mirror of
https://github.com/espressif/esp-idf.git
synced 2024-10-05 20:47:46 -04:00
822 lines
27 KiB
C
822 lines
27 KiB
C
/*
|
|
* SPDX-FileCopyrightText: 2015-2021 Espressif Systems (Shanghai) CO LTD
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
/*
|
|
Architecture:
|
|
|
|
The whole SDIO slave peripheral consists of three parts: the registers (including the control registers of
|
|
interrupts and shared registers), the sending FIFO and the receiving FIFO. A document ``esp_slave_protocol.rst``
|
|
describes the functionality of the peripheral detailedly.
|
|
The host can access only one of those parts at once, and the hardware functions of these parts are totally
|
|
independent. Hence this driver is designed into these three independent parts. The shared registers are quite
|
|
simple. As well as the interrupts: when a slave interrupt is written by the host, the slave gets an interrupt;
|
|
when one of the host interrupt bits is active, slave hardware output interrupt signals on the DAT1 line.
|
|
|
|
For the FIFOs, the peripheral provides counters as registers so that the host can always know whether the slave
|
|
is ready to send/receive data. The driver resets the counters during initialization, and the host should somehow
|
|
inform the slave to reset the counters again if it should reboot (or lose the counter value for some reasons).
|
|
Then the host can read/write the FIFOs by CMD53 commands according to the counters.
|
|
|
|
Since we don't want to copy all the data from the buffer each time we use sending/receiving buffer,
|
|
the buffers are directly loaded onto the sending/receiving linked-list and taken off only after use.
|
|
Hence the driver takes ownership of the buffer when the buffer is fed to the driver.
|
|
|
|
The driver returns the ownership of buffers when a "finish" function is called. When the hardware finishes
|
|
the sending/receiving of a buffer, the ISR is invoked and it goes through the linked-list to see how many buffers
|
|
are freed after last interrupt, and send corresponding signals to the app.
|
|
|
|
The driver of FIFOs works as below:
|
|
|
|
1. The receive driver requires application to "register" a buffer before it's used. The driver
|
|
dynamically allocate a linked-list descriptor for the buffer, and return the descriptor as a handle
|
|
to the app.
|
|
|
|
Each time the app asks to receive by a buffer, the descriptor of the buffer is loaded onto the linked-list,
|
|
and the counter of receiving buffers is increased so that the host will know this by the receiving interrupt.
|
|
The hardware will automatically go through the linked list and write data into the buffers loaded on the
|
|
list.
|
|
|
|
The receiving driver sends a counting semaphore to the app for each buffer finished receiving. A task can only
|
|
check the linked list and fetch one finished buffer for a received semaphore.
|
|
|
|
2. The sending driver is slightly different due to different hardware working styles.
|
|
(TODO: re-write this part if the stitch mode is released)
|
|
The hardware has a cache, so that once a descriptor is loaded onto the linked-list, it cannot be modified
|
|
until returned (used) by the hardware. This forbids us from loading descriptors onto the linked list during
|
|
the transfer (or the time waiting for host to start a transfer). However, we use a "ringbuffer" (different from
|
|
the one in ``freertos/`` folder) holding descriptors to solve this:
|
|
|
|
1. The driver allocates continuous memory for several buffer descriptors (the maximum buffer number) during
|
|
initialization. Then the driver points the STAILQ_NEXT pointer of all the descriptors except the last one
|
|
to the next descriptor of each of them. Then the pointer of the last descriptor points back to the first one:
|
|
now the descriptor is in a ring.
|
|
|
|
2. The "ringbuffer" has a write pointer points to where app can write new descriptor. The app writes the new descriptor
|
|
indicated by the write pointer without touching the STAILQ_NEXT pointer so that the descriptors are always in a
|
|
ring-like linked-list. The app never touches the part of linked-list being used by the hardware.
|
|
|
|
3. When the hardware needs some data to send, it automatically pick a part of connected descriptors. According to the mode:
|
|
- Buffer mode: only pick the next one of the last sent one;
|
|
- Stream mode: pick the one above to the latest one.
|
|
|
|
The driver removes the STAILQ_NEXT pointer of the last descriptor and put the head of the part to the DMA controller so
|
|
that it looks like just a linear linked-list rather than a ring to the hardware.
|
|
|
|
4. The counter of sending FIFO can increase when app load new buffers (in STREAM_MODE) or when new transfer should
|
|
start (in PACKET_MODE).
|
|
|
|
5. When the sending transfer is finished, the driver goes through the descriptors just send in the ISR and push all
|
|
the ``arg`` member of descriptors to the queue back to the app, so that the app can handle finished buffers. The
|
|
driver also fix the STAILQ_NEXT pointer of the last descriptor so that the descriptors are now in a ring again.
|
|
*/
|
|
|
|
|
|
|
|
#include <string.h>
|
|
#include "driver/sdio_slave.h"
|
|
#include "soc/sdio_slave_periph.h"
|
|
#include "esp32/rom/lldesc.h"
|
|
#include "esp_log.h"
|
|
#include "esp_intr_alloc.h"
|
|
#include "freertos/FreeRTOS.h"
|
|
#include "soc/soc_memory_layout.h"
|
|
#include "soc/gpio_periph.h"
|
|
#include "hal/cpu_hal.h"
|
|
#include "freertos/semphr.h"
|
|
#include "driver/periph_ctrl.h"
|
|
#include "driver/gpio.h"
|
|
#include "hal/sdio_slave_hal.h"
|
|
#include "hal/gpio_hal.h"
|
|
|
|
|
|
#define SDIO_SLAVE_CHECK(res, str, ret_val) do { if(!(res)){\
|
|
SDIO_SLAVE_LOGE("%s", str);\
|
|
return ret_val;\
|
|
} }while (0)
|
|
|
|
static const char TAG[] = "sdio_slave";
|
|
|
|
#define SDIO_SLAVE_LOGE(s, ...) ESP_LOGE(TAG, "%s(%d): "s, __FUNCTION__,__LINE__,##__VA_ARGS__)
|
|
#define SDIO_SLAVE_LOGW(s, ...) ESP_LOGW(TAG, "%s: "s, __FUNCTION__,##__VA_ARGS__)
|
|
|
|
|
|
// sdio_slave_buf_handle_t is of type recv_desc_t*;
|
|
typedef struct recv_desc_s {
|
|
union {
|
|
struct {
|
|
// the third word, pointer to next desc, is shared with the tailq entry.
|
|
sdio_slave_hal_recv_desc_t hal_desc;
|
|
// when the forth word is used (not NULL), means the tailq is used, not in the receiving state.
|
|
uint32_t not_receiving;
|
|
};
|
|
struct {
|
|
// first 3 WORDs of this struct is defined by and compatible to the DMA link list format.
|
|
uint32_t _reserved0;
|
|
uint32_t _reserved1;
|
|
TAILQ_ENTRY(recv_desc_s) te; // tailq used to store the registered descriptors.
|
|
};
|
|
};
|
|
} recv_desc_t;
|
|
|
|
|
|
typedef TAILQ_HEAD(recv_tailq_head_s, recv_desc_s) recv_tailq_t;
|
|
|
|
typedef struct {
|
|
sdio_slave_config_t config;
|
|
sdio_slave_context_t *hal;
|
|
intr_handle_t intr_handle; //allocated interrupt handle
|
|
/*------- events ---------------*/
|
|
union {
|
|
SemaphoreHandle_t events[9]; // 0-7 for gp intr
|
|
struct {
|
|
SemaphoreHandle_t _events[8];
|
|
SemaphoreHandle_t recv_event; // 8 for recv
|
|
};
|
|
};
|
|
portMUX_TYPE reg_spinlock;
|
|
/*------- sending ---------------*/
|
|
//desc in the send_link_list are temporary, taken information and space from the ringbuf, return to ringbuf after use.
|
|
SemaphoreHandle_t remain_cnt;
|
|
portMUX_TYPE write_spinlock;
|
|
QueueHandle_t ret_queue;
|
|
/*------- receiving ---------------*/
|
|
recv_tailq_t recv_reg_list; // removed from the link list, registered but not used now
|
|
portMUX_TYPE recv_spinlock;
|
|
} sdio_context_t;
|
|
|
|
#define CONTEXT_INIT_VAL { \
|
|
.intr_handle = NULL, \
|
|
.hal = NULL, \
|
|
/*------- events ---------------*/ \
|
|
.events = {}, \
|
|
.reg_spinlock = portMUX_INITIALIZER_UNLOCKED, \
|
|
/*------- sending ---------------*/ \
|
|
.ret_queue = NULL, \
|
|
.write_spinlock = portMUX_INITIALIZER_UNLOCKED, \
|
|
/*------- receiving ---------------*/ \
|
|
.recv_reg_list = TAILQ_HEAD_INITIALIZER(context.recv_reg_list), \
|
|
.recv_spinlock = portMUX_INITIALIZER_UNLOCKED, \
|
|
}
|
|
|
|
static sdio_context_t context = CONTEXT_INIT_VAL;
|
|
|
|
static void sdio_intr(void *);
|
|
static void sdio_intr_host(void *);
|
|
static void sdio_intr_send(void *);
|
|
static void sdio_intr_recv(void *);
|
|
|
|
static esp_err_t send_flush_data(void);
|
|
static esp_err_t recv_flush_data(void);
|
|
|
|
static inline void critical_enter_recv(void);
|
|
static inline void critical_exit_recv(void);
|
|
|
|
static void deinit_context(void);
|
|
|
|
static inline void show_ll(lldesc_t *item)
|
|
{
|
|
ESP_EARLY_LOGI(TAG, "=> %p: size: %d(%d), eof: %d, owner: %d", item, item->size, item->length, item->eof, item->owner);
|
|
ESP_EARLY_LOGI(TAG, " buf: %p, stqe_next: %p", item->buf, item->qe.stqe_next);
|
|
}
|
|
|
|
static void __attribute((unused)) dump_ll(lldesc_t *queue)
|
|
{
|
|
int cnt = 0;
|
|
lldesc_t *item = queue;
|
|
while (item != NULL) {
|
|
cnt++;
|
|
show_ll(item);
|
|
item = STAILQ_NEXT(item, qe);
|
|
}
|
|
ESP_EARLY_LOGI(TAG, "total: %d", cnt);
|
|
}
|
|
|
|
static inline void deinit_context(void)
|
|
{
|
|
context.config = (sdio_slave_config_t) {};
|
|
for (int i = 0; i < 9; i++) {
|
|
if (context.events[i] != NULL) {
|
|
vSemaphoreDelete(context.events[i]);
|
|
context.events[i] = NULL;
|
|
}
|
|
}
|
|
if (context.ret_queue != NULL) {
|
|
vQueueDelete(context.ret_queue);
|
|
context.ret_queue = NULL;
|
|
}
|
|
if (context.remain_cnt != NULL) {
|
|
vSemaphoreDelete(context.remain_cnt);
|
|
}
|
|
free(context.hal->send_desc_queue.data);
|
|
context.hal->send_desc_queue.data = NULL;
|
|
free(context.hal);
|
|
context.hal = NULL;
|
|
}
|
|
|
|
static esp_err_t init_context(const sdio_slave_config_t *config)
|
|
{
|
|
SDIO_SLAVE_CHECK(*(uint32_t *)&context.config == 0, "sdio slave already initialized", ESP_ERR_INVALID_STATE);
|
|
context = (sdio_context_t)CONTEXT_INIT_VAL;
|
|
context.config = *config;
|
|
|
|
//initialize and configure the HAL
|
|
context.hal = (sdio_slave_context_t *)heap_caps_calloc(sizeof(sdio_slave_context_t), 1, MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
|
|
if (context.hal == NULL) {
|
|
goto no_mem;
|
|
}
|
|
|
|
context.hal->sending_mode = config->sending_mode;
|
|
context.hal->timing = config->timing;
|
|
context.hal->send_queue_size = config->send_queue_size;
|
|
context.hal->recv_buffer_size = config->recv_buffer_size;
|
|
//initialize ringbuffer resources
|
|
sdio_ringbuf_t *buf = &(context.hal->send_desc_queue);
|
|
//one item is not used.
|
|
buf->size = SDIO_SLAVE_SEND_DESC_SIZE * (config->send_queue_size + 1);
|
|
buf->data = (uint8_t *)heap_caps_malloc(buf->size, MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT | MALLOC_CAP_DMA);
|
|
if (buf->data == NULL) {
|
|
goto no_mem;
|
|
}
|
|
|
|
sdio_slave_hal_init(context.hal);
|
|
|
|
// in theory we can queue infinite buffers in the linked list, but for multi-core reason we have to use a queue to
|
|
// count the finished buffers.
|
|
context.recv_event = xSemaphoreCreateCounting(UINT32_MAX, 0);
|
|
for (int i = 0; i < 9; i++) {
|
|
if (i < 8) {
|
|
context.events[i] = xSemaphoreCreateBinary();
|
|
} //for 8, already created.
|
|
if (context.events[i] == NULL) {
|
|
SDIO_SLAVE_LOGE("event initialize failed");
|
|
goto no_mem;
|
|
}
|
|
}
|
|
|
|
context.remain_cnt = xSemaphoreCreateCounting(context.config.send_queue_size, context.config.send_queue_size);
|
|
if (context.remain_cnt == NULL) {
|
|
goto no_mem;
|
|
}
|
|
|
|
context.ret_queue = xQueueCreate(config->send_queue_size, sizeof(void *));
|
|
if (context.ret_queue == NULL) {
|
|
goto no_mem;
|
|
}
|
|
|
|
return ESP_OK;
|
|
|
|
no_mem:
|
|
deinit_context();
|
|
return ESP_ERR_NO_MEM;
|
|
}
|
|
|
|
static void configure_pin(int pin, uint32_t func, bool pullup)
|
|
{
|
|
const int sdmmc_func = func;
|
|
const int drive_strength = 3;
|
|
assert(pin != -1);
|
|
uint32_t reg = GPIO_PIN_MUX_REG[pin];
|
|
assert(reg != UINT32_MAX);
|
|
|
|
PIN_INPUT_ENABLE(reg);
|
|
gpio_hal_iomux_func_sel(reg, sdmmc_func);
|
|
PIN_SET_DRV(reg, drive_strength);
|
|
gpio_pulldown_dis(pin);
|
|
if (pullup) {
|
|
gpio_pullup_en(pin);
|
|
}
|
|
}
|
|
|
|
static inline esp_err_t sdio_slave_hw_init(sdio_slave_config_t *config)
|
|
{
|
|
//initialize pin
|
|
const sdio_slave_slot_info_t *slot = &sdio_slave_slot_info[1];
|
|
|
|
bool pullup = config->flags & SDIO_SLAVE_FLAG_INTERNAL_PULLUP;
|
|
configure_pin(slot->clk_gpio, slot->func, false); //clk doesn't need a pullup
|
|
configure_pin(slot->cmd_gpio, slot->func, pullup);
|
|
configure_pin(slot->d0_gpio, slot->func, pullup);
|
|
if ((config->flags & SDIO_SLAVE_FLAG_HOST_INTR_DISABLED) == 0) {
|
|
configure_pin(slot->d1_gpio, slot->func, pullup);
|
|
}
|
|
if ((config->flags & SDIO_SLAVE_FLAG_DAT2_DISABLED) == 0) {
|
|
configure_pin(slot->d2_gpio, slot->func, pullup);
|
|
}
|
|
configure_pin(slot->d3_gpio, slot->func, pullup);
|
|
|
|
//enable module and config
|
|
periph_module_reset(PERIPH_SDIO_SLAVE_MODULE);
|
|
periph_module_enable(PERIPH_SDIO_SLAVE_MODULE);
|
|
|
|
sdio_slave_hal_hw_init(context.hal);
|
|
|
|
return ESP_OK;
|
|
}
|
|
|
|
static void recover_pin(int pin, int sdio_func)
|
|
{
|
|
uint32_t reg = GPIO_PIN_MUX_REG[pin];
|
|
assert(reg != UINT32_MAX);
|
|
|
|
int func = REG_GET_FIELD(reg, MCU_SEL);
|
|
if (func == sdio_func) {
|
|
gpio_set_direction(pin, GPIO_MODE_INPUT);
|
|
gpio_hal_iomux_func_sel(reg, PIN_FUNC_GPIO);
|
|
}
|
|
}
|
|
|
|
static void sdio_slave_hw_deinit(void)
|
|
{
|
|
const sdio_slave_slot_info_t *slot = &sdio_slave_slot_info[1];
|
|
recover_pin(slot->clk_gpio, slot->func);
|
|
recover_pin(slot->cmd_gpio, slot->func);
|
|
recover_pin(slot->d0_gpio, slot->func);
|
|
recover_pin(slot->d1_gpio, slot->func);
|
|
recover_pin(slot->d2_gpio, slot->func);
|
|
recover_pin(slot->d3_gpio, slot->func);
|
|
}
|
|
|
|
esp_err_t sdio_slave_initialize(sdio_slave_config_t *config)
|
|
{
|
|
esp_err_t r;
|
|
intr_handle_t intr_handle = NULL;
|
|
const int flags = 0;
|
|
r = esp_intr_alloc(ETS_SLC0_INTR_SOURCE, flags, sdio_intr, NULL, &intr_handle);
|
|
if (r != ESP_OK) {
|
|
return r;
|
|
}
|
|
|
|
r = init_context(config);
|
|
if (r != ESP_OK) {
|
|
return r;
|
|
}
|
|
context.intr_handle = intr_handle;
|
|
|
|
r = sdio_slave_hw_init(config);
|
|
if (r != ESP_OK) {
|
|
return r;
|
|
}
|
|
|
|
sdio_slave_reset();
|
|
return ESP_OK;
|
|
}
|
|
|
|
void sdio_slave_deinit(void)
|
|
{
|
|
sdio_slave_hw_deinit();
|
|
|
|
//unregister all buffers registered but returned (not loaded)
|
|
recv_desc_t *temp_desc;
|
|
recv_desc_t *desc;
|
|
TAILQ_FOREACH_SAFE(desc, &context.recv_reg_list, te, temp_desc) {
|
|
TAILQ_REMOVE(&context.recv_reg_list, desc, te);
|
|
free(desc);
|
|
}
|
|
//unregister all buffers that is loaded and not returned
|
|
while (1) {
|
|
desc = (recv_desc_t *)sdio_slave_hal_recv_unload_desc(context.hal);
|
|
if (desc == NULL) {
|
|
break;
|
|
}
|
|
free(desc);
|
|
}
|
|
esp_err_t ret = esp_intr_free(context.intr_handle);
|
|
assert(ret == ESP_OK);
|
|
(void)ret;
|
|
context.intr_handle = NULL;
|
|
deinit_context();
|
|
}
|
|
|
|
esp_err_t sdio_slave_start(void)
|
|
{
|
|
esp_err_t ret;
|
|
sdio_slave_hostint_t intr = (sdio_slave_hostint_t)UINT32_MAX;
|
|
sdio_slave_hal_hostint_clear(context.hal, &intr);
|
|
ret = sdio_slave_hal_send_start(context.hal);
|
|
if (ret != ESP_OK) {
|
|
return ret;
|
|
}
|
|
|
|
critical_enter_recv();
|
|
sdio_slave_hal_recv_start(context.hal);
|
|
critical_exit_recv();
|
|
ret = ESP_OK;
|
|
if (ret != ESP_OK) {
|
|
return ret;
|
|
}
|
|
|
|
sdio_slave_hal_set_ioready(context.hal, true);
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t sdio_slave_reset(void)
|
|
{
|
|
esp_err_t err;
|
|
err = send_flush_data();
|
|
if (err != ESP_OK) {
|
|
return err;
|
|
}
|
|
|
|
err = sdio_slave_hal_send_reset_counter(context.hal);
|
|
if (err != ESP_OK) {
|
|
return err;
|
|
}
|
|
|
|
err = recv_flush_data();
|
|
if (err != ESP_OK) {
|
|
return err;
|
|
}
|
|
|
|
critical_enter_recv();
|
|
sdio_slave_hal_recv_reset_counter(context.hal);
|
|
critical_exit_recv();
|
|
err = ESP_OK;
|
|
return err;
|
|
}
|
|
|
|
void sdio_slave_stop(void)
|
|
{
|
|
sdio_slave_hal_set_ioready(context.hal, false);
|
|
sdio_slave_hal_send_stop(context.hal);
|
|
sdio_slave_hal_recv_stop(context.hal);
|
|
}
|
|
|
|
static void sdio_intr(void *arg)
|
|
{
|
|
sdio_intr_send(arg);
|
|
sdio_intr_recv(arg);
|
|
sdio_intr_host(arg);
|
|
}
|
|
|
|
/*---------------------------------------------------------------------------
|
|
* Host
|
|
*--------------------------------------------------------------------------*/
|
|
static void sdio_intr_host(void *arg)
|
|
{
|
|
sdio_slave_ll_slvint_t int_val;
|
|
sdio_slave_hal_slvint_fetch_clear(context.hal, &int_val);
|
|
portBASE_TYPE yield = pdFALSE;
|
|
for (int i = 0; i < 8; i++) {
|
|
if (BIT(i) & int_val) {
|
|
if (context.config.event_cb != NULL) {
|
|
(*context.config.event_cb)(i);
|
|
}
|
|
xSemaphoreGiveFromISR(context.events[i], &yield);
|
|
}
|
|
}
|
|
if (yield) {
|
|
portYIELD_FROM_ISR();
|
|
}
|
|
}
|
|
|
|
esp_err_t sdio_slave_wait_int(int pos, TickType_t wait)
|
|
{
|
|
SDIO_SLAVE_CHECK(pos >= 0 && pos < 8, "interrupt num invalid", ESP_ERR_INVALID_ARG);
|
|
return xSemaphoreTake(context.events[pos], wait);
|
|
}
|
|
|
|
uint8_t sdio_slave_read_reg(int pos)
|
|
{
|
|
if (pos >= 28 && pos <= 31) {
|
|
SDIO_SLAVE_LOGW("%s: interrupt reg, for reference", __FUNCTION__);
|
|
}
|
|
if (pos < 0 || pos >= 64) {
|
|
SDIO_SLAVE_LOGE("read register address wrong");
|
|
}
|
|
return sdio_slave_hal_host_get_reg(context.hal, pos);
|
|
}
|
|
|
|
esp_err_t sdio_slave_write_reg(int pos, uint8_t reg)
|
|
{
|
|
if (pos >= 28 && pos <= 31) {
|
|
SDIO_SLAVE_LOGE("interrupt reg, please use sdio_slave_clear_int");
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
if (pos < 0 || pos >= 64) {
|
|
SDIO_SLAVE_LOGE("write register address wrong");
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
|
|
portENTER_CRITICAL(&context.reg_spinlock);
|
|
sdio_slave_hal_host_set_reg(context.hal, pos, reg);
|
|
portEXIT_CRITICAL(&context.reg_spinlock);
|
|
return ESP_OK;
|
|
}
|
|
|
|
sdio_slave_hostint_t sdio_slave_get_host_intena(void)
|
|
{
|
|
sdio_slave_hostint_t host_int;
|
|
sdio_slave_hal_hostint_get_ena(context.hal, &host_int);
|
|
return host_int;
|
|
}
|
|
|
|
void sdio_slave_set_host_intena(sdio_slave_hostint_t mask)
|
|
{
|
|
sdio_slave_hal_hostint_set_ena(context.hal, &mask);
|
|
}
|
|
|
|
void sdio_slave_clear_host_int(sdio_slave_hostint_t mask)
|
|
{
|
|
sdio_slave_hal_hostint_clear(context.hal, &mask);
|
|
}
|
|
|
|
static inline sdio_slave_hostint_t get_hostint_by_pos(int pos)
|
|
{
|
|
return (sdio_slave_hostint_t)BIT(pos);
|
|
}
|
|
|
|
esp_err_t sdio_slave_send_host_int(uint8_t pos)
|
|
{
|
|
SDIO_SLAVE_CHECK(pos < 8, "interrupt num invalid", ESP_ERR_INVALID_ARG);
|
|
sdio_slave_hostint_t intr = get_hostint_by_pos(pos);
|
|
sdio_slave_hal_hostint_send(context.hal, &intr);
|
|
return ESP_OK;
|
|
}
|
|
|
|
/*---------------------------------------------------------------------------
|
|
* Send
|
|
*--------------------------------------------------------------------------*/
|
|
|
|
/* The link list is handled in the app, while counter and pointer processed in ISR.
|
|
* Driver abuse rx_done bit to invoke ISR.
|
|
* If driver is stopped, the link list is stopped as well as the ISR invoker.
|
|
*/
|
|
|
|
static void sdio_intr_send(void *arg)
|
|
{
|
|
ESP_EARLY_LOGV(TAG, "intr_send");
|
|
portBASE_TYPE yield = pdFALSE;
|
|
|
|
// this interrupt is abused to get ISR invoked by app
|
|
sdio_slave_hal_send_handle_isr_invoke(context.hal);
|
|
|
|
uint32_t returned_cnt;
|
|
if (sdio_slave_hal_send_eof_happened(context.hal)) {
|
|
portBASE_TYPE ret __attribute__((unused));
|
|
|
|
esp_err_t err;
|
|
while (1) {
|
|
void *finished_arg;
|
|
err = sdio_slave_hal_send_get_next_finished_arg(context.hal, &finished_arg, &returned_cnt);
|
|
if (err != ESP_OK) {
|
|
break;
|
|
}
|
|
|
|
assert(returned_cnt == 0);
|
|
ESP_EARLY_LOGV(TAG, "end: %x", finished_arg);
|
|
ret = xQueueSendFromISR(context.ret_queue, &finished_arg, &yield);
|
|
assert(ret == pdTRUE);
|
|
}
|
|
//get_next_finished_arg returns the total amount of returned descs.
|
|
for (size_t i = 0; i < returned_cnt; i++) {
|
|
ret = xSemaphoreGiveFromISR(context.remain_cnt, &yield);
|
|
assert(ret == pdTRUE);
|
|
}
|
|
}
|
|
|
|
sdio_slave_hal_send_new_packet_if_exist(context.hal);
|
|
|
|
if (yield) {
|
|
portYIELD_FROM_ISR();
|
|
}
|
|
}
|
|
|
|
esp_err_t sdio_slave_send_queue(uint8_t *addr, size_t len, void *arg, TickType_t wait)
|
|
{
|
|
SDIO_SLAVE_CHECK(len > 0, "len <= 0", ESP_ERR_INVALID_ARG);
|
|
SDIO_SLAVE_CHECK(esp_ptr_dma_capable(addr) && (uint32_t)addr % 4 == 0, "buffer to send should be DMA capable and 32-bit aligned",
|
|
ESP_ERR_INVALID_ARG);
|
|
|
|
portBASE_TYPE cnt_ret = xSemaphoreTake(context.remain_cnt, wait);
|
|
if (cnt_ret != pdTRUE) {
|
|
return ESP_ERR_TIMEOUT;
|
|
}
|
|
|
|
portENTER_CRITICAL(&context.write_spinlock);
|
|
esp_err_t ret = sdio_slave_hal_send_queue(context.hal, addr, len, arg);
|
|
portEXIT_CRITICAL(&context.write_spinlock);
|
|
if (ret != ESP_OK) {
|
|
return ret;
|
|
}
|
|
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t sdio_slave_send_get_finished(void **out_arg, TickType_t wait)
|
|
{
|
|
void *arg = NULL;
|
|
portBASE_TYPE err = xQueueReceive(context.ret_queue, &arg, wait);
|
|
if (out_arg) {
|
|
*out_arg = arg;
|
|
}
|
|
if (err != pdTRUE) {
|
|
return ESP_ERR_TIMEOUT;
|
|
}
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t sdio_slave_transmit(uint8_t *addr, size_t len)
|
|
{
|
|
uint32_t timestamp = cpu_hal_get_cycle_count();
|
|
uint32_t ret_stamp;
|
|
|
|
esp_err_t err = sdio_slave_send_queue(addr, len, (void *)timestamp, portMAX_DELAY);
|
|
if (err != ESP_OK) {
|
|
return err;
|
|
}
|
|
err = sdio_slave_send_get_finished((void **)&ret_stamp, portMAX_DELAY);
|
|
if (err != ESP_OK) {
|
|
return err;
|
|
}
|
|
SDIO_SLAVE_CHECK(ret_stamp == timestamp, "already sent without return before", ESP_ERR_INVALID_STATE);
|
|
|
|
return ESP_OK;
|
|
}
|
|
|
|
//clear data but keep counter
|
|
static esp_err_t send_flush_data(void)
|
|
{
|
|
esp_err_t err;
|
|
portBASE_TYPE ret __attribute__((unused));
|
|
|
|
while (1) {
|
|
void *finished_arg;
|
|
uint32_t return_cnt = 0;
|
|
err = sdio_slave_hal_send_flush_next_buffer(context.hal, &finished_arg, &return_cnt);
|
|
if (err == ESP_OK) {
|
|
ret = xQueueSend(context.ret_queue, &finished_arg, portMAX_DELAY);
|
|
assert(ret == pdTRUE);
|
|
for (size_t i = 0; i < return_cnt; i++) {
|
|
ret = xSemaphoreGive(context.remain_cnt);
|
|
assert(ret == pdTRUE);
|
|
}
|
|
} else {
|
|
if (err == ESP_ERR_NOT_FOUND) {
|
|
err = ESP_OK;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (err == ESP_ERR_INVALID_STATE) {
|
|
ESP_LOGE(TAG, "flush data when transmission started");
|
|
}
|
|
return err;
|
|
}
|
|
|
|
/*---------------------------------------------------------------------------
|
|
* Recv
|
|
*--------------------------------------------------------------------------*/
|
|
#define CHECK_HANDLE_IDLE(desc) do { if (desc == NULL || !desc->not_receiving) {\
|
|
return ESP_ERR_INVALID_ARG; } } while(0)
|
|
|
|
static inline void critical_enter_recv(void)
|
|
{
|
|
portENTER_CRITICAL(&context.recv_spinlock);
|
|
}
|
|
|
|
static inline void critical_exit_recv(void)
|
|
{
|
|
portEXIT_CRITICAL(&context.recv_spinlock);
|
|
}
|
|
|
|
// remove data, still increase the counter
|
|
static esp_err_t recv_flush_data(void)
|
|
{
|
|
while (1) {
|
|
portBASE_TYPE ret = xSemaphoreTake(context.recv_event, 0);
|
|
if (ret == pdFALSE) {
|
|
break;
|
|
}
|
|
critical_enter_recv();
|
|
sdio_slave_hal_recv_flush_one_buffer(context.hal);
|
|
critical_exit_recv();
|
|
}
|
|
return ESP_OK;
|
|
}
|
|
|
|
static void sdio_intr_recv(void *arg)
|
|
{
|
|
portBASE_TYPE yield = 0;
|
|
bool triggered = sdio_slave_hal_recv_done(context.hal);
|
|
while (triggered) {
|
|
portENTER_CRITICAL_ISR(&context.recv_spinlock);
|
|
bool has_next_item = sdio_slave_hal_recv_has_next_item(context.hal);
|
|
portEXIT_CRITICAL_ISR(&context.recv_spinlock);
|
|
if (has_next_item) {
|
|
ESP_EARLY_LOGV(TAG, "intr_recv: Give");
|
|
xSemaphoreGiveFromISR(context.recv_event, &yield);
|
|
continue; //check the linked list again skip the interrupt checking
|
|
}
|
|
// if no more items on the list, check the interrupt again,
|
|
// will loop until the interrupt bit is kept cleared.
|
|
triggered = sdio_slave_hal_recv_done(context.hal);
|
|
}
|
|
if (yield) {
|
|
portYIELD_FROM_ISR();
|
|
}
|
|
}
|
|
|
|
esp_err_t sdio_slave_recv_load_buf(sdio_slave_buf_handle_t handle)
|
|
{
|
|
recv_desc_t *desc = (recv_desc_t *)handle;
|
|
CHECK_HANDLE_IDLE(desc);
|
|
assert(desc->not_receiving);
|
|
|
|
critical_enter_recv();
|
|
TAILQ_REMOVE(&context.recv_reg_list, desc, te);
|
|
desc->not_receiving = 0; //manually remove the prev link (by set not_receiving=0), to indicate this is in the queue
|
|
sdio_slave_hal_load_buf(context.hal, &desc->hal_desc);
|
|
critical_exit_recv();
|
|
return ESP_OK;
|
|
}
|
|
|
|
sdio_slave_buf_handle_t sdio_slave_recv_register_buf(uint8_t *start)
|
|
{
|
|
SDIO_SLAVE_CHECK(esp_ptr_dma_capable(start) && (uint32_t)start % 4 == 0,
|
|
"buffer to register should be DMA capable and 32-bit aligned", NULL);
|
|
recv_desc_t *desc = (recv_desc_t *)heap_caps_malloc(sizeof(recv_desc_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT | MALLOC_CAP_DMA);
|
|
if (desc == NULL) {
|
|
SDIO_SLAVE_LOGE("cannot allocate lldesc for new buffer");
|
|
return NULL;
|
|
}
|
|
|
|
//initially in the reg list
|
|
sdio_slave_hal_recv_init_desc(context.hal, &desc->hal_desc, start);
|
|
critical_enter_recv();
|
|
TAILQ_INSERT_TAIL(&context.recv_reg_list, desc, te);
|
|
critical_exit_recv();
|
|
return desc;
|
|
}
|
|
|
|
esp_err_t sdio_slave_recv(sdio_slave_buf_handle_t *handle_ret, uint8_t **out_addr, size_t *out_len, TickType_t wait)
|
|
{
|
|
esp_err_t ret = sdio_slave_recv_packet(handle_ret, wait);
|
|
if (ret == ESP_ERR_NOT_FINISHED) {
|
|
//This API was not awared of the EOF info, return ESP_OK to keep back-compatible.
|
|
ret = ESP_OK;
|
|
}
|
|
if (ret == ESP_OK) {
|
|
recv_desc_t *desc = (recv_desc_t *)(*handle_ret);
|
|
if (out_addr) {
|
|
*out_addr = (uint8_t *)desc->hal_desc.buf;
|
|
}
|
|
if (out_len) {
|
|
*out_len = desc->hal_desc.length;
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
esp_err_t sdio_slave_recv_packet(sdio_slave_buf_handle_t *handle_ret, TickType_t wait)
|
|
{
|
|
SDIO_SLAVE_CHECK(handle_ret != NULL, "handle address cannot be 0", ESP_ERR_INVALID_ARG);
|
|
portBASE_TYPE err = xSemaphoreTake(context.recv_event, wait);
|
|
if (err == pdFALSE) {
|
|
return ESP_ERR_TIMEOUT;
|
|
}
|
|
|
|
esp_err_t ret = ESP_OK;
|
|
critical_enter_recv();
|
|
//remove from queue, add back to reg list.
|
|
recv_desc_t *desc = (recv_desc_t *)sdio_slave_hal_recv_unload_desc(context.hal);
|
|
assert(desc != NULL && desc->hal_desc.owner == 0);
|
|
TAILQ_INSERT_TAIL(&context.recv_reg_list, desc, te);
|
|
critical_exit_recv();
|
|
|
|
*handle_ret = (sdio_slave_buf_handle_t)desc;
|
|
|
|
if (!desc->hal_desc.eof) {
|
|
ret = ESP_ERR_NOT_FINISHED;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
esp_err_t sdio_slave_recv_unregister_buf(sdio_slave_buf_handle_t handle)
|
|
{
|
|
recv_desc_t *desc = (recv_desc_t *)handle;
|
|
CHECK_HANDLE_IDLE(desc); //in the queue, fail.
|
|
|
|
critical_enter_recv();
|
|
TAILQ_REMOVE(&context.recv_reg_list, desc, te);
|
|
critical_exit_recv();
|
|
free(desc);
|
|
return ESP_OK;
|
|
}
|
|
|
|
uint8_t *sdio_slave_recv_get_buf(sdio_slave_buf_handle_t handle, size_t *len_o)
|
|
{
|
|
if (handle == NULL) {
|
|
return NULL;
|
|
}
|
|
recv_desc_t *desc = (recv_desc_t *)handle;
|
|
|
|
if (len_o != NULL) {
|
|
*len_o = desc->hal_desc.length;
|
|
}
|
|
return (uint8_t *)desc->hal_desc.buf;
|
|
}
|