALSE((config->sample_freq_hz <= SOC_ADC_SAMPLE_FREQ_THRES_HIGH && config->sample_freq_hz >= SOC_ADC_SAMPLE_FREQ_THRES_LOW), ESP_ERR_INVALID_ARG, ADC_TAG, "DC sampling frequency out of range");
s_adc_digi_ctx->hal_digi_ctrlr_cfg.conv_limit_en = config->conv_limit_en;
s_adc_digi_ctx->hal_digi_ctrlr_cfg.conv_limit_num = config->conv_limit_num;
s_adc_digi_ctx->hal_digi_ctrlr_cfg.adc_pattern_len = config->adc_pattern_len;
s_adc_digi_ctx->hal_digi_ctrlr_cfg.sample_freq_hz = config->sample_freq_hz;
for (int i = 0; i < config->adc_pattern_len; i++) {
s_adc_digi_ctx->hal_digi_ctrlr_cfg.adc_pattern[i].atten = config->adc_pattern[i].atten;
s_adc_digi_ctx->hal_digi_ctrlr_cfg.adc_pattern[i].channel = config->adc_pattern[i].channel;
s_adc_digi_ctx->hal_digi_ctrlr_cfg.adc_pattern[i].unit = config->adc_pattern[i].unit;
}
const int atten_uninitialized = 999;
s_adc_digi_ctx->adc1_atten = atten_uninitialized;
s_adc_digi_ctx->adc2_atten = atten_uninitialized;
s_adc_digi_ctx->use_adc1 = 0;
s_adc_digi_ctx->use_adc2 = 0;
for (int i = 0; i < config->adc_pattern_len; i++) {
const adc_digi_pattern_config_t *pat = &s_adc_digi_ctx->hal_digi_ctrlr_cfg.adc_pattern[i];
if (pat->unit == ADC_NUM_1) {
s_adc_digi_ctx->use_adc1 = 1;
if (s_adc_digi_ctx->adc1_atten == atten_uninitialized) {
s_adc_digi_ctx->adc1_atten = pat->atten;
} else if (s_adc_digi_ctx->adc1_atten != pat->atten) {
return ESP_ERR_INVALID_ARG;
}
} else if (pat->unit == ADC_NUM_2) {
//See whether ADC2 will be used or not. If yes, the ``sar_adc2_mutex`` should be acquired in the continuous read driver
s_adc_digi_ctx->use_adc2 = 1;
if (s_adc_digi_ctx->adc2_atten == atten_uninitialized) {
s_adc_digi_ctx->adc2_atten = pat->atten;
} else if (s_adc_digi_ctx->adc2_atten != pat->atten) {
return ESP_ERR_INVALID_ARG;
}
}
}
return ESP_OK;
}
#endif //#if CONFIG_IDF_TARGET_ESP32C3